Properties

Label 225.2.e.e.76.2
Level $225$
Weight $2$
Character 225.76
Analytic conductor $1.797$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,2,Mod(76,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79663404548\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1223810289.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} - 2x^{5} + 23x^{4} - 8x^{3} + 37x^{2} + 15x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 76.2
Root \(-0.236627 - 0.409850i\) of defining polynomial
Character \(\chi\) \(=\) 225.76
Dual form 225.2.e.e.151.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.236627 - 0.409850i) q^{2} +(0.544899 - 1.64411i) q^{3} +(0.888015 - 1.53809i) q^{4} +(-0.802776 + 0.165713i) q^{6} +(-1.28153 - 2.21967i) q^{7} -1.78702 q^{8} +(-2.40617 - 1.79175i) q^{9} +(3.08430 + 5.34217i) q^{11} +(-2.04490 - 2.29809i) q^{12} +(-1.06615 + 1.84662i) q^{13} +(-0.606488 + 1.05047i) q^{14} +(-1.35317 - 2.34376i) q^{16} +3.16860 q^{17} +(-0.164982 + 1.41015i) q^{18} +0.356267 q^{19} +(-4.34768 + 0.897469i) q^{21} +(1.45966 - 2.52821i) q^{22} +(2.10649 - 3.64854i) q^{23} +(-0.973748 + 2.93806i) q^{24} +1.00912 q^{26} +(-4.25694 + 2.97968i) q^{27} -4.55206 q^{28} +(-0.843116 - 1.46032i) q^{29} +(4.12920 - 7.15199i) q^{31} +(-2.42742 + 4.20441i) q^{32} +(10.4637 - 2.15998i) q^{33} +(-0.749778 - 1.29865i) q^{34} +(-4.89257 + 2.10980i) q^{36} +3.63274 q^{37} +(-0.0843024 - 0.146016i) q^{38} +(2.45510 + 2.75908i) q^{39} +(1.36677 - 2.36731i) q^{41} +(1.39661 + 1.56953i) q^{42} +(3.83908 + 6.64949i) q^{43} +10.9556 q^{44} -1.99381 q^{46} +(5.71444 + 9.89770i) q^{47} +(-4.59074 + 0.947643i) q^{48} +(0.215378 - 0.373046i) q^{49} +(1.72657 - 5.20952i) q^{51} +(1.89351 + 3.27966i) q^{52} -9.43507 q^{53} +(2.22853 + 1.03964i) q^{54} +(2.29012 + 3.96660i) q^{56} +(0.194129 - 0.585740i) q^{57} +(-0.399008 + 0.691103i) q^{58} +(-5.10795 + 8.84723i) q^{59} +(0.00549659 + 0.00952038i) q^{61} -3.90833 q^{62} +(-0.893512 + 7.63707i) q^{63} -3.11511 q^{64} +(-3.36127 - 3.77745i) q^{66} +(-0.491409 + 0.851145i) q^{67} +(2.81377 - 4.87359i) q^{68} +(-4.85077 - 5.45138i) q^{69} -6.43507 q^{71} +(4.29988 + 3.20189i) q^{72} +6.61467 q^{73} +(-0.859605 - 1.48888i) q^{74} +(0.316370 - 0.547969i) q^{76} +(7.90523 - 13.6923i) q^{77} +(0.549868 - 1.65910i) q^{78} +(4.73569 + 8.20246i) q^{79} +(2.57930 + 8.62248i) q^{81} -1.29366 q^{82} +(5.20988 + 9.02378i) q^{83} +(-2.48042 + 7.48407i) q^{84} +(1.81686 - 3.14690i) q^{86} +(-2.86033 + 0.590444i) q^{87} +(-5.51172 - 9.54658i) q^{88} -6.26940 q^{89} +5.46519 q^{91} +(-3.74119 - 6.47993i) q^{92} +(-9.50863 - 10.6860i) q^{93} +(2.70439 - 4.68413i) q^{94} +(5.58980 + 6.28191i) q^{96} +(-3.60339 - 6.24126i) q^{97} -0.203858 q^{98} +(2.15045 - 18.3804i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - q^{3} - 4 q^{4} + 8 q^{6} - q^{7} - 18 q^{8} + 5 q^{9} + q^{11} - 11 q^{12} + 2 q^{13} - 3 q^{14} - 4 q^{16} - 22 q^{17} + 5 q^{18} + 4 q^{19} - 15 q^{21} + 3 q^{22} + 15 q^{23} - 33 q^{24}+ \cdots - 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.236627 0.409850i −0.167321 0.289808i 0.770156 0.637855i \(-0.220178\pi\)
−0.937477 + 0.348047i \(0.886845\pi\)
\(3\) 0.544899 1.64411i 0.314598 0.949225i
\(4\) 0.888015 1.53809i 0.444008 0.769044i
\(5\) 0 0
\(6\) −0.802776 + 0.165713i −0.327732 + 0.0676521i
\(7\) −1.28153 2.21967i −0.484372 0.838956i 0.515467 0.856909i \(-0.327618\pi\)
−0.999839 + 0.0179531i \(0.994285\pi\)
\(8\) −1.78702 −0.631808
\(9\) −2.40617 1.79175i −0.802056 0.597248i
\(10\) 0 0
\(11\) 3.08430 + 5.34217i 0.929952 + 1.61072i 0.783397 + 0.621522i \(0.213485\pi\)
0.146555 + 0.989202i \(0.453181\pi\)
\(12\) −2.04490 2.29809i −0.590312 0.663403i
\(13\) −1.06615 + 1.84662i −0.295696 + 0.512161i −0.975147 0.221560i \(-0.928885\pi\)
0.679450 + 0.733722i \(0.262218\pi\)
\(14\) −0.606488 + 1.05047i −0.162091 + 0.280750i
\(15\) 0 0
\(16\) −1.35317 2.34376i −0.338293 0.585941i
\(17\) 3.16860 0.768500 0.384250 0.923229i \(-0.374460\pi\)
0.384250 + 0.923229i \(0.374460\pi\)
\(18\) −0.164982 + 1.41015i −0.0388867 + 0.332374i
\(19\) 0.356267 0.0817332 0.0408666 0.999165i \(-0.486988\pi\)
0.0408666 + 0.999165i \(0.486988\pi\)
\(20\) 0 0
\(21\) −4.34768 + 0.897469i −0.948740 + 0.195844i
\(22\) 1.45966 2.52821i 0.311201 0.539015i
\(23\) 2.10649 3.64854i 0.439233 0.760774i −0.558397 0.829574i \(-0.688584\pi\)
0.997631 + 0.0687995i \(0.0219169\pi\)
\(24\) −0.973748 + 2.93806i −0.198766 + 0.599728i
\(25\) 0 0
\(26\) 1.00912 0.197905
\(27\) −4.25694 + 2.97968i −0.819248 + 0.573439i
\(28\) −4.55206 −0.860259
\(29\) −0.843116 1.46032i −0.156563 0.271174i 0.777064 0.629421i \(-0.216708\pi\)
−0.933627 + 0.358247i \(0.883375\pi\)
\(30\) 0 0
\(31\) 4.12920 7.15199i 0.741627 1.28453i −0.210128 0.977674i \(-0.567388\pi\)
0.951754 0.306861i \(-0.0992787\pi\)
\(32\) −2.42742 + 4.20441i −0.429111 + 0.743242i
\(33\) 10.4637 2.15998i 1.82150 0.376003i
\(34\) −0.749778 1.29865i −0.128586 0.222717i
\(35\) 0 0
\(36\) −4.89257 + 2.10980i −0.815429 + 0.351634i
\(37\) 3.63274 0.597219 0.298609 0.954375i \(-0.403477\pi\)
0.298609 + 0.954375i \(0.403477\pi\)
\(38\) −0.0843024 0.146016i −0.0136757 0.0236869i
\(39\) 2.45510 + 2.75908i 0.393131 + 0.441807i
\(40\) 0 0
\(41\) 1.36677 2.36731i 0.213453 0.369711i −0.739340 0.673332i \(-0.764862\pi\)
0.952793 + 0.303621i \(0.0981956\pi\)
\(42\) 1.39661 + 1.56953i 0.215501 + 0.242184i
\(43\) 3.83908 + 6.64949i 0.585455 + 1.01404i 0.994819 + 0.101666i \(0.0324174\pi\)
−0.409364 + 0.912371i \(0.634249\pi\)
\(44\) 10.9556 1.65162
\(45\) 0 0
\(46\) −1.99381 −0.293971
\(47\) 5.71444 + 9.89770i 0.833537 + 1.44373i 0.895216 + 0.445632i \(0.147021\pi\)
−0.0616792 + 0.998096i \(0.519646\pi\)
\(48\) −4.59074 + 0.947643i −0.662616 + 0.136780i
\(49\) 0.215378 0.373046i 0.0307683 0.0532923i
\(50\) 0 0
\(51\) 1.72657 5.20952i 0.241768 0.729479i
\(52\) 1.89351 + 3.27966i 0.262583 + 0.454807i
\(53\) −9.43507 −1.29601 −0.648003 0.761637i \(-0.724396\pi\)
−0.648003 + 0.761637i \(0.724396\pi\)
\(54\) 2.22853 + 1.03964i 0.303264 + 0.141477i
\(55\) 0 0
\(56\) 2.29012 + 3.96660i 0.306030 + 0.530059i
\(57\) 0.194129 0.585740i 0.0257131 0.0775832i
\(58\) −0.399008 + 0.691103i −0.0523924 + 0.0907462i
\(59\) −5.10795 + 8.84723i −0.664999 + 1.15181i 0.314287 + 0.949328i \(0.398235\pi\)
−0.979286 + 0.202484i \(0.935099\pi\)
\(60\) 0 0
\(61\) 0.00549659 + 0.00952038i 0.000703767 + 0.00121896i 0.866377 0.499390i \(-0.166443\pi\)
−0.865673 + 0.500609i \(0.833109\pi\)
\(62\) −3.90833 −0.496358
\(63\) −0.893512 + 7.63707i −0.112572 + 0.962180i
\(64\) −3.11511 −0.389389
