Properties

Label 225.2.h.d.136.3
Level $225$
Weight $2$
Character 225.136
Analytic conductor $1.797$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,2,Mod(46,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.46"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 225.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79663404548\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 3x^{10} - 2x^{9} + 34x^{8} - 22x^{7} + 236x^{6} - 179x^{5} + 877x^{4} - 409x^{3} + 96x^{2} - 11x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 136.3
Root \(-0.667650 + 2.05481i\) of defining polynomial
Character \(\chi\) \(=\) 225.136
Dual form 225.2.h.d.91.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.74793 - 1.26995i) q^{2} +(0.824463 - 2.53744i) q^{4} +(0.460159 - 2.18821i) q^{5} -3.16056 q^{7} +(-0.446002 - 1.37265i) q^{8} +(-1.97458 - 4.40921i) q^{10} +(1.24455 - 0.904220i) q^{11} +(4.24041 + 3.08084i) q^{13} +(-5.52444 + 4.01374i) q^{14} +(1.79417 + 1.30354i) q^{16} +(-0.398843 - 1.22751i) q^{17} +(1.68287 + 5.17933i) q^{19} +(-5.17306 - 2.97172i) q^{20} +(1.02708 - 3.16103i) q^{22} +(-5.21204 + 3.78677i) q^{23} +(-4.57651 - 2.01385i) q^{25} +11.3244 q^{26} +(-2.60577 + 8.01972i) q^{28} +(0.730396 - 2.24793i) q^{29} +(-1.37989 - 4.24687i) q^{31} +7.67809 q^{32} +(-2.25602 - 1.63910i) q^{34} +(-1.45436 + 6.91596i) q^{35} +(4.81973 + 3.50174i) q^{37} +(9.51901 + 6.91596i) q^{38} +(-3.20889 + 0.344307i) q^{40} +(-6.90269 - 5.01510i) q^{41} -8.48426 q^{43} +(-1.26831 - 3.90347i) q^{44} +(-4.30129 + 13.2380i) q^{46} +(-0.232712 + 0.716212i) q^{47} +2.98914 q^{49} +(-10.5569 + 2.29185i) q^{50} +(11.3135 - 8.21974i) q^{52} +(-3.01289 + 9.27271i) q^{53} +(-1.40593 - 3.13942i) q^{55} +(1.40962 + 4.33836i) q^{56} +(-1.57806 - 4.85678i) q^{58} +(3.32724 + 2.41738i) q^{59} +(8.65159 - 6.28574i) q^{61} +(-7.80525 - 5.67084i) q^{62} +(9.83243 - 7.14368i) q^{64} +(8.69278 - 7.86123i) q^{65} +(-0.586713 - 1.80572i) q^{67} -3.44357 q^{68} +(6.24078 + 13.9356i) q^{70} +(0.0219023 - 0.0674084i) q^{71} +(-3.24515 + 2.35774i) q^{73} +12.8716 q^{74} +14.5297 q^{76} +(-3.93348 + 2.85784i) q^{77} +(0.500141 - 1.53928i) q^{79} +(3.67802 - 3.32618i) q^{80} -18.4343 q^{82} +(-4.06322 - 12.5053i) q^{83} +(-2.86958 + 0.307901i) q^{85} +(-14.8299 + 10.7745i) q^{86} +(-1.79626 - 1.30506i) q^{88} +(5.88638 - 4.27671i) q^{89} +(-13.4021 - 9.73718i) q^{91} +(5.31155 + 16.3473i) q^{92} +(0.502787 + 1.54742i) q^{94} +(12.1078 - 1.29915i) q^{95} +(3.15009 - 9.69499i) q^{97} +(5.22480 - 3.79604i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 10 q^{4} + 6 q^{5} - 12 q^{7} - 9 q^{8} - 9 q^{10} + 4 q^{11} - 2 q^{13} - 6 q^{14} + 16 q^{16} + q^{17} + 7 q^{19} - 26 q^{20} + 13 q^{22} - 19 q^{23} + 4 q^{25} + 56 q^{26} + q^{28} + q^{29}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74793 1.26995i 1.23597 0.897987i 0.238650 0.971106i \(-0.423295\pi\)
0.997323 + 0.0731189i \(0.0232952\pi\)
\(3\) 0 0
\(4\) 0.824463 2.53744i 0.412232 1.26872i
\(5\) 0.460159 2.18821i 0.205789 0.978596i
\(6\) 0 0
\(7\) −3.16056 −1.19458 −0.597290 0.802026i \(-0.703756\pi\)
−0.597290 + 0.802026i \(0.703756\pi\)
\(8\) −0.446002 1.37265i −0.157686 0.485307i
\(9\) 0 0
\(10\) −1.97458 4.40921i −0.624417 1.39431i
\(11\) 1.24455 0.904220i 0.375247 0.272633i −0.384137 0.923276i \(-0.625501\pi\)
0.759383 + 0.650644i \(0.225501\pi\)
\(12\) 0 0
\(13\) 4.24041 + 3.08084i 1.17608 + 0.854471i 0.991724 0.128389i \(-0.0409805\pi\)
0.184355 + 0.982860i \(0.440981\pi\)
\(14\) −5.52444 + 4.01374i −1.47647 + 1.07272i
\(15\) 0 0
\(16\) 1.79417 + 1.30354i 0.448542 + 0.325885i
\(17\) −0.398843 1.22751i −0.0967337 0.297716i 0.890968 0.454066i \(-0.150027\pi\)
−0.987702 + 0.156351i \(0.950027\pi\)
\(18\) 0 0
\(19\) 1.68287 + 5.17933i 0.386076 + 1.18822i 0.935696 + 0.352806i \(0.114772\pi\)
−0.549620 + 0.835415i \(0.685228\pi\)
\(20\) −5.17306 2.97172i −1.15673 0.664497i
\(21\) 0 0
\(22\) 1.02708 3.16103i 0.218974 0.673933i
\(23\) −5.21204 + 3.78677i −1.08679 + 0.789596i −0.978854 0.204562i \(-0.934423\pi\)
−0.107932 + 0.994158i \(0.534423\pi\)
\(24\) 0 0
\(25\) −4.57651 2.01385i −0.915302 0.402769i
\(26\) 11.3244 2.22090
\(27\) 0 0
\(28\) −2.60577 + 8.01972i −0.492443 + 1.51558i
\(29\) 0.730396 2.24793i 0.135631 0.417430i −0.860056 0.510199i \(-0.829572\pi\)
0.995688 + 0.0927690i \(0.0295718\pi\)
\(30\) 0 0
\(31\) −1.37989 4.24687i −0.247836 0.762760i −0.995157 0.0982974i \(-0.968660\pi\)
0.747321 0.664463i \(-0.231340\pi\)
\(32\) 7.67809 1.35731
\(33\) 0 0
\(34\) −2.25602 1.63910i −0.386905 0.281103i
\(35\) −1.45436 + 6.91596i −0.245831 + 1.16901i
\(36\) 0 0
\(37\) 4.81973 + 3.50174i 0.792358 + 0.575682i 0.908662 0.417532i \(-0.137105\pi\)
−0.116304 + 0.993214i \(0.537105\pi\)
\(38\) 9.51901 + 6.91596i 1.54419 + 1.12192i
\(39\) 0 0
\(40\) −3.20889 + 0.344307i −0.507369 + 0.0544398i
\(41\) −6.90269 5.01510i −1.07802 0.783227i −0.100683 0.994919i \(-0.532103\pi\)
−0.977336 + 0.211692i \(0.932103\pi\)
\(42\) 0 0
\(43\) −8.48426 −1.29384 −0.646919 0.762559i \(-0.723943\pi\)
−0.646919 + 0.762559i \(0.723943\pi\)
\(44\) −1.26831 3.90347i −0.191206 0.588470i
\(45\) 0 0
\(46\) −4.30129 + 13.2380i −0.634191 + 1.95184i
\(47\) −0.232712 + 0.716212i −0.0339445 + 0.104470i −0.966593 0.256315i \(-0.917491\pi\)
0.932649 + 0.360786i \(0.117491\pi\)
\(48\) 0 0
\(49\) 2.98914 0.427020
\(50\) −10.5569 + 2.29185i −1.49297 + 0.324117i
\(51\) 0 0
\(52\) 11.3135 8.21974i 1.56890 1.13987i
\(53\) −3.01289 + 9.27271i −0.413852 + 1.27371i 0.499422 + 0.866359i \(0.333546\pi\)
−0.913274 + 0.407346i \(0.866454\pi\)
\(54\) 0 0
\(55\) −1.40593 3.13942i −0.189576 0.423320i
\(56\) 1.40962 + 4.33836i 0.188368 + 0.579737i
\(57\) 0 0
\(58\) −1.57806 4.85678i −0.207210 0.637727i
\(59\) 3.32724 + 2.41738i 0.433170 + 0.314717i 0.782915 0.622128i \(-0.213732\pi\)
−0.349745 + 0.936845i \(0.613732\pi\)
\(60\) 0 0
\(61\) 8.65159 6.28574i 1.10772 0.804807i 0.125419 0.992104i \(-0.459973\pi\)
0.982303 + 0.187297i \(0.0599726\pi\)
\(62\) −7.80525 5.67084i −0.991267 0.720198i
\(63\) 0 0
\(64\) 9.83243 7.14368i 1.22905 0.892960i
\(65\) 8.69278 7.86123i 1.07821 0.975065i
\(66\) 0 0
\(67\) −0.586713 1.80572i −0.0716785 0.220604i 0.908799 0.417233i \(-0.137000\pi\)
