Defining parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.h (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(225, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 52 | 84 |
Cusp forms | 104 | 44 | 60 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(225, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
225.2.h.a | $4$ | $1.797$ | \(\Q(\zeta_{10})\) | None | \(1\) | \(0\) | \(-5\) | \(0\) | \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+\zeta_{10}^{3}q^{4}+\cdots\) |
225.2.h.b | $4$ | $1.797$ | \(\Q(\zeta_{10})\) | None | \(2\) | \(0\) | \(5\) | \(-2\) | \(q+(\zeta_{10}-\zeta_{10}^{2})q^{2}+(-1+\zeta_{10}+\zeta_{10}^{3})q^{4}+\cdots\) |
225.2.h.c | $8$ | $1.797$ | 8.0.26265625.1 | None | \(1\) | \(0\) | \(5\) | \(4\) | \(q+(\beta _{3}+\beta _{7})q^{2}+(-1+2\beta _{1}+2\beta _{3}+\cdots)q^{4}+\cdots\) |
225.2.h.d | $12$ | $1.797$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(6\) | \(-12\) | \(q+\beta _{2}q^{2}+(-1+\beta _{1}-\beta _{5}-2\beta _{8}+\beta _{9}+\cdots)q^{4}+\cdots\) |
225.2.h.e | $16$ | $1.797$ | 16.0.\(\cdots\).3 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{3}-\beta _{10}+\beta _{12}-\beta _{14})q^{2}+(-\beta _{8}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(225, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)