\(65\) 0 0
\(66\) −3.36127 3.77745i −0.413744 0.464972i
\(67\) −0.491409 + 0.851145i −0.0600351 + 0.103984i −0.894481 0.447106i \(-0.852455\pi\)
0.834446 + 0.551090i \(0.185788\pi\)
\(68\) 2.81377 4.87359i 0.341220 0.591010i
\(69\) −4.85077 5.45138i −0.583964 0.656269i
\(70\) 0 0
\(71\) −6.43507 −0.763703 −0.381851 0.924224i \(-0.624713\pi\)
−0.381851 + 0.924224i \(0.624713\pi\)
\(72\) 4.29988 + 3.20189i 0.506746 + 0.377346i
\(73\) 6.61467 0.774189 0.387094 0.922040i \(-0.373479\pi\)
0.387094 + 0.922040i \(0.373479\pi\)
\(74\) −0.859605 1.48888i −0.0999271 0.173079i
\(75\) 0 0
\(76\) 0.316370 0.547969i 0.0362901 0.0628564i
\(77\) 7.90523 13.6923i 0.900885 1.56038i
\(78\) 0.549868 1.65910i 0.0622603 0.187856i
\(79\) 4.73569 + 8.20246i 0.532807 + 0.922848i 0.999266 + 0.0383057i \(0.0121961\pi\)
−0.466459 + 0.884543i \(0.654471\pi\)
\(80\) 0 0
\(81\) 2.57930 + 8.62248i 0.286589 + 0.958054i
\(82\) −1.29366 −0.142860
\(83\) 5.20988 + 9.02378i 0.571859 + 0.990489i 0.996375 + 0.0850682i \(0.0271108\pi\)
−0.424516 + 0.905420i \(0.639556\pi\)
\(84\) −2.48042 + 7.48407i −0.270636 + 0.816579i
\(85\) 0 0
\(86\) 1.81686 3.14690i 0.195917 0.339339i
\(87\) −2.86033 + 0.590444i −0.306660 + 0.0633023i
\(88\) −5.51172 9.54658i −0.587551 1.01767i
\(89\) −6.26940 −0.664555 −0.332277 0.943182i \(-0.607817\pi\)
−0.332277 + 0.943182i \(0.607817\pi\)
\(90\) 0 0
\(91\) 5.46519 0.572908
\(92\) −3.74119 6.47993i −0.390046 0.675579i
\(93\) −9.50863 10.6860i −0.985999 1.10808i
\(94\) 2.70439 4.68413i 0.278936 0.483131i
\(95\) 0 0
\(96\) 5.58980 + 6.28191i 0.570506 + 0.641145i
\(97\) −3.60339 6.24126i −0.365869 0.633704i 0.623046 0.782185i \(-0.285895\pi\)
−0.988915 + 0.148481i \(0.952562\pi\)
\(98\) −0.203858 −0.0205927
\(99\) 2.15045 18.3804i 0.216128 1.84730i
\(100\) 0 0
\(101\) −3.48547 6.03701i −0.346817 0.600705i 0.638865 0.769319i \(-0.279404\pi\)
−0.985682 + 0.168614i \(0.946071\pi\)
\(102\) −2.54368 + 0.525079i −0.251862 + 0.0519906i
\(103\) 3.05756 5.29584i 0.301270 0.521815i −0.675154 0.737677i \(-0.735923\pi\)
0.976424 + 0.215862i \(0.0692561\pi\)
\(104\) 1.90523 3.29996i 0.186823 0.323588i
\(105\) 0 0
\(106\) 2.23260 + 3.86697i 0.216849 + 0.375593i
\(107\) −14.5349 −1.40514 −0.702570 0.711615i \(-0.747964\pi\)
−0.702570 + 0.711615i \(0.747964\pi\)
\(108\) 0.802776 + 9.19354i 0.0772471 + 0.884649i
\(109\) 1.90214 0.182192 0.0910958 0.995842i \(-0.470963\pi\)
0.0910958 + 0.995842i \(0.470963\pi\)
\(110\) 0 0
\(111\) 1.97948 5.97261i 0.187884 0.566895i
\(112\) −3.46825 + 6.00719i −0.327719 + 0.567626i
\(113\) 3.28962 5.69780i 0.309462 0.536004i −0.668783 0.743458i \(-0.733184\pi\)
0.978245 + 0.207454i \(0.0665178\pi\)
\(114\) −0.286002 + 0.0590380i −0.0267866 + 0.00552942i
\(115\) 0 0
\(116\) −2.99480 −0.278060
\(117\) 5.87401 2.53302i 0.543053 0.234178i
\(118\) 4.83472 0.445072
\(119\) −4.06065 7.03326i −0.372239 0.644737i
\(120\) 0 0
\(121\) −13.5258 + 23.4274i −1.22962 + 2.12977i
\(122\) 0.00260129 0.00450556i 0.000235509 0.000407914i
\(123\) −3.14736 3.53705i −0.283788 0.318925i
\(124\) −7.33359 12.7021i −0.658576 1.14069i
\(125\) 0 0
\(126\) 3.34149 1.44093i 0.297683 0.128368i
\(127\) −9.25840 −0.821550 −0.410775 0.911737i \(-0.634742\pi\)
−0.410775 + 0.911737i \(0.634742\pi\)
\(128\) 5.59196 + 9.68555i 0.494264 + 0.856090i
\(129\) 13.0244 2.68856i 1.14673 0.236714i
\(130\) 0 0
\(131\) −0.134698 + 0.233305i −0.0117687 + 0.0203839i −0.871850 0.489773i \(-0.837080\pi\)
0.860081 + 0.510157i \(0.170413\pi\)
\(132\) 5.96972 18.0122i 0.519597 1.56776i
\(133\) −0.456565 0.790794i −0.0395892 0.0685705i
\(134\) 0.465123 0.0401805
\(135\) 0 0
\(136\) −5.66237 −0.485544
\(137\) −1.73809 3.01046i −0.148495 0.257201i 0.782176 0.623057i \(-0.214110\pi\)
−0.930671 + 0.365856i \(0.880776\pi\)
\(138\) −1.08643 + 3.27804i −0.0924827 + 0.279045i
\(139\) −7.37393 + 12.7720i −0.625448 + 1.08331i 0.363006 + 0.931787i \(0.381751\pi\)
−0.988454 + 0.151521i \(0.951583\pi\)
\(140\) 0 0
\(141\) 19.3867 4.00189i 1.63265 0.337020i
\(142\) 1.52271 + 2.63742i 0.127783 + 0.221327i
\(143\) −13.1533 −1.09993
\(144\) −0.943464 + 8.06403i −0.0786220 + 0.672002i
\(145\) 0 0
\(146\) −1.56521 2.71103i −0.129538 0.224366i
\(147\) −0.495968 0.557378i −0.0409068 0.0459717i
\(148\) 3.22593 5.58747i 0.265170 0.459287i
\(149\) 5.07665 8.79301i 0.415895 0.720352i −0.579627 0.814882i \(-0.696802\pi\)
0.995522 + 0.0945305i \(0.0301350\pi\)
\(150\) 0 0
\(151\) 5.15811 + 8.93410i 0.419761 + 0.727047i 0.995915 0.0902940i \(-0.0287807\pi\)
−0.576155 + 0.817341i \(0.695447\pi\)
\(152\) −0.636657 −0.0516397
\(153\) −7.62420 5.67733i −0.616380 0.458985i
\(154\) −7.48237 −0.602947
\(155\) 0 0
\(156\) 6.42388 1.32605i 0.514322 0.106169i
\(157\) −0.531305 + 0.920247i −0.0424028 + 0.0734437i −0.886448 0.462828i \(-0.846835\pi\)
0.844045 + 0.536272i \(0.180168\pi\)
\(158\) 2.24119 3.88185i 0.178299 0.308823i
\(159\) −5.14117 + 15.5123i −0.407721 + 1.23020i
\(160\) 0 0
\(161\) −10.7981 −0.851008
\(162\) 2.92360 3.09744i 0.229699 0.243358i
\(163\) −17.1386 −1.34240 −0.671198 0.741278i \(-0.734220\pi\)
−0.671198 + 0.741278i \(0.734220\pi\)
\(164\) −2.42742 4.20441i −0.189549 0.328309i
\(165\) 0 0
\(166\) 2.46560 4.27054i 0.191368 0.331459i
\(167\) 2.18672 3.78752i 0.169214 0.293087i −0.768930 0.639333i \(-0.779210\pi\)
0.938144 + 0.346246i \(0.112544\pi\)
\(168\) 7.76940 1.60380i 0.599422 0.123736i
\(169\) 4.22666 + 7.32078i 0.325127 + 0.563137i
\(170\) 0 0
\(171\) −0.857238 0.638339i −0.0655546 0.0488150i
\(172\) 13.6367 1.03979
\(173\) 7.33005 + 12.6960i 0.557293 + 0.965260i 0.997721 + 0.0674723i \(0.0214934\pi\)
−0.440428 + 0.897788i \(0.645173\pi\)
\(174\) 0.918827 + 1.03259i 0.0696561 + 0.0782807i
\(175\) 0 0
\(176\) 8.34718 14.4577i 0.629192 1.08979i
\(177\) 11.7625 + 13.2189i 0.884121 + 0.993591i
\(178\) 1.48351 + 2.56952i 0.111194 + 0.192593i
\(179\) −6.87014 −0.513499 −0.256749 0.966478i \(-0.582651\pi\)
−0.256749 + 0.966478i \(0.582651\pi\)
\(180\) 0 0
\(181\) −10.9709 −0.815463 −0.407732 0.913102i \(-0.633680\pi\)
−0.407732 + 0.913102i \(0.633680\pi\)
\(182\) −1.29321 2.23991i −0.0958593 0.166033i
\(183\) 0.0186476 0.00384933i 0.00137847 0.000284551i
\(184\) −3.76434 + 6.52003i −0.277511 + 0.480663i
\(185\) 0 0
\(186\) −2.12965 + 6.42570i −0.156153 + 0.471155i
\(187\) 9.77294 + 16.9272i 0.714668 + 1.23784i
\(188\) 20.2980 1.48039
\(189\) 12.0693 + 5.63046i 0.877911 + 0.409556i
\(190\) 0 0
\(191\) −6.86627 11.8927i −0.496826 0.860528i 0.503167 0.864189i \(-0.332168\pi\)
−0.999993 + 0.00366109i \(0.998835\pi\)
\(192\) −1.69742 + 5.12158i −0.122501 + 0.369618i