−0.980478 + 0.196630i \(0.937000\pi\)
\(68\) −3.44357 −0.417594
\(69\) 0 0
\(70\) 6.24078 + 13.9356i 0.745915 + 1.66562i
\(71\) 0.0219023 0.0674084i 0.00259933 0.00799990i −0.949748 0.313014i \(-0.898661\pi\)
0.952348 + 0.305014i \(0.0986612\pi\)
\(72\) 0 0
\(73\) −3.24515 + 2.35774i −0.379816 + 0.275952i −0.761270 0.648436i \(-0.775424\pi\)
0.381454 + 0.924388i \(0.375424\pi\)
\(74\) 12.8716 1.49629
\(75\) 0 0
\(76\) 14.5297 1.66667
\(77\) −3.93348 + 2.85784i −0.448262 + 0.325681i
\(78\) 0 0
\(79\) 0.500141 1.53928i 0.0562703 0.173182i −0.918971 0.394325i \(-0.870979\pi\)
0.975242 + 0.221143i \(0.0709786\pi\)
\(80\) 3.67802 3.32618i 0.411215 0.371878i
\(81\) 0 0
\(82\) −18.4343 −2.03573
\(83\) −4.06322 12.5053i −0.445996 1.37263i −0.881388 0.472393i \(-0.843390\pi\)
0.435392 0.900241i \(-0.356610\pi\)
\(84\) 0 0
\(85\) −2.86958 + 0.307901i −0.311250 + 0.0333966i
\(86\) −14.8299 + 10.7745i −1.59915 + 1.16185i
\(87\) 0 0
\(88\) −1.79626 1.30506i −0.191481 0.139119i
\(89\) 5.88638 4.27671i 0.623955 0.453330i −0.230345 0.973109i \(-0.573986\pi\)
0.854301 + 0.519779i \(0.173986\pi\)
\(90\) 0 0
\(91\) −13.4021 9.73718i −1.40492 1.02073i
\(92\) 5.31155 + 16.3473i 0.553768 + 1.70432i
\(93\) 0 0
\(94\) 0.502787 + 1.54742i 0.0518585 + 0.159604i
\(95\) 12.1078 1.29915i 1.24224 0.133290i
\(96\) 0 0
\(97\) 3.15009 9.69499i 0.319843 0.984377i −0.653871 0.756606i \(-0.726856\pi\)
0.973715 0.227771i \(-0.0731438\pi\)
\(98\) 5.22480 3.79604i 0.527785 0.383458i
\(99\) 0 0
\(100\) −8.88317 + 9.95226i −0.888317 + 0.995226i
\(101\) −1.08759 −0.108219 −0.0541096 0.998535i \(-0.517232\pi\)
−0.0541096 + 0.998535i \(0.517232\pi\)
\(102\) 0 0
\(103\) −1.52579 + 4.69590i −0.150341 + 0.462701i −0.997659 0.0683845i \(-0.978216\pi\)
0.847319 + 0.531085i \(0.178216\pi\)
\(104\) 2.33769 7.19468i 0.229230 0.705497i
\(105\) 0 0
\(106\) 6.50952 + 20.0343i 0.632261 + 1.94590i
\(107\) −15.3059 −1.47967 −0.739837 0.672786i \(-0.765098\pi\)
−0.739837 + 0.672786i \(0.765098\pi\)
\(108\) 0 0
\(109\) −5.38724 3.91406i −0.516004 0.374899i 0.299092 0.954224i \(-0.403316\pi\)
−0.815097 + 0.579325i \(0.803316\pi\)
\(110\) −6.44436 3.70204i −0.614446 0.352975i
\(111\) 0 0
\(112\) −5.67058 4.11991i −0.535819 0.389295i
\(113\) −7.25804 5.27328i −0.682779 0.496068i 0.191499 0.981493i \(-0.438665\pi\)
−0.874278 + 0.485425i \(0.838665\pi\)
\(114\) 0 0
\(115\) 5.88787 + 13.1475i 0.549047 + 1.22601i
\(116\) −5.10179 3.70667i −0.473689 0.344155i
\(117\) 0 0
\(118\) 8.88573 0.817998
\(119\) 1.26057 + 3.87963i 0.115556 + 0.355645i
\(120\) 0 0
\(121\) −2.66789 + 8.21092i −0.242536 + 0.746448i
\(122\) 7.13981 21.9741i 0.646408 1.98944i
\(123\) 0 0
\(124\) −11.9138 −1.06989
\(125\) −6.51263 + 9.08766i −0.582508 + 0.812825i
\(126\) 0 0
\(127\) −8.10511 + 5.88870i −0.719212 + 0.522538i −0.886132 0.463432i \(-0.846618\pi\)
0.166920 + 0.985970i \(0.446618\pi\)
\(128\) 3.36899 10.3687i 0.297780 0.916471i
\(129\) 0 0
\(130\) 5.21104 24.7802i 0.457038 2.17337i
\(131\) 1.97111 + 6.06645i 0.172217 + 0.530029i 0.999495 0.0317631i \(-0.0101122\pi\)
−0.827279 + 0.561792i \(0.810112\pi\)
\(132\) 0 0
\(133\) −5.31880 16.3696i −0.461199 1.41942i
\(134\) −3.31870 2.41117i −0.286692 0.208294i
\(135\) 0 0
\(136\) −1.50707 + 1.09495i −0.129230 + 0.0938910i
\(137\) −7.42461 5.39429i −0.634327 0.460866i 0.223570 0.974688i \(-0.428229\pi\)
−0.857897 + 0.513822i \(0.828229\pi\)
\(138\) 0 0
\(139\) 7.49586 5.44606i 0.635790 0.461929i −0.222611 0.974907i \(-0.571458\pi\)
0.858401 + 0.512979i \(0.171458\pi\)
\(140\) 16.3498 + 9.39230i 1.38181 + 0.793794i
\(141\) 0 0
\(142\) −0.0473213 0.145640i −0.00397111 0.0122218i
\(143\) 8.06317 0.674276
\(144\) 0 0
\(145\) −4.58284 2.63266i −0.380584 0.218631i
\(146\) −2.67809 + 8.24232i −0.221641 + 0.682140i
\(147\) 0 0
\(148\) 12.8591 9.34270i 1.05701 0.767965i
\(149\) 10.0817 0.825928 0.412964 0.910747i \(-0.364494\pi\)
0.412964 + 0.910747i \(0.364494\pi\)
\(150\) 0 0
\(151\) 10.7375 0.873804 0.436902 0.899509i \(-0.356076\pi\)
0.436902 + 0.899509i \(0.356076\pi\)
\(152\) 6.35887 4.61999i 0.515773 0.374731i
\(153\) 0 0
\(154\) −3.24615 + 9.99061i −0.261582 + 0.805067i
\(155\) −9.92800 + 1.06526i −0.797436 + 0.0855634i
\(156\) 0 0
\(157\) 17.4417 1.39200 0.696001 0.718041i \(-0.254961\pi\)
0.696001 + 0.718041i \(0.254961\pi\)
\(158\) −1.08058 3.32570i −0.0859667 0.264578i
\(159\) 0 0
\(160\) 3.53314 16.8013i 0.279319 1.32826i
\(161\) 16.4730 11.9683i 1.29825 0.943235i
\(162\) 0 0
\(163\) 13.1525 + 9.55586i 1.03018 + 0.748473i 0.968346 0.249613i \(-0.0803034\pi\)
0.0618392 + 0.998086i \(0.480303\pi\)
\(164\) −18.4165 + 13.3804i −1.43809 + 1.04483i
\(165\) 0 0
\(166\) −22.9832 16.6983i −1.78385 1.29604i
\(167\) 3.51989 + 10.8331i 0.272377 + 0.838290i 0.989902 + 0.141757i \(0.0452751\pi\)
−0.717525 + 0.696533i \(0.754725\pi\)
\(168\) 0 0
\(169\) 4.47230 + 13.7643i 0.344023 + 1.05879i
\(170\) −4.62481 + 4.18240i −0.354707 + 0.320776i
\(171\) 0 0
\(172\) −6.99496 + 21.5283i −0.533361 + 1.64152i
\(173\) 7.65205 5.55954i 0.581775 0.422684i −0.257589 0.966255i \(-0.582928\pi\)
0.839363 + 0.543571i \(0.182928\pi\)
\(174\) 0 0
\(175\) 14.4643 + 6.36488i 1.09340 + 0.481140i
\(176\) 3.41162 0.257161
\(177\) 0 0
\(178\) 4.85780 14.9508i 0.364107 1.12061i
\(179\) −1.26001 + 3.87790i −0.0941773 + 0.289848i −0.987038 0.160484i \(-0.948694\pi\)
0.892861 + 0.450332i \(0.148694\pi\)
\(180\) 0 0
\(181\) −3.43633 10.5759i −0.255421 0.786104i −0.993747 0.111660i \(-0.964383\pi\)
0.738326 0.674444i \(-0.235617\pi\)
\(182\) −35.7916 −2.65305
\(183\) 0 0
\(184\) 7.52251 + 5.46542i 0.554567 + 0.402916i
\(185\) 9.88036 8.93521i 0.726419 0.656930i
\(186\) 0 0
\(187\) −1.60632 1.16706i −0.117466 0.0853440i
\(188\) 1.62548 + 1.18098i 0.118550 + 0.0861319i
\(189\) 0 0
\(190\) 19.5138 17.6471i 1.41568 1.28026i
\(191\) 2.92164 + 2.12270i 0.211403 + 0.153593i 0.688448 0.725286i \(-0.258292\pi\)
−0.477046 + 0.878879i \(0.658292\pi\)
\(192\) 0 0
\(193\) −17.0562 −1.22774 −0.613868 0.789409i \(-0.710387\pi\)
−0.613868 + 0.789409i \(0.710387\pi\)
\(194\) −6.80596 20.9466i −0.488640 1.50388i
\(195\) 0 0
\(196\) 2.46443 7.58475i 0.176031 0.541768i
