Properties

Label 225.2.h
Level $225$
Weight $2$
Character orbit 225.h
Rep. character $\chi_{225}(46,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $44$
Newform subspaces $5$
Sturm bound $60$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 225.h (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 5 \)
Sturm bound: \(60\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(225, [\chi])\).

Total New Old
Modular forms 136 52 84
Cusp forms 104 44 60
Eisenstein series 32 8 24

Trace form

\( 44 q + 4 q^{2} - 12 q^{4} + 11 q^{5} - 10 q^{7} - 7 q^{8} - 4 q^{10} - 4 q^{11} - 3 q^{13} + 11 q^{14} + 8 q^{16} + 2 q^{17} + 7 q^{19} - 21 q^{20} - 14 q^{22} - 25 q^{23} - 11 q^{25} + 44 q^{26} + 5 q^{28}+ \cdots - 53 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(225, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
225.2.h.a 225.h 25.d $4$ $1.797$ \(\Q(\zeta_{10})\) None 75.2.g.a \(1\) \(0\) \(-5\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+\zeta_{10}^{3}q^{4}+\cdots\)
225.2.h.b 225.h 25.d $4$ $1.797$ \(\Q(\zeta_{10})\) None 25.2.d.a \(2\) \(0\) \(5\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\zeta_{10}-\zeta_{10}^{2})q^{2}+(-1+\zeta_{10}+\zeta_{10}^{3})q^{4}+\cdots\)
225.2.h.c 225.h 25.d $8$ $1.797$ 8.0.26265625.1 None 75.2.g.b \(1\) \(0\) \(5\) \(4\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\beta _{3}+\beta _{7})q^{2}+(-1+2\beta _{1}+2\beta _{3}+\cdots)q^{4}+\cdots\)
225.2.h.d 225.h 25.d $12$ $1.797$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 75.2.g.c \(0\) \(0\) \(6\) \(-12\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{2}q^{2}+(-1+\beta _{1}-\beta _{5}-2\beta _{8}+\beta _{9}+\cdots)q^{4}+\cdots\)
225.2.h.e 225.h 25.d $16$ $1.797$ 16.0.\(\cdots\).3 None 225.2.h.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\beta _{3}-\beta _{10}+\beta _{12}-\beta _{14})q^{2}+(-\beta _{8}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(225, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)