\(193\) 0.241187 0.417748i 0.0173610 0.0300701i −0.857214 0.514960i \(-0.827807\pi\)
0.874575 + 0.484890i \(0.161140\pi\)
\(194\) −1.70532 + 2.95370i −0.122435 + 0.212064i
\(195\) 0 0
\(196\) −0.382518 0.662541i −0.0273227 0.0473244i
\(197\) 5.53488 0.394344 0.197172 0.980369i \(-0.436824\pi\)
0.197172 + 0.980369i \(0.436824\pi\)
\(198\) −8.04209 + 3.46795i −0.571526 + 0.246457i
\(199\) 17.4590 1.23764 0.618818 0.785534i \(-0.287612\pi\)
0.618818 + 0.785534i \(0.287612\pi\)
\(200\) 0 0
\(201\) 1.13160 + 1.27172i 0.0798172 + 0.0896999i
\(202\) −1.64951 + 2.85704i −0.116059 + 0.201021i
\(203\) −2.16095 + 3.74288i −0.151669 + 0.262698i
\(204\) −6.47948 7.28175i −0.453654 0.509825i
\(205\) 0 0
\(206\) −2.89401 −0.201635
\(207\) −11.6058 + 5.00473i −0.806661 + 0.347852i
\(208\) 5.77073 0.400128
\(209\) 1.09883 + 1.90324i 0.0760079 + 0.131650i
\(210\) 0 0
\(211\) 0.818328 1.41739i 0.0563360 0.0975769i −0.836482 0.547994i \(-0.815392\pi\)
0.892818 + 0.450417i \(0.148725\pi\)
\(212\) −8.37849 + 14.5120i −0.575437 + 0.996686i
\(213\) −3.50647 + 10.5799i −0.240259 + 0.724926i
\(214\) 3.43935 + 5.95713i 0.235109 + 0.407221i
\(215\) 0 0
\(216\) 7.60725 5.32475i 0.517608 0.362303i
\(217\) −21.1667 −1.43689
\(218\) −0.450098 0.779592i −0.0304844 0.0528006i
\(219\) 3.60433 10.8752i 0.243558 0.734879i
\(220\) 0 0
\(221\) −3.37820 + 5.85122i −0.227243 + 0.393596i
\(222\) −2.91628 + 0.601992i −0.195728 + 0.0404031i
\(223\) −3.87393 6.70984i −0.259417 0.449324i 0.706669 0.707545i \(-0.250197\pi\)
−0.966086 + 0.258221i \(0.916864\pi\)
\(224\) 12.4432 0.831397
\(225\) 0 0
\(226\) −3.11366 −0.207118
\(227\) 5.63014 + 9.75169i 0.373685 + 0.647242i 0.990129 0.140157i \(-0.0447606\pi\)
−0.616444 + 0.787399i \(0.711427\pi\)
\(228\) −0.728529 0.818734i −0.0482480 0.0542220i
\(229\) 5.23879 9.07384i 0.346189 0.599616i −0.639380 0.768891i \(-0.720809\pi\)
0.985569 + 0.169274i \(0.0541424\pi\)
\(230\) 0 0
\(231\) −18.2040 20.4579i −1.19773 1.34603i
\(232\) 1.50667 + 2.60962i 0.0989176 + 0.171330i
\(233\) −2.90214 −0.190125 −0.0950627 0.995471i \(-0.530305\pi\)
−0.0950627 + 0.995471i \(0.530305\pi\)
\(234\) −2.42811 1.80808i −0.158731 0.118198i
\(235\) 0 0
\(236\) 9.07188 + 15.7130i 0.590529 + 1.02283i
\(237\) 16.0662 3.31646i 1.04361 0.215427i
\(238\) −1.92172 + 3.32852i −0.124567 + 0.215756i
\(239\) −8.17723 + 14.1634i −0.528941 + 0.916153i 0.470489 + 0.882406i \(0.344077\pi\)
−0.999430 + 0.0337471i \(0.989256\pi\)
\(240\) 0 0
\(241\) −8.76194 15.1761i −0.564406 0.977580i −0.997105 0.0760416i \(-0.975772\pi\)
0.432698 0.901539i \(-0.357562\pi\)
\(242\) 12.8023 0.822965
\(243\) 15.5817 + 0.457745i 0.999569 + 0.0293644i
\(244\) 0.0195242 0.00124991
\(245\) 0 0
\(246\) −0.704913 + 2.12691i −0.0449436 + 0.135607i
\(247\) −0.379833 + 0.657890i −0.0241682 + 0.0418605i
\(248\) −7.37898 + 12.7808i −0.468566 + 0.811580i
\(249\) 17.6749 3.64854i 1.12010 0.231217i
\(250\) 0 0
\(251\) 8.46999 0.534621 0.267311 0.963610i \(-0.413865\pi\)
0.267311 + 0.963610i \(0.413865\pi\)
\(252\) 10.9530 + 8.15613i 0.689976 + 0.513788i
\(253\) 25.9882 1.63386
\(254\) 2.19079 + 3.79456i 0.137462 + 0.238092i
\(255\) 0 0
\(256\) −0.468695 + 0.811804i −0.0292934 + 0.0507377i
\(257\) 1.43625 2.48766i 0.0895910 0.155176i −0.817747 0.575577i \(-0.804777\pi\)
0.907338 + 0.420401i \(0.138111\pi\)
\(258\) −4.18383 4.70186i −0.260474 0.292725i
\(259\) −4.65545 8.06348i −0.289276 0.501040i
\(260\) 0 0
\(261\) −0.587841 + 5.02442i −0.0363864 + 0.311004i
\(262\) 0.127493 0.00787656
\(263\) −12.8119 22.1909i −0.790017 1.36835i −0.925955 0.377633i \(-0.876738\pi\)
0.135938 0.990717i \(-0.456595\pi\)
\(264\) −18.6989 + 3.85993i −1.15084 + 0.237562i
\(265\) 0 0
\(266\) −0.216072 + 0.374247i −0.0132482 + 0.0229465i
\(267\) −3.41619 + 10.3076i −0.209068 + 0.630812i
\(268\) 0.872756 + 1.51166i 0.0533121 + 0.0923392i
\(269\) 0.337210 0.0205600 0.0102800 0.999947i \(-0.496728\pi\)
0.0102800 + 0.999947i \(0.496728\pi\)
\(270\) 0 0
\(271\) 21.5927 1.31166 0.655831 0.754908i \(-0.272318\pi\)
0.655831 + 0.754908i \(0.272318\pi\)
\(272\) −4.28767 7.42646i −0.259978 0.450295i
\(273\) 2.97798 8.98535i 0.180236 0.543818i
\(274\) −0.822560 + 1.42472i −0.0496927 + 0.0860702i
\(275\) 0 0
\(276\) −12.6923 + 2.62000i −0.763984 + 0.157705i
\(277\) −12.0669 20.9004i −0.725028 1.25579i −0.958962 0.283533i \(-0.908493\pi\)
0.233934 0.972252i \(-0.424840\pi\)
\(278\) 6.97949 0.418602
\(279\) −22.7501 + 9.81041i −1.36201 + 0.587334i
\(280\) 0 0
\(281\) −1.68363 2.91613i −0.100437 0.173962i 0.811428 0.584453i \(-0.198691\pi\)
−0.911865 + 0.410491i \(0.865357\pi\)
\(282\) −6.22759 6.99868i −0.370848 0.416765i
\(283\) −10.9249 + 18.9224i −0.649415 + 1.12482i 0.333848 + 0.942627i \(0.391653\pi\)
−0.983263 + 0.182193i \(0.941681\pi\)
\(284\) −5.71444 + 9.89770i −0.339090 + 0.587321i
\(285\) 0 0
\(286\) 3.11243 + 5.39088i 0.184042 + 0.318770i
\(287\) −7.00619 −0.413562
\(288\) 13.3740 5.76721i 0.788071 0.339836i
\(289\) −6.95994 −0.409408
\(290\) 0 0
\(291\) −12.2248 + 2.52350i −0.716629 + 0.147930i
\(292\) 5.87393 10.1739i 0.343746 0.595385i
\(293\) −6.87702 + 11.9114i −0.401760 + 0.695869i −0.993938 0.109938i \(-0.964935\pi\)
0.592179 + 0.805807i \(0.298268\pi\)
\(294\) −0.111082 + 0.335163i −0.00647843 + 0.0195471i
\(295\) 0 0
\(296\) −6.49179 −0.377328
\(297\) −29.0476 13.5511i −1.68551 0.786312i
\(298\) −4.80509 −0.278352
\(299\) 4.49166 + 7.77978i 0.259759 + 0.449916i
\(300\) 0 0
\(301\) 9.83978 17.0430i 0.567155 0.982342i
\(302\) 2.44110 4.22810i 0.140469 0.243300i
\(303\) −11.8247 + 2.44092i −0.679312 + 0.140227i
\(304\) −0.482090 0.835004i −0.0276498 0.0478908i
\(305\) 0 0
\(306\) −0.522764 + 4.46819i −0.0298844 + 0.255430i
\(307\) 34.2183 1.95294 0.976472 0.215644i \(-0.0691850\pi\)
0.976472 + 0.215644i \(0.0691850\pi\)
\(308\) −14.0399 24.3179i −0.799999 1.38564i
\(309\) −7.04087 7.91265i −0.400541 0.450135i
\(310\) 0 0
\(311\) −11.5199 + 19.9530i −0.653232 + 1.13143i 0.329102 + 0.944294i \(0.393254\pi\)
−0.982334 + 0.187136i \(0.940079\pi\)
\(312\) −4.38732 4.93055i −0.248383 0.279137i
\(313\) 1.79565 + 3.11016i 0.101496 + 0.175796i 0.912301 0.409520i \(-0.134304\pi\)
−0.810805 + 0.585316i \(0.800970\pi\)
\(314\) 0.502885 0.0283794
\(315\) 0 0
\(316\) 16.8215 0.946281
\(317\) −6.59033 11.4148i −0.370150 0.641118i 0.619439 0.785045i \(-0.287360\pi\)
−0.989588 + 0.143927i \(0.954027\pi\)
\(318\) 7.57425 1.56351i 0.424743 0.0876775i
\(319\) 5.20085 9.00813i 0.291192 0.504359i
\(320\) 0 0
\(321\) −7.92005 + 23.8969i −0.442054 + 1.33379i
\(322\) 2.55512 + 4.42560i 0.142391 + 0.246629i