\(197\) 1.36129 4.18963i 0.0969880 0.298498i −0.890779 0.454437i \(-0.849840\pi\)
0.987767 + 0.155939i \(0.0498403\pi\)
\(198\) 0 0
\(199\) 16.5956 1.17643 0.588214 0.808705i \(-0.299831\pi\)
0.588214 + 0.808705i \(0.299831\pi\)
\(200\) −0.723180 + 7.18014i −0.0511365 + 0.507713i
\(201\) 0 0
\(202\) −1.90103 + 1.38118i −0.133756 + 0.0971795i
\(203\) −2.30846 + 7.10471i −0.162022 + 0.498653i
\(204\) 0 0
\(205\) −14.1504 + 12.7968i −0.988307 + 0.893766i
\(206\) 3.29656 + 10.1458i 0.229682 + 0.706889i
\(207\) 0 0
\(208\) 3.59202 + 11.0551i 0.249061 + 0.766532i
\(209\) 6.77768 + 4.92427i 0.468822 + 0.340619i
\(210\) 0 0
\(211\) −15.0035 + 10.9007i −1.03288 + 0.750434i −0.968884 0.247516i \(-0.920386\pi\)
−0.0640001 + 0.997950i \(0.520386\pi\)
\(212\) 21.0449 + 15.2900i 1.44537 + 1.05012i
\(213\) 0 0
\(214\) −26.7536 + 19.4376i −1.82884 + 1.32873i
\(215\) −3.90410 + 18.5653i −0.266258 + 1.26614i
\(216\) 0 0
\(217\) 4.36123 + 13.4225i 0.296060 + 0.911178i
\(218\) −14.3872 −0.974422
\(219\) 0 0
\(220\) −9.12523 + 0.979120i −0.615223 + 0.0660122i
\(221\) 2.09051 6.43393i 0.140623 0.432793i
\(222\) 0 0
\(223\) 0.624203 0.453510i 0.0417997 0.0303693i −0.566689 0.823932i \(-0.691776\pi\)
0.608489 + 0.793562i \(0.291776\pi\)
\(224\) −24.2671 −1.62141
\(225\) 0 0
\(226\) −19.3833 −1.28936
\(227\) 9.24817 6.71919i 0.613823 0.445968i −0.236936 0.971525i \(-0.576143\pi\)
0.850758 + 0.525557i \(0.176143\pi\)
\(228\) 0 0
\(229\) 3.15962 9.72432i 0.208794 0.642601i −0.790743 0.612149i \(-0.790305\pi\)
0.999536 0.0304520i \(-0.00969467\pi\)
\(230\) 26.9883 + 15.5037i 1.77955 + 1.02228i
\(231\) 0 0
\(232\) −3.41139 −0.223969
\(233\) 6.95997 + 21.4206i 0.455963 + 1.40331i 0.870001 + 0.493050i \(0.164118\pi\)
−0.414038 + 0.910260i \(0.635882\pi\)
\(234\) 0 0
\(235\) 1.46014 + 0.838793i 0.0952489 + 0.0547168i
\(236\) 8.87715 6.44963i 0.577853 0.419835i
\(237\) 0 0
\(238\) 7.13030 + 5.18047i 0.462189 + 0.335800i
\(239\) −0.476571 + 0.346249i −0.0308268 + 0.0223970i −0.603092 0.797672i \(-0.706065\pi\)
0.572265 + 0.820069i \(0.306065\pi\)
\(240\) 0 0
\(241\) −1.22110 0.887185i −0.0786583 0.0571486i 0.547761 0.836635i \(-0.315480\pi\)
−0.626419 + 0.779486i \(0.715480\pi\)
\(242\) 5.76414 + 17.7402i 0.370533 + 1.14038i
\(243\) 0 0
\(244\) −8.81677 27.1352i −0.564436 1.73715i
\(245\) 1.37548 6.54086i 0.0878760 0.417880i
\(246\) 0 0
\(247\) −8.82065 + 27.1472i −0.561244 + 1.72733i
\(248\) −5.21405 + 3.78823i −0.331093 + 0.240553i
\(249\) 0 0
\(250\) 0.157212 + 24.1553i 0.00994296 + 1.52771i
\(251\) −11.8953 −0.750823 −0.375412 0.926858i \(-0.622499\pi\)
−0.375412 + 0.926858i \(0.622499\pi\)
\(252\) 0 0
\(253\) −3.06258 + 9.42567i −0.192543 + 0.592587i
\(254\) −6.68882 + 20.5861i −0.419694 + 1.29169i
\(255\) 0 0
\(256\) 0.232398 + 0.715248i 0.0145249 + 0.0447030i
\(257\) 18.0492 1.12588 0.562939 0.826498i \(-0.309671\pi\)
0.562939 + 0.826498i \(0.309671\pi\)
\(258\) 0 0
\(259\) −15.2330 11.0674i −0.946534 0.687698i
\(260\) −12.7805 28.5387i −0.792612 1.76989i
\(261\) 0 0
\(262\) 11.1494 + 8.10053i 0.688814 + 0.500453i
\(263\) −15.4576 11.2306i −0.953157 0.692509i −0.00160518 0.999999i \(-0.500511\pi\)
−0.951551 + 0.307490i \(0.900511\pi\)
\(264\) 0 0
\(265\) 18.9042 + 10.8597i 1.16128 + 0.667109i
\(266\) −30.0854 21.8583i −1.84465 1.34022i
\(267\) 0 0
\(268\) −5.06562 −0.309432
\(269\) 6.86791 + 21.1372i 0.418744 + 1.28876i 0.908859 + 0.417103i \(0.136955\pi\)
−0.490115 + 0.871658i \(0.663045\pi\)
\(270\) 0 0
\(271\) 6.24546 19.2216i 0.379385 1.16763i −0.561088 0.827756i \(-0.689617\pi\)
0.940472 0.339870i \(-0.110383\pi\)
\(272\) 0.884520 2.72227i 0.0536319 0.165062i
\(273\) 0 0
\(274\) −19.8281 −1.19786
\(275\) −7.51666 + 1.63184i −0.453272 + 0.0984034i
\(276\) 0 0
\(277\) 12.9777 9.42882i 0.779752 0.566523i −0.125153 0.992137i \(-0.539942\pi\)
0.904904 + 0.425615i \(0.139942\pi\)
\(278\) 6.18604 19.0387i 0.371014 1.14186i
\(279\) 0 0
\(280\) 10.1419 1.08820i 0.606093 0.0650326i
\(281\) −2.58742 7.96327i −0.154353 0.475049i 0.843742 0.536749i \(-0.180348\pi\)
−0.998095 + 0.0617001i \(0.980348\pi\)
\(282\) 0 0
\(283\) −0.349174 1.07465i −0.0207562 0.0638811i 0.940142 0.340783i \(-0.110692\pi\)
−0.960898 + 0.276902i \(0.910692\pi\)
\(284\) −0.152987 0.111151i −0.00907810 0.00659563i
\(285\) 0 0
\(286\) 14.0939 10.2398i 0.833387 0.605491i
\(287\) 21.8164 + 15.8505i 1.28778 + 0.935626i
\(288\) 0 0
\(289\) 12.4056 9.01318i 0.729740 0.530187i
\(290\) −11.3538 + 1.21824i −0.666719 + 0.0715377i
\(291\) 0 0
\(292\) 3.30711 + 10.1782i 0.193534 + 0.595636i
\(293\) 2.37857 0.138958 0.0694789 0.997583i \(-0.477866\pi\)
0.0694789 + 0.997583i \(0.477866\pi\)
\(294\) 0 0
\(295\) 6.82080 6.16832i 0.397122 0.359134i
\(296\) 2.65706 8.17760i 0.154439 0.475313i
\(297\) 0 0
\(298\) 17.6222 12.8032i 1.02082 0.741672i
\(299\) −33.7676 −1.95283
\(300\) 0 0
\(301\) 26.8150 1.54559
\(302\) 18.7684 13.6360i 1.08000 0.784665i
\(303\) 0 0
\(304\) −3.73212 + 11.4863i −0.214052 + 0.658783i
\(305\) −9.77342 21.8239i −0.559624 1.24963i
\(306\) 0 0
\(307\) 2.89366 0.165150 0.0825748 0.996585i \(-0.473686\pi\)
0.0825748 + 0.996585i \(0.473686\pi\)
\(308\) 4.00858 + 12.3371i 0.228410 + 0.702974i
\(309\) 0 0
\(310\) −16.0006 + 14.4700i −0.908775 + 0.821842i
\(311\) −5.78079 + 4.19999i −0.327799 + 0.238160i −0.739496 0.673161i \(-0.764936\pi\)
0.411697 + 0.911321i \(0.364936\pi\)
\(312\) 0 0
\(313\) −18.6331 13.5378i −1.05321 0.765200i −0.0803879 0.996764i \(-0.525616\pi\)
−0.972820 + 0.231563i \(0.925616\pi\)
\(314\) 30.4869 22.1500i 1.72048 1.25000i
\(315\) 0 0
\(316\) −3.49347 2.53815i −0.196523 0.142782i
\(317\) 6.41981 + 19.7582i 0.360573 + 1.10973i 0.952707 + 0.303890i \(0.0982854\pi\)
−0.592135 + 0.805839i \(0.701715\pi\)
\(318\) 0 0
\(319\) −1.12361 3.45810i −0.0629098 0.193617i
\(320\) −11.1074 24.8026i −0.620921 1.38651i
\(321\) 0 0
\(322\) 13.5945 41.8395i 0.757591 2.33163i
\(323\) 5.68650 4.13148i 0.316405 0.229882i
\(324\) 0 0
\(325\) −13.2019 22.6390i −0.732312 1.25579i
\(326\) 35.1251 1.94540
\(327\) 0 0
\(328\) −3.80538 + 11.7118i −0.210117 + 0.646673i
\(329\) 0.735499 2.26363i 0.0405494 0.124798i
\(330\) 0 0
\(331\) −5.94869 18.3082i −0.326969 1.00631i −0.970544 0.240925i \(-0.922549\pi\)