\(323\) 1.12887 0.0628119
\(324\) 15.5526 + 3.68971i 0.864033 + 0.204984i
\(325\) 0 0
\(326\) 4.05545 + 7.02424i 0.224611 + 0.389037i
\(327\) 1.03647 3.12732i 0.0573171 0.172941i
\(328\) −2.44244 + 4.23044i −0.134861 + 0.233587i
\(329\) 14.6464 25.3683i 0.807483 1.39860i
\(330\) 0 0
\(331\) −0.591264 1.02410i −0.0324988 0.0562896i 0.849319 0.527881i \(-0.177013\pi\)
−0.881817 + 0.471591i \(0.843680\pi\)
\(332\) 18.5058 1.01564
\(333\) −8.74099 6.50894i −0.479003 0.356688i
\(334\) −2.06975 −0.113252
\(335\) 0 0
\(336\) 7.98661 + 8.97549i 0.435705 + 0.489653i
\(337\) 12.3997 21.4770i 0.675457 1.16993i −0.300879 0.953662i \(-0.597280\pi\)
0.976335 0.216263i \(-0.0693868\pi\)
\(338\) 2.00028 3.46459i 0.108801 0.188449i
\(339\) −7.57527 8.51322i −0.411432 0.462375i
\(340\) 0 0
\(341\) 50.9428 2.75871
\(342\) −0.0587777 + 0.502388i −0.00317833 + 0.0271660i
\(343\) −19.0454 −1.02836
\(344\) −6.86053 11.8828i −0.369895 0.640677i
\(345\) 0 0
\(346\) 3.46898 6.00845i 0.186493 0.323016i
\(347\) −11.0846 + 19.1991i −0.595052 + 1.03066i 0.398488 + 0.917174i \(0.369535\pi\)
−0.993540 + 0.113486i \(0.963798\pi\)
\(348\) −1.63186 + 4.92376i −0.0874771 + 0.263941i
\(349\) −7.45925 12.9198i −0.399285 0.691581i 0.594353 0.804204i \(-0.297408\pi\)
−0.993638 + 0.112623i \(0.964075\pi\)
\(350\) 0 0
\(351\) −0.963810 11.0377i −0.0514444 0.589151i
\(352\) −29.9476 −1.59621
\(353\) −8.45726 14.6484i −0.450134 0.779656i 0.548260 0.836308i \(-0.315291\pi\)
−0.998394 + 0.0566525i \(0.981957\pi\)
\(354\) 2.63444 7.94880i 0.140019 0.422474i
\(355\) 0 0
\(356\) −5.56732 + 9.64288i −0.295067 + 0.511072i
\(357\) −13.7761 + 2.84372i −0.729107 + 0.150506i
\(358\) 1.62566 + 2.81573i 0.0859190 + 0.148816i
\(359\) 0.636657 0.0336015 0.0168007 0.999859i \(-0.494652\pi\)
0.0168007 + 0.999859i \(0.494652\pi\)
\(360\) 0 0
\(361\) −18.8731 −0.993320
\(362\) 2.59602 + 4.49644i 0.136444 + 0.236328i
\(363\) 31.1470 + 35.0035i 1.63479 + 1.83721i
\(364\) 4.85317 8.40594i 0.254375 0.440591i
\(365\) 0 0
\(366\) −0.00599018 0.00673187i −0.000313112 0.000351880i
\(367\) −10.0490 17.4053i −0.524552 0.908550i −0.999591 0.0285858i \(-0.990900\pi\)
0.475040 0.879964i \(-0.342434\pi\)
\(368\) −11.4018 −0.594358
\(369\) −7.53028 + 3.24725i −0.392011 + 0.169045i
\(370\) 0 0
\(371\) 12.0913 + 20.9427i 0.627749 + 1.08729i
\(372\) −24.8797 + 5.13580i −1.28995 + 0.266279i
\(373\) 9.82146 17.0113i 0.508536 0.880810i −0.491415 0.870925i \(-0.663520\pi\)
0.999951 0.00988448i \(-0.00314638\pi\)
\(374\) 4.62509 8.01088i 0.239157 0.414233i
\(375\) 0 0
\(376\) −10.2118 17.6874i −0.526635 0.912159i
\(377\) 3.59555 0.185180
\(378\) −0.548272 6.27892i −0.0282001 0.322953i
\(379\) −7.94219 −0.407963 −0.203982 0.978975i \(-0.565388\pi\)
−0.203982 + 0.978975i \(0.565388\pi\)
\(380\) 0 0
\(381\) −5.04490 + 15.2218i −0.258458 + 0.779836i
\(382\) −3.24949 + 5.62829i −0.166259 + 0.287968i
\(383\) 15.5944 27.0103i 0.796836 1.38016i −0.124830 0.992178i \(-0.539839\pi\)
0.921667 0.387983i \(-0.126828\pi\)
\(384\) 18.9711 3.91612i 0.968116 0.199843i
\(385\) 0 0
\(386\) −0.228285 −0.0116194
\(387\) 2.67670 22.8785i 0.136064 1.16298i
\(388\) −12.7995 −0.649795
\(389\) 15.7247 + 27.2360i 0.797274 + 1.38092i 0.921385 + 0.388650i \(0.127059\pi\)
−0.124111 + 0.992268i \(0.539608\pi\)
\(390\) 0 0
\(391\) 6.67463 11.5608i 0.337550 0.584655i
\(392\) −0.384886 + 0.666642i −0.0194397 + 0.0336705i
\(393\) 0.310180 + 0.348586i 0.0156465 + 0.0175838i
\(394\) −1.30970 2.26847i −0.0659819 0.114284i
\(395\) 0 0
\(396\) −26.3611 19.6297i −1.32469 0.986429i
\(397\) 17.7174 0.889211 0.444606 0.895726i \(-0.353344\pi\)
0.444606 + 0.895726i \(0.353344\pi\)
\(398\) −4.13128 7.15558i −0.207082 0.358677i
\(399\) −1.54893 + 0.319738i −0.0775436 + 0.0160069i
\(400\) 0 0
\(401\) 3.57124 6.18556i 0.178339 0.308892i −0.762973 0.646431i \(-0.776261\pi\)
0.941312 + 0.337538i \(0.109594\pi\)
\(402\) 0.253445 0.764711i 0.0126407 0.0381403i
\(403\) 8.80468 + 15.2502i 0.438593 + 0.759665i
\(404\) −12.3806 −0.615958
\(405\) 0 0
\(406\) 2.04536 0.101509
\(407\) 11.2045 + 19.4067i 0.555385 + 0.961955i
\(408\) −3.08542 + 9.30954i −0.152751 + 0.460891i
\(409\) −12.3759 + 21.4357i −0.611948 + 1.05993i 0.378964 + 0.925412i \(0.376281\pi\)
−0.990912 + 0.134514i \(0.957053\pi\)
\(410\) 0 0
\(411\) −5.89661 + 1.21721i −0.290858 + 0.0600404i
\(412\) −5.43031 9.40558i −0.267532 0.463380i
\(413\) 26.1839 1.28843
\(414\) 4.79744 + 3.57240i 0.235782 + 0.175574i
\(415\) 0 0
\(416\) −5.17598 8.96505i −0.253773 0.439548i
\(417\) 16.9805 + 19.0830i 0.831539 + 0.934498i
\(418\) 0.520028 0.900715i 0.0254354 0.0440554i
\(419\) 5.32956 9.23106i 0.260366 0.450967i −0.705973 0.708238i \(-0.749490\pi\)
0.966339 + 0.257272i \(0.0828235\pi\)
\(420\) 0 0
\(421\) 4.08931 + 7.08288i 0.199301 + 0.345199i 0.948302 0.317370i \(-0.102800\pi\)
−0.749001 + 0.662569i \(0.769466\pi\)
\(422\) −0.774555 −0.0377048
\(423\) 3.98425 34.0544i 0.193721 1.65578i
\(424\) 16.8607 0.818828
\(425\) 0 0
\(426\) 5.16592 1.06638i 0.250290 0.0516660i
\(427\) 0.0140881 0.0244012i 0.000681769 0.00118086i
\(428\) −12.9072 + 22.3559i −0.623893 + 1.08061i
\(429\) −7.16722 + 21.6254i −0.346037 + 1.04408i
\(430\) 0 0
\(431\) 1.67248 0.0805604 0.0402802 0.999188i \(-0.487175\pi\)
0.0402802 + 0.999188i \(0.487175\pi\)
\(432\) 12.7440 + 5.94524i 0.613147 + 0.286040i
\(433\) −9.95994 −0.478644 −0.239322 0.970940i \(-0.576925\pi\)
−0.239322 + 0.970940i \(0.576925\pi\)
\(434\) 5.00863 + 8.67519i 0.240422 + 0.416423i
\(435\) 0 0
\(436\) 1.68913 2.92565i 0.0808945 0.140113i
\(437\) 0.750471 1.29985i 0.0358999 0.0621805i
\(438\) −5.31010 + 1.09614i −0.253726 + 0.0523754i
\(439\) −6.40788 11.0988i −0.305832 0.529716i 0.671615 0.740901i \(-0.265601\pi\)
−0.977446 + 0.211185i \(0.932268\pi\)
\(440\) 0 0
\(441\) −1.18664 + 0.511709i −0.0565067 + 0.0243671i
\(442\) 3.19750 0.152090
\(443\) 3.87702 + 6.71520i 0.184203 + 0.319049i 0.943308 0.331920i \(-0.107696\pi\)
−0.759105 + 0.650968i \(0.774363\pi\)
\(444\) −7.42859 8.34838i −0.352545 0.396196i
\(445\) 0 0
\(446\) −1.83335 + 3.17546i −0.0868118 + 0.150362i
\(447\) −11.6904 13.1379i −0.552936 0.621399i
\(448\) 3.99210 + 6.91452i 0.188609 + 0.326681i
\(449\) −33.3401 −1.57342 −0.786709 0.617324i \(-0.788217\pi\)
−0.786709 + 0.617324i \(0.788217\pi\)
\(450\) 0 0
\(451\) 16.8621 0.794004
\(452\) −5.84247 10.1195i −0.274807 0.475979i
\(453\) 17.4993 3.61229i 0.822187 0.169720i
\(454\) 2.66449 4.61503i 0.125051 0.216594i
\(455\) 0 0
\(456\) −0.346914 + 1.04673i −0.0162457 + 0.0490177i
\(457\) 19.1096 + 33.0988i 0.893910 + 1.54830i 0.835148 + 0.550026i \(0.185382\pi\)
0.0587626 + 0.998272i \(0.481285\pi\)
\(458\) −4.95856 −0.231698
\(459\) −13.4886 + 9.44142i −0.629592 + 0.440688i
\(460\) 0 0
\(461\) −15.6517 27.1095i −0.728971 1.26261i −0.957319 0.289035i \(-0.906666\pi\)
0.228348 0.973580i \(-0.426668\pi\)
\(462\) −4.07714 + 12.3018i −0.189686 + 0.572332i
\(463\) −6.04258 + 10.4661i −0.280823 + 0.486399i −0.971588 0.236680i \(-0.923941\pi\)
0.690765 + 0.723079i \(0.257274\pi\)
\(464\) −2.28176 + 3.95212i −0.105928 + 0.183473i
\(465\) 0 0
\(466\) 0.686725 + 1.18944i 0.0318119 + 0.0550998i
\(467\) −7.60466 −0.351902 −0.175951 0.984399i \(-0.556300\pi\)
−0.175951 + 0.984399i \(0.556300\pi\)
\(468\) 1.32020 11.2841i 0.0610264 0.521608i
\(469\) 2.51901 0.116317
\(470\) 0 0
\(471\) 1.22348 + 1.37496i 0.0563748 + 0.0633550i
\(472\) 9.12803 15.8102i 0.420152 0.727724i
\(473\) −23.6818 + 41.0181i −1.08889 + 1.88601i
\(474\) −5.16095 5.79997i −0.237050 0.266401i
\(475\) 0 0
\(476\) −14.4237 −0.661108
\(477\) 22.7024 + 16.9052i 1.03947 + 0.774038i
\(478\) 7.73982 0.354011
\(479\) 16.2417 + 28.1314i 0.742101 + 1.28536i 0.951537 + 0.307534i \(0.0995037\pi\)
−0.209437 + 0.977822i \(0.567163\pi\)
\(480\) 0 0
\(481\) −3.87304 + 6.70830i −0.176595 + 0.305872i
\(482\) −4.14663 + 7.18217i −0.188874 + 0.327139i
\(483\) −5.88387 + 17.7532i −0.267725 + 0.807798i
\(484\) 24.0223 + 41.6079i 1.09192 + 1.89127i
\(485\) 0 0
\(486\) −3.49946 6.49450i −0.158739 0.294596i
\(487\) −4.46121 −0.202157 −0.101078 0.994878i \(-0.532229\pi\)
−0.101078 + 0.994878i \(0.532229\pi\)
\(488\) −0.00982254 0.0170131i −0.000444645 0.000770148i
\(489\) −9.33879 + 28.1776i −0.422315 + 1.27424i
\(490\) 0 0
\(491\) −16.4210 + 28.4420i −0.741070 + 1.28357i 0.210938 + 0.977499i \(0.432348\pi\)
−0.952008 + 0.306072i \(0.900985\pi\)
\(492\) −8.23520 + 1.69995i −0.371271 + 0.0766397i
\(493\) −2.67150 4.62717i −0.120318 0.208397i
\(494\) 0.359515 0.0161754
\(495\) 0 0
\(496\) −22.3501 −1.00355
\(497\) 8.24672 + 14.2837i 0.369916 + 0.640713i
\(498\) −5.67772 6.38073i −0.254425 0.285927i
\(499\) 17.1010 29.6198i 0.765547 1.32597i −0.174410 0.984673i \(-0.555802\pi\)
0.939957 0.341293i \(-0.110865\pi\)
\(500\) 0 0
\(501\) −5.03554 5.65902i −0.224971 0.252827i
\(502\) −2.00423 3.47143i −0.0894532 0.154938i
\(503\) 22.1773 0.988837 0.494419 0.869224i \(-0.335381\pi\)
0.494419 + 0.869224i \(0.335381\pi\)
\(504\) 1.59673 13.6476i 0.0711238 0.607913i
\(505\) 0 0
\(506\) −6.14951 10.6513i −0.273379 0.473507i
\(507\) 14.3392 2.95998i 0.636828 0.131457i
\(508\) −8.22160 + 14.2402i −0.364775 + 0.631808i
\(509\) 10.7816 18.6743i 0.477887 0.827724i −0.521792 0.853073i \(-0.674736\pi\)
0.999679 + 0.0253489i \(0.00806968\pi\)
\(510\) 0 0
\(511\) −8.47688 14.6824i −0.374995 0.649510i
\(512\) 22.8115 1.00813
\(513\) −1.51661 + 1.06156i −0.0669598 + 0.0468690i
\(514\) −1.35943 −0.0599617
\(515\) 0 0
\(516\) 7.43061 22.4201i 0.327114 0.986990i
\(517\) −35.2501 + 61.0550i −1.55030 + 2.68520i
\(518\) −2.20321 + 3.81608i −0.0968037 + 0.167669i
\(519\) 24.8677 5.13332i 1.09157 0.225328i
\(520\) 0 0
\(521\) 20.2626 0.887718 0.443859 0.896097i \(-0.353609\pi\)
0.443859 + 0.896097i \(0.353609\pi\)
\(522\) 2.19836 0.947989i 0.0962196 0.0414923i
\(523\) 31.8114 1.39101 0.695507 0.718520i \(-0.255180\pi\)
0.695507 + 0.718520i \(0.255180\pi\)
\(524\) 0.239229 + 0.414356i 0.0104507 + 0.0181012i
\(525\) 0 0
\(526\) −6.06330 + 10.5019i −0.264373 + 0.457907i
\(527\) 13.0838 22.6618i 0.569940 0.987164i
\(528\) −19.2217 21.6017i −0.836517 0.940092i
\(529\) 2.62541 + 4.54735i 0.114148 + 0.197711i
\(530\) 0 0
\(531\) 28.1426 12.1358i 1.22128 0.526649i
\(532\) −1.62175 −0.0703117
\(533\) 2.91435 + 5.04780i 0.126235 + 0.218645i
\(534\) 5.03292 1.03892i 0.217796 0.0449585i
\(535\) 0 0
\(536\) 0.878159 1.52102i 0.0379307 0.0656978i
\(537\) −3.74354 + 11.2952i −0.161546 + 0.487426i
\(538\) −0.0797930 0.138205i −0.00344012 0.00595846i
\(539\) 2.65717 0.114452
\(540\) 0 0
\(541\) −15.1315 −0.650553 −0.325277 0.945619i \(-0.605457\pi\)
−0.325277 + 0.945619i \(0.605457\pi\)
\(542\) −5.10942 8.84977i −0.219468 0.380130i
\(543\) −5.97806 + 18.0374i −0.256543 + 0.774058i
\(544\) −7.69153 + 13.3221i −0.329772 + 0.571181i
\(545\) 0 0
\(546\) −4.38732 + 0.905653i −0.187760 + 0.0387584i
\(547\) 2.04372 + 3.53982i 0.0873831 + 0.151352i 0.906404 0.422411i \(-0.138816\pi\)
−0.819021 + 0.573763i \(0.805483\pi\)
\(548\) −6.17381 −0.263732
\(549\) 0.00383236 0.0327561i 0.000163561 0.00139800i
\(550\) 0 0
\(551\) −0.300374 0.520263i −0.0127964 0.0221639i
\(552\) 8.66844 + 9.74174i 0.368953 + 0.414636i
\(553\) 12.1378 21.0233i 0.516153 0.894003i
\(554\) −5.71070 + 9.89123i −0.242625 + 0.420238i
\(555\) 0 0
\(556\) 13.0963 + 22.6835i 0.555408 + 0.961994i
\(557\) −13.1425 −0.556864 −0.278432 0.960456i \(-0.589815\pi\)
−0.278432 + 0.960456i \(0.589815\pi\)
\(558\) 9.40410 + 7.00273i 0.398107 + 0.296449i
\(559\) −16.3721 −0.692467
\(560\) 0 0
\(561\) 33.1554 6.84411i 1.39982 0.288958i
\(562\) −0.796785 + 1.38007i −0.0336104 + 0.0582149i
\(563\) 12.2611 21.2368i 0.516742 0.895023i −0.483069 0.875582i \(-0.660478\pi\)
0.999811 0.0194410i \(-0.00618864\pi\)
\(564\) 11.0604 33.3721i 0.465727 1.40522i
\(565\) 0 0
\(566\) 10.3405 0.434642
\(567\) 15.8336 16.7751i 0.664950 0.704489i
\(568\) 11.4996 0.482514
\(569\) −11.3649 19.6846i −0.476442 0.825223i 0.523193 0.852214i \(-0.324741\pi\)
−0.999636 + 0.0269915i \(0.991407\pi\)
\(570\) 0 0
\(571\) 0.247093 0.427977i 0.0103405 0.0179103i −0.860809 0.508928i \(-0.830042\pi\)
0.871149 + 0.491018i \(0.163375\pi\)
\(572\) −11.6803 + 20.2309i −0.488379 + 0.845897i
\(573\) −23.2943 + 4.80854i −0.973135 + 0.200879i
\(574\) 1.65786 + 2.87149i 0.0691976 + 0.119854i
\(575\) 0 0
\(576\) 7.49549 + 5.58149i 0.312312 + 0.232562i
\(577\) −9.41187 −0.391821 −0.195911 0.980622i \(-0.562766\pi\)
−0.195911 + 0.980622i \(0.562766\pi\)
\(578\) 1.64691 + 2.85254i 0.0685025 + 0.118650i
\(579\) −0.555399 0.624167i −0.0230816 0.0259395i
\(580\) 0 0
\(581\) 13.3532 23.1284i 0.553984 0.959529i
\(582\) 3.92697 + 4.41320i 0.162778 + 0.182933i
\(583\) −29.1006 50.4037i −1.20522 2.08751i
\(584\) −11.8206 −0.489139
\(585\) 0 0
\(586\) 6.50916 0.268891
\(587\) −4.98661 8.63705i −0.205819 0.356489i 0.744574 0.667540i \(-0.232653\pi\)
−0.950393 + 0.311050i \(0.899319\pi\)
\(588\) −1.29772 + 0.267882i −0.0535172 + 0.0110473i
\(589\) 1.47110 2.54801i 0.0606155 0.104989i
\(590\) 0 0
\(591\) 3.01595 9.09993i 0.124060 0.374321i
\(592\) −4.91572 8.51428i −0.202035 0.349935i
\(593\) 38.3421 1.57452 0.787260 0.616621i \(-0.211499\pi\)