0.643574 0.765383i \(-0.277451\pi\)
\(332\) −35.0814 −1.92534
\(333\) 0 0
\(334\) 19.9099 + 14.4654i 1.08942 + 0.791513i
\(335\) −4.22127 + 0.452934i −0.230633 + 0.0247464i
\(336\) 0 0
\(337\) −17.5609 12.7587i −0.956602 0.695012i −0.00424305 0.999991i \(-0.501351\pi\)
−0.952359 + 0.304979i \(0.901351\pi\)
\(338\) 25.2972 + 18.3795i 1.37599 + 0.999712i
\(339\) 0 0
\(340\) −1.58459 + 7.53524i −0.0859363 + 0.408656i
\(341\) −5.55745 4.03773i −0.300953 0.218655i
\(342\) 0 0
\(343\) 12.6766 0.684470
\(344\) 3.78400 + 11.6460i 0.204020 + 0.627908i
\(345\) 0 0
\(346\) 6.31493 19.4354i 0.339493 1.04485i
\(347\) 0.529944 1.63100i 0.0284489 0.0875567i −0.935824 0.352468i \(-0.885343\pi\)
0.964273 + 0.264911i \(0.0853426\pi\)
\(348\) 0 0
\(349\) −15.5553 −0.832654 −0.416327 0.909215i \(-0.636683\pi\)
−0.416327 + 0.909215i \(0.636683\pi\)
\(350\) 33.3657 7.24354i 1.78347 0.387184i
\(351\) 0 0
\(352\) 9.55579 6.94268i 0.509325 0.370046i
\(353\) −4.80632 + 14.7923i −0.255814 + 0.787316i 0.737854 + 0.674961i \(0.235839\pi\)
−0.993668 + 0.112355i \(0.964161\pi\)
\(354\) 0 0
\(355\) −0.137425 0.0789454i −0.00729376 0.00418998i
\(356\) −5.99877 18.4623i −0.317934 0.978501i
\(357\) 0 0
\(358\) 2.72232 + 8.37844i 0.143879 + 0.442814i
\(359\) −19.8509 14.4225i −1.04769 0.761191i −0.0759181 0.997114i \(-0.524189\pi\)
−0.971772 + 0.235923i \(0.924189\pi\)
\(360\) 0 0
\(361\) −8.62214 + 6.26435i −0.453797 + 0.329703i
\(362\) −19.4373 14.1221i −1.02160 0.742239i
\(363\) 0 0
\(364\) −35.7570 + 25.9790i −1.87418 + 1.36167i
\(365\) 3.66594 + 8.18600i 0.191884 + 0.428475i
\(366\) 0 0
\(367\) 8.68548 + 26.7311i 0.453378 + 1.39535i 0.873029 + 0.487669i \(0.162153\pi\)
−0.419651 + 0.907686i \(0.637847\pi\)
\(368\) −14.2875 −0.744786
\(369\) 0 0
\(370\) 5.92296 28.1656i 0.307920 1.46426i
\(371\) 9.52241 29.3070i 0.494379 1.52154i
\(372\) 0 0
\(373\) 7.85414 5.70637i 0.406672 0.295464i −0.365581 0.930779i \(-0.619130\pi\)
0.772253 + 0.635315i \(0.219130\pi\)
\(374\) −4.28984 −0.221823
\(375\) 0 0
\(376\) 1.08690 0.0560527
\(377\) 10.0227 7.28191i 0.516195 0.375037i
\(378\) 0 0
\(379\) −6.88071 + 21.1767i −0.353438 + 1.08777i 0.603471 + 0.797385i \(0.293784\pi\)
−0.956909 + 0.290387i \(0.906216\pi\)
\(380\) 6.68596 31.7940i 0.342983 1.63100i
\(381\) 0 0
\(382\) 7.80253 0.399212
\(383\) 4.21189 + 12.9628i 0.215217 + 0.662371i 0.999138 + 0.0415099i \(0.0132168\pi\)
−0.783921 + 0.620861i \(0.786783\pi\)
\(384\) 0 0
\(385\) 4.44353 + 9.92234i 0.226463 + 0.505689i
\(386\) −29.8131 + 21.6605i −1.51745 + 1.10249i
\(387\) 0 0
\(388\) −22.0033 15.9863i −1.11705 0.811582i
\(389\) 15.5577 11.3034i 0.788808 0.573103i −0.118801 0.992918i \(-0.537905\pi\)
0.907610 + 0.419815i \(0.137905\pi\)
\(390\) 0 0
\(391\) 6.72710 + 4.88752i 0.340204 + 0.247173i
\(392\) −1.33316 4.10305i −0.0673349 0.207236i
\(393\) 0 0
\(394\) −2.94115 9.05194i −0.148173 0.456030i
\(395\) −3.13811 1.80272i −0.157895 0.0907049i
\(396\) 0 0
\(397\) 6.86887 21.1402i 0.344739 1.06100i −0.616984 0.786975i \(-0.711646\pi\)
0.961723 0.274022i \(-0.0883541\pi\)
\(398\) 29.0079 21.0755i 1.45403 1.05642i
\(399\) 0 0
\(400\) −5.58590 9.57884i −0.279295 0.478942i
\(401\) −4.71728 −0.235570 −0.117785 0.993039i \(-0.537579\pi\)
−0.117785 + 0.993039i \(0.537579\pi\)
\(402\) 0 0
\(403\) 7.23261 22.2597i 0.360282 1.10883i
\(404\) −0.896678 + 2.75969i −0.0446114 + 0.137300i
\(405\) 0 0
\(406\) 4.98757 + 15.3502i 0.247529 + 0.761815i
\(407\) 9.16474 0.454279
\(408\) 0 0
\(409\) 10.0971 + 7.33597i 0.499269 + 0.362740i 0.808738 0.588169i \(-0.200151\pi\)
−0.309469 + 0.950910i \(0.600151\pi\)
\(410\) −8.48271 + 40.3381i −0.418931 + 1.99216i
\(411\) 0 0
\(412\) 10.6576 + 7.74319i 0.525062 + 0.381480i
\(413\) −10.5160 7.64029i −0.517456 0.375954i
\(414\) 0 0
\(415\) −29.2339 + 3.13674i −1.43504 + 0.153977i
\(416\) 32.5583 + 23.6550i 1.59630 + 1.15978i
\(417\) 0 0
\(418\) 18.1005 0.885322
\(419\) −10.7996 33.2379i −0.527597 1.62378i −0.759123 0.650947i \(-0.774372\pi\)
0.231527 0.972829i \(-0.425628\pi\)
\(420\) 0 0
\(421\) −12.2247 + 37.6239i −0.595797 + 1.83368i −0.0450804 + 0.998983i \(0.514354\pi\)
−0.550717 + 0.834692i \(0.685646\pi\)
\(422\) −12.3818 + 38.1073i −0.602737 + 1.85503i
\(423\) 0 0
\(424\) 14.0720 0.683396
\(425\) −0.646712 + 6.42093i −0.0313702 + 0.311461i
\(426\) 0 0
\(427\) −27.3439 + 19.8665i −1.32326 + 0.961406i
\(428\) −12.6191 + 38.8377i −0.609969 + 1.87729i
\(429\) 0 0
\(430\) 16.7528 + 37.4089i 0.807894 + 1.80402i
\(431\) 4.34429 + 13.3703i 0.209257 + 0.644027i 0.999512 + 0.0312481i \(0.00994821\pi\)
−0.790255 + 0.612778i \(0.790052\pi\)
\(432\) 0 0
\(433\) −0.169860 0.522775i −0.00816294 0.0251230i 0.946892 0.321552i \(-0.104204\pi\)
−0.955055 + 0.296429i \(0.904204\pi\)
\(434\) 24.6689 + 17.9230i 1.18415 + 0.860333i
\(435\) 0 0
\(436\) −14.3733 + 10.4428i −0.688355 + 0.500119i
\(437\) −28.3841 20.6223i −1.35780 0.986497i
\(438\) 0 0
\(439\) 2.40583 1.74794i 0.114824 0.0834245i −0.528891 0.848690i \(-0.677392\pi\)
0.643715 + 0.765265i \(0.277392\pi\)
\(440\) −3.68230 + 3.33005i −0.175547 + 0.158754i
\(441\) 0 0
\(442\) −4.51667 13.9009i −0.214836 0.661198i
\(443\) 36.6893 1.74316 0.871580 0.490253i \(-0.163095\pi\)
0.871580 + 0.490253i \(0.163095\pi\)
\(444\) 0 0
\(445\) −6.64966 14.8486i −0.315224 0.703891i
\(446\) 0.515130 1.58541i 0.0243921 0.0750712i
\(447\) 0 0
\(448\) −31.0760 + 22.5780i −1.46820 + 1.06671i
\(449\) 17.8432 0.842071 0.421036 0.907044i \(-0.361667\pi\)
0.421036 + 0.907044i \(0.361667\pi\)
\(450\) 0 0
\(451\) −13.1255 −0.618056
\(452\) −19.3646 + 14.0692i −0.910834 + 0.661759i
\(453\) 0 0
\(454\) 7.63215 23.4893i 0.358195 1.10241i
\(455\) −27.4740 + 24.8459i −1.28800 + 1.16479i
\(456\) 0 0
\(457\) −24.1784 −1.13102 −0.565509 0.824742i \(-0.691320\pi\)
−0.565509 + 0.824742i \(0.691320\pi\)
\(458\) −6.82655 21.0100i −0.318984 0.981731i
\(459\) 0 0
\(460\) 38.2154 4.10044i 1.78180 0.191184i
\(461\) −30.2470 + 21.9757i −1.40874 + 1.02351i −0.415240 + 0.909712i \(0.636302\pi\)
−0.993504 + 0.113800i \(0.963698\pi\)
\(462\) 0 0
\(463\) −16.5294 12.0093i −0.768186 0.558120i 0.133224 0.991086i \(-0.457467\pi\)
−0.901410 + 0.432966i \(0.857467\pi\)
\(464\) 4.24072 3.08106i 0.196870 0.143035i
\(465\) 0 0