0.787260 + 0.616621i \(0.211499\pi\)
\(594\) 1.31955 + 15.1117i 0.0541418 + 0.620042i
\(595\) 0 0
\(596\) −9.01628 15.6167i −0.369321 0.639683i
\(597\) 9.51340 28.7044i 0.389358 1.17479i
\(598\) 2.12570 3.68182i 0.0869262 0.150561i
\(599\) 5.07665 8.79301i 0.207426 0.359273i −0.743477 0.668762i \(-0.766825\pi\)
0.950903 + 0.309489i \(0.100158\pi\)
\(600\) 0 0
\(601\) 10.6371 + 18.4241i 0.433898 + 0.751533i 0.997205 0.0747146i \(-0.0238046\pi\)
−0.563307 + 0.826248i \(0.690471\pi\)
\(602\) −9.31344 −0.379587
\(603\) 2.70745 1.16752i 0.110256 0.0475450i
\(604\) 18.3219 0.745508
\(605\) 0 0
\(606\) 3.79846 + 4.26878i 0.154302 + 0.173407i
\(607\) 18.8678 32.6799i 0.765819 1.32644i −0.173993 0.984747i \(-0.555667\pi\)
0.939812 0.341691i \(-0.111000\pi\)
\(608\) −0.864808 + 1.49789i −0.0350726 + 0.0607475i
\(609\) 4.97618 + 5.59232i 0.201645 + 0.226612i
\(610\) 0 0
\(611\) −24.3698 −0.985895
\(612\) −15.5026 + 6.68513i −0.626657 + 0.270230i
\(613\) −32.2633 −1.30310 −0.651551 0.758605i \(-0.725881\pi\)
−0.651551 + 0.758605i \(0.725881\pi\)
\(614\) −8.09699 14.0244i −0.326768 0.565979i
\(615\) 0 0
\(616\) −14.1268 + 24.4684i −0.569186 + 0.985860i
\(617\) 13.0089 22.5321i 0.523719 0.907108i −0.475900 0.879499i \(-0.657878\pi\)
0.999619 0.0276084i \(-0.00878914\pi\)
\(618\) −1.57694 + 4.75805i −0.0634339 + 0.191397i
\(619\) 5.94077 + 10.2897i 0.238780 + 0.413578i 0.960364 0.278748i \(-0.0899193\pi\)
−0.721585 + 0.692326i \(0.756586\pi\)
\(620\) 0 0
\(621\) 1.90429 + 21.8083i 0.0764165 + 0.875136i
\(622\) 10.9037 0.437197
\(623\) 8.03440 + 13.9160i 0.321891 + 0.557532i
\(624\) 3.14447 9.48769i 0.125879 0.379811i
\(625\) 0 0
\(626\) 0.849799 1.47189i 0.0339648 0.0588288i
\(627\) 3.72788 0.769527i 0.148877 0.0307319i
\(628\) 0.943614 + 1.63439i 0.0376543 + 0.0652191i
\(629\) 11.5107 0.458962
\(630\) 0 0
\(631\) −13.2726 −0.528372 −0.264186 0.964472i \(-0.585103\pi\)
−0.264186 + 0.964472i \(0.585103\pi\)
\(632\) −8.46279 14.6580i −0.336632 0.583063i
\(633\) −1.88443 2.11775i −0.0748992 0.0841731i
\(634\) −3.11890 + 5.40210i −0.123867 + 0.214545i
\(635\) 0 0
\(636\) 19.2938 + 21.6827i 0.765048 + 0.859774i
\(637\) 0.459251 + 0.795445i 0.0181962 + 0.0315167i
\(638\) −4.92265 −0.194890
\(639\) 15.4839 + 11.5300i 0.612533 + 0.456120i
\(640\) 0 0
\(641\) −22.4075 38.8109i −0.885042 1.53294i −0.845665 0.533713i \(-0.820796\pi\)
−0.0393765 0.999224i \(-0.512537\pi\)
\(642\) 11.6682 2.40862i 0.460509 0.0950606i
\(643\) 7.46275 12.9259i 0.294302 0.509747i −0.680520 0.732729i \(-0.738246\pi\)
0.974822 + 0.222983i \(0.0715794\pi\)
\(644\) −9.58886 + 16.6084i −0.377854 + 0.654462i
\(645\) 0 0
\(646\) −0.267121 0.462667i −0.0105097 0.0182034i
\(647\) −41.2684 −1.62243 −0.811214 0.584749i \(-0.801193\pi\)
−0.811214 + 0.584749i \(0.801193\pi\)
\(648\) −4.60927 15.4086i −0.181069 0.605306i
\(649\) −63.0179 −2.47367
\(650\) 0 0
\(651\) −11.5337 + 34.8003i −0.452043 + 1.36393i
\(652\) −15.2193 + 26.3606i −0.596034 + 1.03236i
\(653\) −13.8126 + 23.9241i −0.540528 + 0.936223i 0.458345 + 0.888774i \(0.348442\pi\)
−0.998874 + 0.0474484i \(0.984891\pi\)
\(654\) −1.52699 + 0.315209i −0.0597100 + 0.0123256i
\(655\) 0 0
\(656\) −7.39788 −0.288839
\(657\) −15.9160 11.8518i −0.620943 0.462383i
\(658\) −13.8630 −0.540435
\(659\) −20.0112 34.6605i −0.779527 1.35018i −0.932215 0.361905i \(-0.882126\pi\)
0.152688 0.988274i \(-0.451207\pi\)
\(660\) 0 0
\(661\) −12.4965 + 21.6445i −0.486056 + 0.841874i −0.999872 0.0160270i \(-0.994898\pi\)
0.513816 + 0.857901i \(0.328232\pi\)
\(662\) −0.279818 + 0.484659i −0.0108754 + 0.0188368i
\(663\) 7.77924 + 8.74245i 0.302121 + 0.339529i
\(664\) −9.31018 16.1257i −0.361305 0.625799i
\(665\) 0 0
\(666\) −0.599338 + 5.12269i −0.0232239 + 0.198500i
\(667\) −7.10405 −0.275070
\(668\) −3.88369 6.72675i −0.150264 0.260266i
\(669\) −13.1426 + 2.71296i −0.508122 + 0.104889i
\(670\) 0 0
\(671\) −0.0339063 + 0.0587274i −0.00130894 + 0.00226715i
\(672\) 6.78030 20.4579i 0.261556 0.789182i
\(673\) 20.4024 + 35.3380i 0.786454 + 1.36218i 0.928126 + 0.372265i \(0.121419\pi\)
−0.141672 + 0.989914i \(0.545248\pi\)
\(674\) −11.7365 −0.452072
\(675\) 0 0
\(676\) 15.0133 0.577436
\(677\) −20.5947 35.6710i −0.791518 1.37095i −0.925027 0.379901i \(-0.875958\pi\)
0.133509 0.991048i \(-0.457375\pi\)
\(678\) −1.69663 + 5.11919i −0.0651587 + 0.196601i
\(679\) −9.23569 + 15.9967i −0.354433 + 0.613896i
\(680\) 0 0
\(681\) 19.1007 3.94286i 0.731939 0.151091i
\(682\) −12.0545 20.8789i −0.461589 0.799496i
\(683\) 1.33820 0.0512047 0.0256023 0.999672i \(-0.491850\pi\)
0.0256023 + 0.999672i \(0.491850\pi\)
\(684\) −1.74306 + 0.751652i −0.0666476 + 0.0287401i
\(685\) 0 0
\(686\) 4.50667 + 7.80578i 0.172065 + 0.298026i
\(687\) −12.0637 13.5574i −0.460261 0.517249i
\(688\) 10.3899 17.9958i 0.396110 0.686083i
\(689\) 10.0592 17.4230i 0.383225 0.663764i
\(690\) 0 0
\(691\) 12.6407 + 21.8943i 0.480874 + 0.832898i 0.999759 0.0219459i \(-0.00698617\pi\)
−0.518885 + 0.854844i \(0.673653\pi\)
\(692\) 26.0368 0.989770
\(693\) −43.5544 + 18.7817i −1.65449 + 0.713459i
\(694\) 10.4917 0.398258
\(695\) 0 0
\(696\) 5.11148 1.05514i 0.193750 0.0399949i
\(697\) 4.33074 7.50106i 0.164039 0.284123i
\(698\) −3.53012 + 6.11435i −0.133617 + 0.231432i
\(699\) −1.58137 + 4.77142i −0.0598130 + 0.180472i
\(700\) 0 0
\(701\) −18.2064 −0.687645 −0.343822 0.939035i \(-0.611722\pi\)
−0.343822 + 0.939035i \(0.611722\pi\)
\(702\) −4.29576 + 3.00685i −0.162133 + 0.113486i
\(703\) 1.29422 0.0488126
\(704\) −9.60795 16.6415i −0.362113 0.627199i
\(705\) 0 0
\(706\) −4.00244 + 6.93242i −0.150634 + 0.260905i
\(707\) −8.93344 + 15.4732i −0.335977 + 0.581929i
\(708\) 30.7770 6.35315i 1.15667 0.238766i
\(709\) −20.9103 36.2177i −0.785304 1.36019i −0.928818 0.370537i \(-0.879174\pi\)
0.143514 0.989648i \(-0.454160\pi\)
\(710\) 0 0
\(711\) 3.30184 28.2216i 0.123829 1.05839i
\(712\) 11.2036 0.419871
\(713\) −17.3962 30.1312i −0.651494 1.12842i
\(714\) 4.42529 + 4.97322i 0.165612 + 0.186118i
\(715\) 0 0
\(716\) −6.10079 + 10.5669i −0.227997 + 0.394903i
\(717\) 18.8303 + 21.1619i 0.703231 + 0.790304i
\(718\) −0.150650 0.260934i −0.00562222 0.00973797i
\(719\) 48.9786 1.82660 0.913298 0.407293i \(-0.133527\pi\)
0.913298 + 0.407293i \(0.133527\pi\)
\(720\) 0 0
\(721\) −15.6734 −0.583707
\(722\) 4.46588 + 7.73514i 0.166203 + 0.287872i
\(723\) −29.7255 + 6.13610i −1.10550 + 0.228204i
\(724\) −9.74236 + 16.8743i −0.362072 + 0.627127i
\(725\) 0 0
\(726\) 6.97598 21.0484i 0.258903 0.781179i
\(727\) 21.9005 + 37.9327i 0.812243 + 1.40685i 0.911291 + 0.411764i \(0.135087\pi\)
−0.0990474 + 0.995083i \(0.531580\pi\)