\(466\) 39.3685 + 28.6029i 1.82371 + 1.32500i
\(467\) −9.64517 29.6848i −0.446325 1.37365i −0.881024 0.473072i \(-0.843145\pi\)
0.434699 0.900576i \(-0.356855\pi\)
\(468\) 0 0
\(469\) 1.85434 + 5.70708i 0.0856256 + 0.263529i
\(470\) 3.61744 0.388144i 0.166860 0.0179038i
\(471\) 0 0
\(472\) 1.83427 5.64532i 0.0844293 0.259847i
\(473\) −10.5591 + 7.67164i −0.485508 + 0.352742i
\(474\) 0 0
\(475\) 2.72872 27.0923i 0.125202 1.24308i
\(476\) 10.8836 0.498849
\(477\) 0 0
\(478\) −0.393295 + 1.21044i −0.0179889 + 0.0553641i
\(479\) −3.42915 + 10.5538i −0.156682 + 0.482217i −0.998327 0.0578133i \(-0.981587\pi\)
0.841646 + 0.540030i \(0.181587\pi\)
\(480\) 0 0
\(481\) 9.64933 + 29.6976i 0.439972 + 1.35409i
\(482\) −3.26108 −0.148538
\(483\) 0 0
\(484\) 18.6351 + 13.5392i 0.847051 + 0.615418i
\(485\) −19.7651 11.3543i −0.897487 0.515572i
\(486\) 0 0
\(487\) −5.77397 4.19504i −0.261644 0.190095i 0.449228 0.893417i \(-0.351699\pi\)
−0.710871 + 0.703322i \(0.751699\pi\)
\(488\) −12.4868 9.07218i −0.565250 0.410678i
\(489\) 0 0
\(490\) −5.90229 13.1797i −0.266638 0.595400i
\(491\) 5.85201 + 4.25173i 0.264097 + 0.191878i 0.711951 0.702229i \(-0.247812\pi\)
−0.447854 + 0.894107i \(0.647812\pi\)
\(492\) 0 0
\(493\) −3.05067 −0.137395
\(494\) 19.0575 + 58.6531i 0.857439 + 2.63893i
\(495\) 0 0
\(496\) 3.06020 9.41834i 0.137407 0.422896i
\(497\) −0.0692236 + 0.213048i −0.00310510 + 0.00955652i
\(498\) 0 0
\(499\) 16.0169 0.717014 0.358507 0.933527i \(-0.383286\pi\)
0.358507 + 0.933527i \(0.383286\pi\)
\(500\) 17.6899 + 24.0178i 0.791118 + 1.07411i
\(501\) 0 0
\(502\) −20.7921 + 15.1063i −0.927997 + 0.674229i
\(503\) 10.4436 32.1422i 0.465659 1.43315i −0.392492 0.919755i \(-0.628387\pi\)
0.858152 0.513396i \(-0.171613\pi\)
\(504\) 0 0
\(505\) −0.500464 + 2.37987i −0.0222703 + 0.105903i
\(506\) 6.61690 + 20.3647i 0.294157 + 0.905322i
\(507\) 0 0
\(508\) 8.25985 + 25.4212i 0.366472 + 1.12788i
\(509\) −29.4701 21.4113i −1.30624 0.949038i −0.306243 0.951953i \(-0.599072\pi\)
−0.999996 + 0.00291563i \(0.999072\pi\)
\(510\) 0 0
\(511\) 10.2565 7.45178i 0.453720 0.329647i
\(512\) 18.9548 + 13.7715i 0.837692 + 0.608619i
\(513\) 0 0
\(514\) 31.5487 22.9215i 1.39156 1.01102i
\(515\) 9.57350 + 5.49960i 0.421859 + 0.242341i
\(516\) 0 0
\(517\) 0.357992 + 1.10179i 0.0157445 + 0.0484565i
\(518\) −40.6813 −1.78743
\(519\) 0 0
\(520\) −14.6678 8.42606i −0.643223 0.369507i
\(521\) −7.87972 + 24.2513i −0.345217 + 1.06247i 0.616251 + 0.787550i \(0.288651\pi\)
−0.961468 + 0.274918i \(0.911349\pi\)
\(522\) 0 0
\(523\) 5.68880 4.13315i 0.248754 0.180730i −0.456420 0.889764i \(-0.650869\pi\)
0.705174 + 0.709034i \(0.250869\pi\)
\(524\) 17.0184 0.743450
\(525\) 0 0
\(526\) −41.2811 −1.79994
\(527\) −4.66273 + 3.38767i −0.203112 + 0.147569i
\(528\) 0 0
\(529\) 5.71836 17.5993i 0.248624 0.765187i
\(530\) 46.8345 5.02526i 2.03436 0.218283i
\(531\) 0 0
\(532\) −45.9220 −1.99097
\(533\) −13.8195 42.5322i −0.598590 1.84227i
\(534\) 0 0
\(535\) −7.04313 + 33.4924i −0.304501 + 1.44800i
\(536\) −2.21695 + 1.61071i −0.0957577 + 0.0695721i
\(537\) 0 0
\(538\) 38.8478 + 28.2246i 1.67485 + 1.21685i
\(539\) 3.72014 2.70284i 0.160238 0.116420i
\(540\) 0 0
\(541\) 21.9629 + 15.9570i 0.944258 + 0.686044i 0.949442 0.313943i \(-0.101650\pi\)
−0.00518365 + 0.999987i \(0.501650\pi\)
\(542\) −13.4937 41.5293i −0.579604 1.78384i
\(543\) 0 0
\(544\) −3.06235 9.42496i −0.131297 0.404092i
\(545\) −11.0438 + 9.98732i −0.473063 + 0.427810i
\(546\) 0 0
\(547\) 13.6205 41.9196i 0.582371 1.79235i −0.0272113 0.999630i \(-0.508663\pi\)
0.609582 0.792723i \(-0.291337\pi\)
\(548\) −19.8090 + 14.3921i −0.846198 + 0.614799i
\(549\) 0 0
\(550\) −11.0663 + 12.3981i −0.471867 + 0.528656i
\(551\) 12.8719 0.548363
\(552\) 0 0
\(553\) −1.58073 + 4.86497i −0.0672193 + 0.206880i
\(554\) 10.7099 32.9618i 0.455022 1.40041i
\(555\) 0 0
\(556\) −7.63897 23.5103i −0.323965 0.997061i
\(557\) 9.85667 0.417641 0.208820 0.977954i \(-0.433038\pi\)
0.208820 + 0.977954i \(0.433038\pi\)
\(558\) 0 0
\(559\) −35.9768 26.1386i −1.52165 1.10555i
\(560\) −11.6246 + 10.5126i −0.491229 + 0.444238i
\(561\) 0 0
\(562\) −14.6356 10.6334i −0.617363 0.448541i
\(563\) −10.0251 7.28367i −0.422508 0.306970i 0.356138 0.934433i \(-0.384093\pi\)
−0.778646 + 0.627463i \(0.784093\pi\)
\(564\) 0 0
\(565\) −14.8789 + 13.4556i −0.625959 + 0.566080i
\(566\) −1.97507 1.43497i −0.0830185 0.0603165i
\(567\) 0 0
\(568\) −0.102297 −0.00429228
\(569\) 3.62037 + 11.1424i 0.151774 + 0.467112i 0.997820 0.0659983i \(-0.0210232\pi\)
−0.846046 + 0.533110i \(0.821023\pi\)
\(570\) 0 0
\(571\) 8.95523 27.5614i 0.374765 1.15341i −0.568872 0.822426i \(-0.692620\pi\)
0.943637 0.330982i \(-0.107380\pi\)
\(572\) 6.64779 20.4598i 0.277958 0.855467i
\(573\) 0 0
\(574\) 58.2628 2.43184
\(575\) 31.4789 6.83394i 1.31276 0.284995i
\(576\) 0 0
\(577\) 26.5377 19.2808i 1.10478 0.802668i 0.122945 0.992414i \(-0.460766\pi\)
0.981833 + 0.189745i \(0.0607662\pi\)
\(578\) 10.2378 31.5088i 0.425838 1.31059i
\(579\) 0 0
\(580\) −10.4586 + 9.45812i −0.434269 + 0.392727i
\(581\) 12.8420 + 39.5237i 0.532777 + 1.63972i
\(582\) 0 0
\(583\) 4.63488 + 14.2647i 0.191957 + 0.590783i
\(584\) 4.68371 + 3.40291i 0.193813 + 0.140813i
\(585\) 0 0
\(586\) 4.15758 3.02066i 0.171748 0.124782i
\(587\) 15.0797 + 10.9560i 0.622405 + 0.452203i 0.853761 0.520666i \(-0.174316\pi\)
−0.231356 + 0.972869i \(0.574316\pi\)
\(588\) 0 0
\(589\) 19.6738 14.2938i 0.810644 0.588967i
\(590\) 4.08885 19.4438i 0.168335 0.800490i
\(591\) 0 0
\(592\) 4.08275 + 12.5654i 0.167800 + 0.516435i
\(593\) −1.55882 −0.0640129 −0.0320064 0.999488i \(-0.510190\pi\)
−0.0320064 + 0.999488i \(0.510190\pi\)
\(594\) 0 0
\(595\) 9.06949 0.973140i 0.371813 0.0398948i
\(596\) 8.31202 25.5818i 0.340474 1.04787i
\(597\) 0 0
\(598\) −59.0234 + 42.8830i −2.41365 + 1.75362i
\(599\) 31.5470 1.28898 0.644489 0.764614i \(-0.277070\pi\)
0.644489 + 0.764614i \(0.277070\pi\)
\(600\) 0 0
\(601\) −32.3999 −1.32162 −0.660809 0.750554i \(-0.729787\pi\)
−0.660809 + 0.750554i \(0.729787\pi\)
\(602\) 46.8707 34.0536i 1.91031 1.38792i
\(603\) 0 0
\(604\) 8.85266 27.2457i 0.360210 1.10861i
\(605\) 16.7396 + 9.61623i 0.680560 + 0.390955i
\(606\) 0 0