\(728\) −9.76642 −0.361968
\(729\) 9.24306 25.3686i 0.342336 0.939578i
\(730\) 0 0
\(731\) 12.1645 + 21.0696i 0.449922 + 0.779287i
\(732\) 0.0106387 0.0320999i 0.000393219 0.00118645i
\(733\) 3.39332 5.87740i 0.125335 0.217087i −0.796529 0.604601i \(-0.793333\pi\)
0.921864 + 0.387514i \(0.126666\pi\)
\(734\) −4.75572 + 8.23715i −0.175537 + 0.304039i
\(735\) 0 0
\(736\) 10.2267 + 17.7131i 0.376960 + 0.652913i
\(737\) −6.06261 −0.223319
\(738\) 3.11276 + 2.31790i 0.114582 + 0.0853232i
\(739\) 28.7245 1.05665 0.528324 0.849043i \(-0.322821\pi\)
0.528324 + 0.849043i \(0.322821\pi\)
\(740\) 0 0
\(741\) 0.874670 + 0.982970i 0.0321318 + 0.0361103i
\(742\) 5.72226 9.91125i 0.210071 0.363853i
\(743\) 15.7262 27.2385i 0.576937 0.999284i −0.418891 0.908036i \(-0.637581\pi\)
0.995828 0.0912477i \(-0.0290855\pi\)
\(744\) 16.9921 + 19.0961i 0.622962 + 0.700096i
\(745\) 0 0
\(746\) −9.29610 −0.340354
\(747\) 3.63246 31.0475i 0.132905 1.13597i
\(748\) 34.7141 1.26927
\(749\) 18.6268 + 32.2626i 0.680610 + 1.17885i
\(750\) 0 0
\(751\) −5.47659 + 9.48574i −0.199844 + 0.346139i −0.948478 0.316844i \(-0.897377\pi\)
0.748634 + 0.662984i \(0.230710\pi\)
\(752\) 15.4652 26.7866i 0.563959 0.976806i
\(753\) 4.61530 13.9256i 0.168191 0.507476i
\(754\) −0.850804 1.47364i −0.0309845 0.0536667i
\(755\) 0 0
\(756\) 19.3778 13.5637i 0.704765 0.493306i
\(757\) −45.7942 −1.66442 −0.832210 0.554461i \(-0.812925\pi\)
−0.832210 + 0.554461i \(0.812925\pi\)
\(758\) 1.87934 + 3.25511i 0.0682607 + 0.118231i
\(759\) 14.1610 42.7273i 0.514010 1.55090i
\(760\) 0 0
\(761\) 16.9569 29.3702i 0.614687 1.06467i −0.375753 0.926720i \(-0.622616\pi\)
0.990439 0.137948i \(-0.0440508\pi\)
\(762\) 7.43242 1.53424i 0.269248 0.0555796i
\(763\) −2.43764 4.22212i −0.0882485 0.152851i
\(764\) −24.3894 −0.882378
\(765\) 0 0
\(766\) −14.7602 −0.533309
\(767\) −10.8917 18.8649i −0.393275 0.681173i
\(768\) 1.07930 + 1.21294i 0.0389459 + 0.0437680i
\(769\) −3.57986 + 6.20050i −0.129093 + 0.223596i −0.923325 0.384018i \(-0.874540\pi\)
0.794232 + 0.607614i \(0.207873\pi\)
\(770\) 0 0
\(771\) −3.30737 3.71688i −0.119112 0.133860i
\(772\) −0.428355 0.741933i −0.0154168 0.0267027i
\(773\) −14.5998 −0.525117 −0.262558 0.964916i \(-0.584566\pi\)
−0.262558 + 0.964916i \(0.584566\pi\)
\(774\) −10.0101 + 4.31662i −0.359806 + 0.155158i
\(775\) 0 0
\(776\) 6.43935 + 11.1533i 0.231159 + 0.400379i
\(777\) −15.7940 + 3.26027i −0.566606 + 0.116962i
\(778\) 7.44178 12.8895i 0.266801 0.462113i
\(779\) 0.486933 0.843393i 0.0174462 0.0302177i
\(780\) 0 0
\(781\) −19.8477 34.3772i −0.710207 1.23011i
\(782\) −6.31760 −0.225917
\(783\) 7.94037 + 3.70428i 0.283766 + 0.132380i
\(784\) −1.16578 −0.0416348
\(785\) 0 0
\(786\) 0.0694710 0.209613i 0.00247795 0.00747663i
\(787\) −9.23638 + 15.9979i −0.329242 + 0.570263i −0.982362 0.186991i \(-0.940126\pi\)
0.653120 + 0.757254i \(0.273460\pi\)
\(788\) 4.91505 8.51312i 0.175092 0.303267i
\(789\) −43.4654 + 8.97235i −1.54741 + 0.319424i
\(790\) 0 0
\(791\) −16.8630 −0.599578
\(792\) −3.84291 + 32.8463i −0.136552 + 1.16714i
\(793\) −0.0234407 −0.000832405
\(794\) −4.19242 7.26149i −0.148783 0.257700i
\(795\) 0 0
\(796\) 15.5039 26.8535i 0.549520 0.951796i
\(797\) −20.5187 + 35.5395i −0.726810 + 1.25887i 0.231414 + 0.972855i \(0.425665\pi\)
−0.958225 + 0.286017i \(0.907669\pi\)
\(798\) 0.497564 + 0.559171i 0.0176136 + 0.0197945i
\(799\) 18.1068 + 31.3619i 0.640573 + 1.10950i
\(800\) 0 0
\(801\) 15.0852 + 11.2332i 0.533010 + 0.396904i
\(802\) −3.38021 −0.119359
\(803\) 20.4016 + 35.3367i 0.719958 + 1.24700i
\(804\) 2.96089 0.611202i 0.104423 0.0215554i
\(805\) 0 0
\(806\) 4.16686 7.21721i 0.146771 0.254215i
\(807\) 0.183745 0.554408i 0.00646814 0.0195161i
\(808\) 6.22861 + 10.7883i 0.219122 + 0.379530i
\(809\) 7.19375 0.252919 0.126459 0.991972i \(-0.459639\pi\)
0.126459 + 0.991972i \(0.459639\pi\)
\(810\) 0 0
\(811\) 38.2183 1.34203 0.671014 0.741445i \(-0.265859\pi\)
0.671014 + 0.741445i \(0.265859\pi\)
\(812\) 3.83791 + 6.64746i 0.134684 + 0.233280i
\(813\) 11.7658 35.5007i 0.412646 1.24506i
\(814\) 5.30257 9.18431i 0.185855 0.321910i
\(815\) 0 0
\(816\) −14.5462 + 3.00271i −0.509220 + 0.105116i
\(817\) 1.36774 + 2.36899i 0.0478511 + 0.0828805i
\(818\) 11.7139 0.409566
\(819\) −13.1502 9.79223i −0.459504 0.342168i
\(820\) 0 0
\(821\) 0.334280 + 0.578990i 0.0116665 + 0.0202069i 0.871800 0.489863i \(-0.162953\pi\)
−0.860133 + 0.510069i \(0.829620\pi\)
\(822\) 1.89417 + 2.12870i 0.0660668 + 0.0742470i
\(823\) 0.710165 1.23004i 0.0247548 0.0428766i −0.853383 0.521285i \(-0.825453\pi\)
0.878137 + 0.478408i \(0.158786\pi\)
\(824\) −5.46393 + 9.46380i −0.190345 + 0.329687i
\(825\) 0 0
\(826\) −6.19583 10.7315i −0.215580 0.373396i
\(827\) 49.8169 1.73230 0.866152 0.499782i \(-0.166586\pi\)
0.866152 + 0.499782i \(0.166586\pi\)
\(828\) −2.60845 + 22.2950i −0.0906498 + 0.774807i
\(829\) 36.4150 1.26475 0.632373 0.774664i \(-0.282081\pi\)
0.632373 + 0.774664i \(0.282081\pi\)
\(830\) 0 0
\(831\) −40.9378 + 8.45058i −1.42012 + 0.293147i
\(832\) 3.32117 5.75244i 0.115141 0.199430i
\(833\) 0.682449 1.18204i 0.0236455 0.0409551i
\(834\) 3.80312 11.4750i 0.131691 0.397347i
\(835\) 0 0
\(836\) 3.90312 0.134992
\(837\) 3.73285 + 42.7493i 0.129026 + 1.47763i
\(838\) −5.04447 −0.174258
\(839\) 10.0445 + 17.3976i 0.346774 + 0.600631i 0.985674 0.168659i \(-0.0539436\pi\)
−0.638900 + 0.769290i \(0.720610\pi\)
\(840\) 0 0
\(841\) 13.0783 22.6523i 0.450976 0.781114i
\(842\) 1.93528 3.35201i 0.0666942 0.115518i
\(843\) −5.71184 + 1.17907i −0.196726 + 0.0406092i
\(844\) −1.45338 2.51732i −0.0500273 0.0866498i
\(845\) 0 0
\(846\) −14.9000 + 6.42525i −0.512272 + 0.220905i
\(847\) 69.3349 2.38238
\(848\) 12.7673 + 22.1136i 0.438430 + 0.759383i
\(849\) 25.1575 + 28.2724i 0.863402 + 0.970307i
\(850\) 0 0
\(851\) 7.65232 13.2542i 0.262318 0.454349i
\(852\) 13.1591 + 14.7884i 0.450823 + 0.506642i
\(853\) −13.4542 23.3034i −0.460663 0.797892i 0.538331 0.842733i \(-0.319055\pi\)
−0.998994 + 0.0448418i \(0.985722\pi\)
\(854\) −0.0133345 −0.000456296
\(855\) 0 0
\(856\) 25.9742 0.887779
\(857\) 24.4204 + 42.2973i 0.834184 + 1.44485i 0.894693 + 0.446682i \(0.147394\pi\)
−0.0605088 + 0.998168i \(0.519272\pi\)
\(858\) 10.5591 2.17967i 0.360483 0.0744128i
\(859\) 20.7047 35.8616i 0.706435 1.22358i −0.259736 0.965680i \(-0.583635\pi\)
0.966171 0.257902i \(-0.0830312\pi\)
\(860\) 0 0
\(861\) −3.81767 + 11.5189i −0.130106 + 0.392564i
\(862\) −0.395754 0.685465i −0.0134794 0.0233470i
\(863\) −50.8101 −1.72960 −0.864799 0.502119i \(-0.832554\pi\)
−0.864799 + 0.502119i \(0.832554\pi\)