\(607\) 24.8410 1.00827 0.504133 0.863626i \(-0.331812\pi\)
0.504133 + 0.863626i \(0.331812\pi\)
\(608\) 12.9212 + 39.7674i 0.524024 + 1.61278i
\(609\) 0 0
\(610\) −44.7984 25.7350i −1.81383 1.04198i
\(611\) −3.19333 + 2.32009i −0.129188 + 0.0938607i
\(612\) 0 0
\(613\) 3.19204 + 2.31915i 0.128925 + 0.0936697i 0.650379 0.759610i \(-0.274610\pi\)
−0.521454 + 0.853280i \(0.674610\pi\)
\(614\) 5.05791 3.67478i 0.204120 0.148302i
\(615\) 0 0
\(616\) 5.67717 + 4.12471i 0.228740 + 0.166189i
\(617\) 5.40225 + 16.6264i 0.217486 + 0.669354i 0.998968 + 0.0454257i \(0.0144644\pi\)
−0.781481 + 0.623929i \(0.785536\pi\)
\(618\) 0 0
\(619\) −4.44581 13.6828i −0.178692 0.549958i 0.821091 0.570798i \(-0.193366\pi\)
−0.999783 + 0.0208398i \(0.993366\pi\)
\(620\) −5.48225 + 26.0699i −0.220173 + 1.04699i
\(621\) 0 0
\(622\) −4.77066 + 14.6826i −0.191286 + 0.588718i
\(623\) −18.6043 + 13.5168i −0.745364 + 0.541539i
\(624\) 0 0
\(625\) 16.8889 + 18.4328i 0.675554 + 0.737310i
\(626\) −49.7617 −1.98888
\(627\) 0 0
\(628\) 14.3801 44.2573i 0.573827 1.76606i
\(629\) 2.37611 7.31292i 0.0947418 0.291585i
\(630\) 0 0
\(631\) −5.46214 16.8107i −0.217444 0.669225i −0.998971 0.0453529i \(-0.985559\pi\)
0.781527 0.623872i \(-0.214441\pi\)
\(632\) −2.33596 −0.0929194
\(633\) 0 0
\(634\) 36.3132 + 26.3831i 1.44218 + 1.04781i
\(635\) 9.15608 + 20.4454i 0.363348 + 0.811351i
\(636\) 0 0
\(637\) 12.6752 + 9.20905i 0.502209 + 0.364876i
\(638\) −6.35559 4.61760i −0.251620 0.182813i
\(639\) 0 0
\(640\) −21.1386 12.1433i −0.835576 0.480006i
\(641\) −2.21774 1.61128i −0.0875954 0.0636417i 0.543126 0.839651i \(-0.317241\pi\)
−0.630721 + 0.776010i \(0.717241\pi\)
\(642\) 0 0
\(643\) 20.9276 0.825303 0.412651 0.910889i \(-0.364603\pi\)
0.412651 + 0.910889i \(0.364603\pi\)
\(644\) −16.7875 51.6665i −0.661519 2.03595i
\(645\) 0 0
\(646\) 4.69284 14.4431i 0.184637 0.568256i
\(647\) 0.570653 1.75629i 0.0224347 0.0690469i −0.939212 0.343337i \(-0.888443\pi\)
0.961647 + 0.274290i \(0.0884428\pi\)
\(648\) 0 0
\(649\) 6.32678 0.248348
\(650\) −51.8264 22.8057i −2.03280 0.894512i
\(651\) 0 0
\(652\) 35.0912 25.4952i 1.37428 0.998470i
\(653\) 5.69002 17.5121i 0.222667 0.685300i −0.775853 0.630914i \(-0.782680\pi\)
0.998520 0.0543858i \(-0.0173201\pi\)
\(654\) 0 0
\(655\) 14.1817 1.52167i 0.554124 0.0594565i
\(656\) −5.84721 17.9959i −0.228295 0.702620i
\(657\) 0 0
\(658\) −1.58909 4.89071i −0.0619491 0.190660i
\(659\) −10.8246 7.86455i −0.421668 0.306360i 0.356641 0.934242i \(-0.383922\pi\)
−0.778308 + 0.627882i \(0.783922\pi\)
\(660\) 0 0
\(661\) −31.7001 + 23.0315i −1.23299 + 0.895820i −0.997111 0.0759628i \(-0.975797\pi\)
−0.235879 + 0.971782i \(0.575797\pi\)
\(662\) −33.6483 24.4469i −1.30778 0.950155i
\(663\) 0 0
\(664\) −15.3532 + 11.1548i −0.595821 + 0.432890i
\(665\) −38.2676 + 4.10604i −1.48395 + 0.159225i
\(666\) 0 0
\(667\) 4.70553 + 14.4821i 0.182199 + 0.560751i
\(668\) 30.3903 1.17584
\(669\) 0 0
\(670\) −6.80328 + 6.15248i −0.262834 + 0.237691i
\(671\) 5.08365 15.6459i 0.196252 0.604002i
\(672\) 0 0
\(673\) −15.6877 + 11.3978i −0.604718 + 0.439353i −0.847550 0.530715i \(-0.821923\pi\)
0.242832 + 0.970068i \(0.421923\pi\)
\(674\) −46.8981 −1.80645
\(675\) 0 0
\(676\) 38.6133 1.48513
\(677\) −36.9588 + 26.8522i −1.42044 + 1.03201i −0.428746 + 0.903425i \(0.641044\pi\)
−0.991698 + 0.128587i \(0.958956\pi\)
\(678\) 0 0
\(679\) −9.95606 + 30.6416i −0.382078 + 1.17592i
\(680\) 1.70248 + 3.80162i 0.0652873 + 0.145786i
\(681\) 0 0
\(682\) −14.8417 −0.568319
\(683\) −3.58128 11.0220i −0.137034 0.421747i 0.858867 0.512199i \(-0.171169\pi\)
−0.995901 + 0.0904520i \(0.971169\pi\)
\(684\) 0 0
\(685\) −15.2203 + 13.7644i −0.581539 + 0.525909i
\(686\) 22.1577 16.0985i 0.845987 0.614645i
\(687\) 0 0
\(688\) −15.2222 11.0596i −0.580340 0.421642i
\(689\) −41.3436 + 30.0379i −1.57507 + 1.14435i
\(690\) 0 0
\(691\) 17.5091 + 12.7211i 0.666077 + 0.483934i 0.868710 0.495321i \(-0.164950\pi\)
−0.202632 + 0.979255i \(0.564950\pi\)
\(692\) −7.79815 24.0002i −0.296441 0.912352i
\(693\) 0 0
\(694\) −1.14498 3.52388i −0.0434627 0.133764i
\(695\) −8.46783 18.9086i −0.321203 0.717242i
\(696\) 0 0
\(697\) −3.40301 + 10.4734i −0.128898 + 0.396707i
\(698\) −27.1895 + 19.7543i −1.02914 + 0.747713i
\(699\) 0 0
\(700\) 28.0758 31.4547i 1.06116 1.18888i
\(701\) 8.61904 0.325537 0.162768 0.986664i \(-0.447958\pi\)
0.162768 + 0.986664i \(0.447958\pi\)
\(702\) 0 0
\(703\) −10.0257 + 30.8559i −0.378126 + 1.16375i
\(704\) 5.77751 17.7814i 0.217748 0.670160i
\(705\) 0 0
\(706\) 10.3843 + 31.9597i 0.390820 + 1.20282i
\(707\) 3.43739 0.129276
\(708\) 0 0
\(709\) −12.9443 9.40460i −0.486134 0.353197i 0.317562 0.948238i \(-0.397136\pi\)
−0.803696 + 0.595041i \(0.797136\pi\)
\(710\) −0.340466 + 0.0365313i −0.0127774 + 0.00137100i
\(711\) 0 0
\(712\) −8.49579 6.17255i −0.318393 0.231326i
\(713\) 23.2740 + 16.9095i 0.871617 + 0.633267i
\(714\) 0 0
\(715\) 3.71034 17.6439i 0.138759 0.659844i
\(716\) 8.80110 + 6.39437i 0.328913 + 0.238969i
\(717\) 0 0
\(718\) −53.0138 −1.97846
\(719\) 15.0132 + 46.2060i 0.559899 + 1.72319i 0.682642 + 0.730753i \(0.260831\pi\)
−0.122743 + 0.992438i \(0.539169\pi\)
\(720\) 0 0
\(721\) 4.82235 14.8417i 0.179594 0.552733i
\(722\) −7.11551 + 21.8993i −0.264812 + 0.815007i
\(723\) 0 0
\(724\) −29.6689 −1.10264
\(725\) −7.86964 + 8.81676i −0.292271 + 0.327446i
\(726\) 0 0
\(727\) −20.5756 + 14.9490i −0.763106 + 0.554429i −0.899861 0.436176i \(-0.856333\pi\)
0.136755 + 0.990605i \(0.456333\pi\)
\(728\) −7.38842 + 22.7392i −0.273833 + 0.842772i
\(729\) 0 0
\(730\) 16.8036 + 9.65300i 0.621928 + 0.357274i
\(731\) 3.38389 + 10.4145i 0.125158 + 0.385196i
\(732\) 0 0
\(733\) −5.75358 17.7077i −0.212513 0.654049i −0.999321 0.0368505i \(-0.988267\pi\)
0.786807 0.617199i \(-0.211733\pi\)
\(734\) 49.1287 + 35.6941i 1.81337 + 1.31749i
\(735\) 0 0
\(736\) −40.0185 + 29.0752i −1.47510 + 1.07172i
\(737\) −2.36296 1.71679i −0.0870408 0.0632389i
\(738\) 0 0
\(739\) −37.9326 + 27.5596i −1.39537 + 1.01380i −0.400121 + 0.916462i \(0.631032\pi\)
−0.995252 + 0.0973351i \(0.968968\pi\)
\(740\) −14.5265 32.4375i −0.534006 1.19243i
\(741\) 0 0
\(742\) −20.5737 63.3194i −0.755286 2.32453i
\(743\) 42.7061 1.56674 0.783368 0.621558i \(-0.213500\pi\)
0.783368 + 0.621558i \(0.213500\pi\)
\(744\) 0 0
\(745\) 4.63920 22.0609i 0.169967 0.808250i
\(746\) 6.48171 19.9487i 0.237312 0.730372i
\(747\) 0 0
\(748\) −4.28570 + 3.11374i −0.156701 + 0.113850i
\(749\) 48.3751 1.76759
\(750\) 0 0
\(751\) −2.64893 −0.0966608 −0.0483304 0.998831i \(-0.515390\pi\)
−0.0483304 + 0.998831i \(0.515390\pi\)
\(752\) −1.35113 + 0.981657i −0.0492708 + 0.0357973i
\(753\) 0 0
\(754\) 8.27133 25.4565i 0.301224 0.927072i
\(755\) 4.94095 23.4959i 0.179819 0.855102i
\(756\) 0 0
\(757\) 52.9153 1.92324 0.961620 0.274383i \(-0.0884737\pi\)
0.961620 + 0.274383i \(0.0884737\pi\)
\(758\) 14.8662 + 45.7534i 0.539964 + 1.66184i
\(759\) 0 0
\(760\) −7.18341 16.0405i −0.260570 0.581849i
\(761\) 41.0808 29.8470i 1.48918 1.08195i 0.514728 0.857354i \(-0.327893\pi\)
0.974451 0.224598i \(-0.0721070\pi\)
\(762\) 0 0
\(763\) 17.0267 + 12.3706i 0.616408 + 0.447847i
\(764\) 7.79499 5.66339i 0.282013 0.204894i
\(765\) 0 0
\(766\) 23.8242 + 17.3093i 0.860803 + 0.625410i
\(767\) 6.66131 + 20.5014i 0.240526 + 0.740263i
\(768\) 0 0
\(769\) 7.59580 + 23.3775i 0.273912 + 0.843013i 0.989505 + 0.144496i \(0.0461562\pi\)
−0.715594 + 0.698517i \(0.753844\pi\)
\(770\) 20.3678 + 11.7005i 0.734004 + 0.421657i
\(771\) 0 0
\(772\) −14.0622 + 43.2791i −0.506111 + 1.55765i
\(773\) −16.1894 + 11.7623i −0.582293 + 0.423061i −0.839550 0.543282i \(-0.817181\pi\)
0.257257 + 0.966343i \(0.417181\pi\)
\(774\) 0 0
\(775\) −2.23745 + 22.2147i −0.0803717 + 0.797976i
\(776\) −14.7128 −0.528159
\(777\) 0 0
\(778\) 12.8392 39.5149i 0.460307 1.41668i
\(779\) 14.3586 44.1911i 0.514449 1.58331i
\(780\) 0 0
\(781\) −0.0336934 0.103698i −0.00120565 0.00371060i
\(782\) 17.9654 0.642441
\(783\) 0 0
\(784\) 5.36302 + 3.89646i 0.191536 + 0.139159i
\(785\) 8.02596 38.1661i 0.286459 1.36221i
\(786\) 0 0
\(787\) −7.27526 5.28579i −0.259335 0.188418i 0.450519 0.892767i \(-0.351239\pi\)
−0.709854 + 0.704349i \(0.751239\pi\)
\(788\) −9.50857 6.90838i −0.338729 0.246101i
\(789\) 0 0
\(790\) −7.77456 + 0.834195i −0.276606 + 0.0296793i
\(791\) 22.9395 + 16.6665i 0.815634 + 0.592593i
\(792\) 0 0
\(793\) 56.0517 1.99045
\(794\) −14.8406 45.6747i −0.526674 1.62093i
\(795\) 0 0
\(796\) 13.6824 42.1102i 0.484961 1.49256i
\(797\) 11.6674 35.9084i 0.413279 1.27194i −0.500502 0.865735i \(-0.666851\pi\)
0.913781 0.406207i \(-0.133149\pi\)
\(798\) 0 0
\(799\) 0.971976 0.0343860
\(800\) −35.1388 15.4625i −1.24235 0.546682i
\(801\) 0 0
\(802\) −8.24547 + 5.99069i −0.291158 + 0.211538i
\(803\) −1.90684 + 5.86866i −0.0672910 + 0.207100i
\(804\) 0 0
\(805\) −18.6090 41.5536i −0.655880 1.46457i
\(806\) −15.6265 48.0934i −0.550420 1.69402i
\(807\) 0 0
\(808\) 0.485068 + 1.49289i 0.0170646 + 0.0525195i
\(809\) −39.5610 28.7428i −1.39089 1.01054i −0.995767 0.0919140i \(-0.970702\pi\)
−0.395124 0.918628i \(-0.629298\pi\)
\(810\) 0 0
\(811\) 14.6069 10.6125i 0.512916 0.372655i −0.301013 0.953620i \(-0.597325\pi\)
0.813929 + 0.580965i \(0.197325\pi\)
\(812\) 16.1245 + 11.7151i 0.565860 + 0.411121i
\(813\) 0 0
\(814\) 16.0193 11.6387i 0.561477 0.407937i
\(815\) 26.9625 24.3832i 0.944454 0.854107i
\(816\) 0 0
\(817\) −14.2779 43.9428i −0.499520 1.53736i
\(818\) 26.9653 0.942819
\(819\) 0 0
\(820\) 20.8045 + 46.4562i 0.726526 + 1.62232i
\(821\) −15.6393 + 48.1327i −0.545814 + 1.67984i 0.173232 + 0.984881i \(0.444579\pi\)
−0.719046 + 0.694962i \(0.755421\pi\)
\(822\) 0 0
\(823\) 21.6873 15.7568i 0.755972 0.549246i −0.141700 0.989910i \(-0.545257\pi\)
0.897672 + 0.440664i \(0.145257\pi\)
\(824\) 7.12635 0.248258
\(825\) 0 0
\(826\) −28.0839 −0.977163
\(827\) −17.2845 + 12.5580i −0.601042 + 0.436683i −0.846249 0.532788i \(-0.821144\pi\)
0.245206 + 0.969471i \(0.421144\pi\)
\(828\) 0 0
\(829\) −14.8675 + 45.7575i −0.516370 + 1.58922i 0.264405 + 0.964412i \(0.414824\pi\)
−0.780775 + 0.624812i \(0.785176\pi\)
\(830\) −47.1153 + 42.6083i −1.63540 + 1.47895i
\(831\) 0 0
\(832\) 63.7021 2.20847
\(833\) −1.19220 3.66921i −0.0413072 0.127130i
\(834\) 0 0
\(835\) 25.3248 2.71730i 0.876400 0.0940361i
\(836\) 18.0830 13.1380i 0.625412 0.454389i
\(837\) 0 0
\(838\) −61.0873 44.3825i −2.11022 1.53317i
\(839\) −33.8606 + 24.6012i −1.16900 + 0.849327i −0.990889 0.134684i \(-0.956998\pi\)
−0.178110 + 0.984011i \(0.556998\pi\)
\(840\) 0 0
\(841\) 18.9418 + 13.7620i 0.653165 + 0.474552i
\(842\) 26.4123 + 81.2886i 0.910227 + 2.80139i
\(843\) 0 0
\(844\) 15.2900 + 47.0577i 0.526302 + 1.61979i
\(845\) 32.1772 3.45255i 1.10693 0.118771i
\(846\) 0 0
\(847\) 8.43203 25.9511i 0.289728 0.891691i
\(848\) −17.4930 + 12.7094i −0.600711 + 0.436442i
\(849\) 0 0
\(850\) 7.02382 + 12.0446i 0.240915 + 0.413127i
\(851\) −38.3809 −1.31568
\(852\) 0 0
\(853\) −17.9855 + 55.3537i −0.615812 + 1.89527i −0.227327 + 0.973819i \(0.572998\pi\)
−0.388485 + 0.921455i \(0.627002\pi\)
\(854\) −22.5658 + 69.4504i −0.772186 + 2.37654i
\(855\) 0 0
\(856\) 6.82646 + 21.0097i 0.233324 + 0.718096i
\(857\) 3.22045 0.110008 0.0550042 0.998486i \(-0.482483\pi\)
0.0550042 + 0.998486i \(0.482483\pi\)
\(858\) 0 0
\(859\) −40.0003 29.0619i −1.36479 0.991580i −0.998124 0.0612288i \(-0.980498\pi\)
−0.366669 0.930351i \(-0.619502\pi\)
\(860\) 43.8895 + 25.2128i 1.49662 + 0.859751i
\(861\) 0 0
\(862\) 24.5731 + 17.8534i 0.836963 + 0.608089i
\(863\) 17.3878 + 12.6329i 0.591886 + 0.430030i 0.842990 0.537930i \(-0.180793\pi\)
−0.251104 + 0.967960i \(0.580793\pi\)
\(864\) 0 0
\(865\) −8.64427 19.3025i −0.293914 0.656306i
\(866\) −0.960798 0.698061i −0.0326493 0.0237211i
\(867\) 0 0
\(868\) 37.6544 1.27807
\(869\) −0.769392 2.36795i −0.0260999 0.0803271i
\(870\) 0 0
\(871\) 3.07522 9.46456i 0.104200 0.320694i
\(872\) −2.96993 + 9.14051i −0.100575 + 0.309537i
\(873\) 0 0
\(874\) −75.8026 −2.56406
\(875\) 20.5836 28.7221i 0.695851 0.970984i
\(876\) 0 0
\(877\) −12.4421 + 9.03971i −0.420140 + 0.305249i −0.777694 0.628643i \(-0.783611\pi\)
0.357554 + 0.933892i \(0.383611\pi\)
\(878\) 1.98544 6.11054i 0.0670052 0.206221i
\(879\) 0 0
\(880\) 1.56989 7.46534i 0.0529209 0.251657i
\(881\) −5.84891 18.0011i −0.197055 0.606472i −0.999946 0.0103472i \(-0.996706\pi\)
0.802892 0.596125i \(-0.203294\pi\)
\(882\) 0 0
\(883\) 1.95208 + 6.00790i 0.0656928 + 0.202182i 0.978515 0.206175i \(-0.0661018\pi\)
−0.912822 + 0.408357i \(0.866102\pi\)
\(884\) −14.6021 10.6091i −0.491123 0.356822i
\(885\) 0 0
\(886\) 64.1303 46.5934i 2.15450 1.56534i
\(887\) 0.0583776 + 0.0424138i 0.00196013 + 0.00142412i 0.588765 0.808304i \(-0.299614\pi\)
−0.586805 + 0.809728i \(0.699614\pi\)
\(888\) 0 0
\(889\) 25.6167 18.6116i 0.859156 0.624213i
\(890\) −30.4800 17.5096i −1.02169 0.586923i
\(891\) 0 0
\(892\) −0.636120 1.95778i −0.0212989 0.0655512i
\(893\) −4.10113 −0.137239
\(894\) 0 0
\(895\) 7.90585 + 4.54161i 0.264263 + 0.151809i
\(896\) −10.6479 + 32.7709i −0.355721 + 1.09480i
\(897\) 0 0
\(898\) 31.1886 22.6599i 1.04078 0.756169i
\(899\) −10.5545 −0.352013
\(900\) 0 0
\(901\) 12.5840 0.419235
\(902\) −22.9425 + 16.6687i −0.763901 + 0.555006i
\(903\) 0 0
\(904\) −4.00128 + 12.3147i −0.133081 + 0.409580i
\(905\) −24.7236 + 2.65280i −0.821841 + 0.0881820i
\(906\) 0 0
\(907\) −25.4951 −0.846550 −0.423275 0.906001i \(-0.639120\pi\)
−0.423275 + 0.906001i \(0.639120\pi\)
\(908\) −9.42474 29.0064i −0.312771 0.962610i
\(909\) 0 0
\(910\) −16.4698 + 78.3194i −0.545968 + 2.59626i
\(911\) 2.87851 2.09136i 0.0953692 0.0692898i −0.539079 0.842255i \(-0.681227\pi\)
0.634448 + 0.772966i \(0.281227\pi\)
\(912\) 0 0
\(913\) −16.3644 11.8894i −0.541583 0.393483i
\(914\) −42.2621 + 30.7052i −1.39791 + 1.01564i
\(915\) 0 0
\(916\) −22.0698 16.0347i −0.729208 0.529801i
\(917\) −6.22981 19.1734i −0.205727 0.633161i
\(918\) 0 0
\(919\) 2.46277 + 7.57962i 0.0812392 + 0.250029i 0.983424 0.181321i \(-0.0580374\pi\)
−0.902185 + 0.431350i \(0.858037\pi\)
\(920\) 15.4210 13.9459i 0.508416 0.459781i
\(921\) 0 0
\(922\) −24.9617 + 76.8241i −0.822068 + 2.53007i
\(923\) 0.300549 0.218362i 0.00989270 0.00718747i
\(924\) 0 0
\(925\) −15.0056 25.7319i −0.493380 0.846060i
\(926\) −44.1434 −1.45064
\(927\) 0 0
\(928\) 5.60805 17.2598i 0.184093 0.566581i
\(929\) −15.0004 + 46.1666i −0.492149 + 1.51468i 0.329205 + 0.944258i \(0.393219\pi\)
−0.821354 + 0.570419i \(0.806781\pi\)
\(930\) 0 0
\(931\) 5.03032 + 15.4817i 0.164862 + 0.507394i
\(932\) 60.0916 1.96837
\(933\) 0 0
\(934\) −54.5571 39.6381i −1.78516 1.29700i
\(935\) −3.29294 + 2.97794i −0.107691 + 0.0973889i
\(936\) 0 0
\(937\) −25.6698 18.6502i −0.838594 0.609274i 0.0833833 0.996518i \(-0.473427\pi\)
−0.921978 + 0.387243i \(0.873427\pi\)
\(938\) 10.4889 + 7.62066i 0.342476 + 0.248823i
\(939\) 0 0
\(940\) 3.33221 3.01345i 0.108685 0.0982880i
\(941\) 33.1752 + 24.1032i 1.08148 + 0.785742i 0.977941 0.208883i \(-0.0669827\pi\)
0.103541 + 0.994625i \(0.466983\pi\)
\(942\) 0 0
\(943\) 54.9681 1.79001
\(944\) 2.81848 + 8.67439i 0.0917337 + 0.282327i
\(945\) 0 0
\(946\) −8.71401 + 26.8190i −0.283317 + 0.871960i
\(947\) 3.03389 9.33737i 0.0985883 0.303424i −0.889584 0.456772i \(-0.849006\pi\)
0.988172 + 0.153348i \(0.0490056\pi\)
\(948\) 0 0
\(949\) −21.0246 −0.682487
\(950\) −29.6361 50.8208i −0.961523 1.64884i
\(951\) 0 0
\(952\) 4.76317 3.46065i 0.154375 0.112160i
\(953\) −16.4125 + 50.5123i −0.531652 + 1.63626i 0.219123 + 0.975697i \(0.429680\pi\)
−0.750775 + 0.660558i \(0.770320\pi\)
\(954\) 0 0
\(955\) 5.98932 5.41638i 0.193810 0.175270i
\(956\) 0.485670 + 1.49474i 0.0157077 + 0.0483433i
\(957\) 0 0
\(958\) 7.40888 + 22.8022i 0.239370 + 0.736705i
\(959\) 23.4659 + 17.0490i 0.757754 + 0.550540i
\(960\) 0 0
\(961\) 8.94773 6.50090i 0.288636 0.209707i
\(962\) 54.5807 + 39.6552i 1.75975 + 1.27853i
\(963\) 0 0
\(964\) −3.25793 + 2.36703i −0.104931 + 0.0762368i
\(965\) −7.84858 + 37.3226i −0.252655 + 1.20146i
\(966\) 0 0
\(967\) −0.756262 2.32754i −0.0243198 0.0748485i 0.938160 0.346202i \(-0.112529\pi\)
−0.962480 + 0.271353i \(0.912529\pi\)
\(968\) 12.4606 0.400500
\(969\) 0 0
\(970\) −48.9673 + 5.25410i −1.57225 + 0.168699i
\(971\) 14.8230 45.6205i 0.475693 1.46403i −0.369328 0.929299i \(-0.620412\pi\)
0.845021 0.534734i \(-0.179588\pi\)
\(972\) 0 0
\(973\) −23.6911 + 17.2126i −0.759502 + 0.551811i
\(974\) −15.4200 −0.494088
\(975\) 0 0
\(976\) 23.7161 0.759134
\(977\) 19.1696 13.9276i 0.613291 0.445582i −0.237280 0.971441i \(-0.576256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(978\) 0 0
\(979\) 3.45883 10.6452i 0.110545 0.340221i
\(980\) −15.4630 8.88288i −0.493947 0.283753i
\(981\) 0 0
\(982\) 15.6284 0.498721
\(983\) −4.00193 12.3167i −0.127642 0.392841i 0.866731 0.498775i \(-0.166217\pi\)
−0.994373 + 0.105934i \(0.966217\pi\)
\(984\) 0 0
\(985\) −8.54136 4.90668i −0.272150 0.156340i
\(986\) −5.33236 + 3.87419i −0.169817 + 0.123379i
\(987\) 0 0
\(988\) 61.6119 + 44.7637i 1.96014 + 1.42412i
\(989\) 44.2203 32.1279i 1.40612 1.02161i
\(990\) 0 0
\(991\) −35.9986 26.1545i −1.14353 0.830826i −0.155926 0.987769i \(-0.549836\pi\)
−0.987608 + 0.156943i \(0.949836\pi\)
\(992\) −10.5949 32.6079i −0.336389 1.03530i
\(993\) 0 0
\(994\) 0.149562 + 0.460303i 0.00474381 + 0.0145999i
\(995\) 7.63660 36.3146i 0.242096 1.15125i
\(996\) 0 0
\(997\) −17.1663 + 52.8324i −0.543662 + 1.67322i 0.180488 + 0.983577i \(0.442232\pi\)
−0.724150 + 0.689642i \(0.757768\pi\)
\(998\) 27.9964 20.3406i 0.886209 0.643869i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.2.h.d.136.3 12
3.2 odd 2 75.2.g.c.61.1 yes 12
15.2 even 4 375.2.i.d.199.1 24
15.8 even 4 375.2.i.d.199.6 24
15.14 odd 2 375.2.g.c.301.3 12
25.4 even 10 5625.2.a.q.1.5 6
25.16 even 5 inner 225.2.h.d.91.3 12
25.21 even 5 5625.2.a.p.1.2 6
75.29 odd 10 1875.2.a.k.1.2 6
75.38 even 20 375.2.i.d.49.1 24
75.41 odd 10 75.2.g.c.16.1 12
75.47 even 20 1875.2.b.f.1249.10 12
75.53 even 20 1875.2.b.f.1249.3 12
75.59 odd 10 375.2.g.c.76.3 12
75.62 even 20 375.2.i.d.49.6 24
75.71 odd 10 1875.2.a.j.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.g.c.16.1 12 75.41 odd 10
75.2.g.c.61.1 yes 12 3.2 odd 2
225.2.h.d.91.3 12 25.16 even 5 inner
225.2.h.d.136.3 12 1.1 even 1 trivial
375.2.g.c.76.3 12 75.59 odd 10
375.2.g.c.301.3 12 15.14 odd 2
375.2.i.d.49.1 24 75.38 even 20
375.2.i.d.49.6 24 75.62 even 20
375.2.i.d.199.1 24 15.2 even 4
375.2.i.d.199.6 24 15.8 even 4
1875.2.a.j.1.5 6 75.71 odd 10
1875.2.a.k.1.2 6 75.29 odd 10
1875.2.b.f.1249.3 12 75.53 even 20
1875.2.b.f.1249.10 12 75.47 even 20
5625.2.a.p.1.2 6 25.21 even 5
5625.2.a.q.1.5 6 25.4 even 10