\(864\) −2.19441 25.1308i −0.0746555 0.854969i
\(865\) 0 0
\(866\) 2.35679 + 4.08209i 0.0800871 + 0.138715i
\(867\) −3.79247 + 11.4429i −0.128799 + 0.388621i
\(868\) −18.7964 + 32.5563i −0.637991 + 1.10503i
\(869\) −29.2126 + 50.5977i −0.990970 + 1.71641i
\(870\) 0 0
\(871\) −1.04783 1.81489i −0.0355043 0.0614953i
\(872\) −3.39916 −0.115110
\(873\) −2.51237 + 21.4739i −0.0850310 + 0.726781i
\(874\) −0.710328 −0.0240272
\(875\) 0 0
\(876\) −13.5263 15.2011i −0.457013 0.513599i
\(877\) 0.204795 0.354715i 0.00691542 0.0119779i −0.862547 0.505977i \(-0.831132\pi\)
0.869462 + 0.493999i \(0.164465\pi\)
\(878\) −3.03256 + 5.25255i −0.102344 + 0.177265i
\(879\) 15.8362 + 17.7970i 0.534143 + 0.600279i
\(880\) 0 0
\(881\) −5.32851 −0.179522 −0.0897610 0.995963i \(-0.528610\pi\)
−0.0897610 + 0.995963i \(0.528610\pi\)
\(882\) 0.490516 + 0.365261i 0.0165165 + 0.0122990i
\(883\) −14.2064 −0.478083 −0.239042 0.971009i \(-0.576833\pi\)
−0.239042 + 0.971009i \(0.576833\pi\)
\(884\) 5.99979 + 10.3919i 0.201795 + 0.349519i
\(885\) 0 0
\(886\) 1.83482 3.17800i 0.0616419 0.106767i
\(887\) 3.61597 6.26304i 0.121412 0.210292i −0.798913 0.601447i \(-0.794591\pi\)
0.920325 + 0.391155i \(0.127924\pi\)
\(888\) −3.53737 + 10.6732i −0.118706 + 0.358169i
\(889\) 11.8649 + 20.5506i 0.397936 + 0.689245i
\(890\) 0 0
\(891\) −38.1074 + 40.3734i −1.27665 + 1.35256i
\(892\) −13.7604 −0.460733
\(893\) 2.03586 + 3.52622i 0.0681276 + 0.118000i
\(894\) −2.61829 + 7.90008i −0.0875688 + 0.264218i
\(895\) 0 0
\(896\) 14.3325 24.8246i 0.478815 0.829331i
\(897\) 15.2383 3.14556i 0.508792 0.105027i
\(898\) 7.88919 + 13.6645i 0.263266 + 0.455989i
\(899\) −13.9256 −0.464444
\(900\) 0 0
\(901\) −29.8960 −0.995981
\(902\) −3.99003 6.91093i −0.132853 0.230109i
\(903\) −22.6588 25.4644i −0.754038 0.847401i
\(904\) −5.87864 + 10.1821i −0.195521 + 0.338651i
\(905\) 0 0
\(906\) −5.62130 6.31731i −0.186755 0.209879i
\(907\) −19.4051 33.6106i −0.644335 1.11602i −0.984455 0.175639i \(-0.943801\pi\)
0.340120 0.940382i \(-0.389532\pi\)
\(908\) 19.9986 0.663677
\(909\) −2.43015 + 20.7711i −0.0806031 + 0.688935i
\(910\) 0 0
\(911\) 20.1390 + 34.8819i 0.667236 + 1.15569i 0.978674 + 0.205421i \(0.0658563\pi\)
−0.311437 + 0.950267i \(0.600810\pi\)
\(912\) −1.63553 + 0.337614i −0.0541577 + 0.0111795i
\(913\) −32.1377 + 55.6641i −1.06360 + 1.84221i
\(914\) 9.04371 15.6642i 0.299139 0.518125i
\(915\) 0 0
\(916\) −9.30424 16.1154i −0.307421 0.532468i
\(917\) 0.690479 0.0228016
\(918\) 7.06133 + 3.29419i 0.233059 + 0.108725i
\(919\) −13.0468 −0.430375 −0.215187 0.976573i \(-0.569036\pi\)
−0.215187 + 0.976573i \(0.569036\pi\)
\(920\) 0 0
\(921\) 18.6456 56.2586i 0.614392 1.85378i
\(922\) −7.40722 + 12.8297i −0.243944 + 0.422523i
\(923\) 6.86074 11.8832i 0.225824 0.391139i
\(924\) −47.6315 + 9.83234i −1.56696 + 0.323460i
\(925\) 0 0
\(926\) 5.71936 0.187950
\(927\) −16.8458 + 7.26433i −0.553289 + 0.238592i
\(928\) 8.18638 0.268731
\(929\) −0.146912 0.254460i −0.00482004 0.00834855i 0.863605 0.504168i \(-0.168201\pi\)
−0.868425 + 0.495820i \(0.834868\pi\)
\(930\) 0 0
\(931\) 0.0767321 0.132904i 0.00251479 0.00435575i
\(932\) −2.57714 + 4.46374i −0.0844171 + 0.146215i
\(933\) 26.5277 + 29.8123i 0.868477 + 0.976010i
\(934\) 1.79947 + 3.11678i 0.0588805 + 0.101984i
\(935\) 0 0
\(936\) −10.4970 + 4.52657i −0.343105 + 0.147956i
\(937\) −16.9141 −0.552559 −0.276280 0.961077i \(-0.589102\pi\)
−0.276280 + 0.961077i \(0.589102\pi\)
\(938\) −0.596067 1.03242i −0.0194623 0.0337097i
\(939\) 6.09187 1.25752i 0.198801 0.0410375i
\(940\) 0 0
\(941\) −28.6046 + 49.5447i −0.932485 + 1.61511i −0.153426 + 0.988160i \(0.549031\pi\)
−0.779059 + 0.626951i \(0.784303\pi\)
\(942\) 0.274022 0.826796i 0.00892811 0.0269385i
\(943\) −5.75815 9.97342i −0.187511 0.324779i
\(944\) 27.6478 0.899858
\(945\) 0 0
\(946\) 22.4150 0.728775
\(947\) 19.4373 + 33.6664i 0.631627 + 1.09401i 0.987219 + 0.159369i \(0.0509460\pi\)
−0.355592 + 0.934641i \(0.615721\pi\)
\(948\) 9.16600 27.6563i 0.297698 0.898234i
\(949\) −7.05222 + 12.2148i −0.228925 + 0.396509i
\(950\) 0 0
\(951\) −22.3582 + 4.61529i −0.725013 + 0.149661i
\(952\) 7.25648 + 12.5686i 0.235184 + 0.407350i
\(953\) −54.4516 −1.76386 −0.881930 0.471381i \(-0.843756\pi\)
−0.881930 + 0.471381i \(0.843756\pi\)
\(954\) 1.55662 13.3048i 0.0503974 0.430760i
\(955\) 0 0
\(956\) 14.5230 + 25.1546i 0.469708 + 0.813557i
\(957\) −11.9764 13.4593i −0.387141 0.435076i
\(958\) 7.68644 13.3133i 0.248338 0.430133i
\(959\) −4.45482 + 7.71598i −0.143854 + 0.249162i
\(960\) 0 0
\(961\) −18.6006 32.2172i −0.600020 1.03926i
\(962\) 3.66587 0.118192
\(963\) 34.9734 + 26.0428i 1.12700 + 0.839217i
\(964\) −31.1229 −1.00240
\(965\) 0 0
\(966\) 8.66844 1.78938i 0.278902 0.0575725i
\(967\) 9.78507 16.9482i 0.314666 0.545018i −0.664700 0.747110i \(-0.731441\pi\)
0.979367 + 0.202092i \(0.0647740\pi\)
\(968\) 24.1710 41.8654i 0.776885 1.34560i
\(969\) 0.615120 1.85598i 0.0197605 0.0596226i
\(970\) 0 0
\(971\) 6.31009 0.202500 0.101250 0.994861i \(-0.467716\pi\)
0.101250 + 0.994861i \(0.467716\pi\)
\(972\) 14.5409 23.5596i 0.466399 0.755674i
\(973\) 37.7995 1.21180
\(974\) 1.05564 + 1.82843i 0.0338250 + 0.0585866i
\(975\) 0 0
\(976\) 0.0148757 0.0257654i 0.000476158 0.000824731i
\(977\) −3.70955 + 6.42514i −0.118679 + 0.205558i −0.919244 0.393687i \(-0.871199\pi\)
0.800565 + 0.599245i \(0.204533\pi\)
\(978\) 13.7584 2.84008i 0.439946 0.0908158i
\(979\) −19.3367 33.4922i −0.618004 1.07041i
\(980\) 0 0
\(981\) −4.57686 3.40814i −0.146128 0.108814i
\(982\) 15.5426 0.495986
\(983\) 5.49137 + 9.51134i 0.175148 + 0.303365i 0.940212 0.340589i \(-0.110626\pi\)
−0.765065 + 0.643953i \(0.777293\pi\)
\(984\) 5.62440 + 6.32080i 0.179299 + 0.201500i
\(985\) 0 0
\(986\) −1.26430 + 2.18983i −0.0402635 + 0.0697384i
\(987\) −33.7274 37.9035i −1.07356 1.20648i
\(988\) 0.674595 + 1.16843i 0.0214617 + 0.0371728i
\(989\) 32.3479 1.02860
\(990\) 0 0
\(991\) −21.3721 −0.678908 −0.339454 0.940623i \(-0.610242\pi\)
−0.339454 + 0.940623i \(0.610242\pi\)
\(992\) 20.0466 + 34.7217i 0.636480 + 1.10242i
\(993\) −2.00591 + 0.414069i −0.0636555 + 0.0131401i
\(994\) 3.90280 6.75984i 0.123789 0.214409i
\(995\) 0 0
\(996\) 10.0838 30.4255i 0.319518 0.964070i
\(997\) 15.2674 + 26.4439i 0.483524 + 0.837487i 0.999821 0.0189220i \(-0.00602342\pi\)
−0.516297 + 0.856409i \(0.672690\pi\)
\(998\) −16.1863 −0.512368
\(999\) −15.4644 + 10.8244i −0.489271 + 0.342469i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.2.e.e.76.2 yes 8
3.2 odd 2 675.2.e.c.226.3 8
5.2 odd 4 225.2.k.c.49.5 16
5.3 odd 4 225.2.k.c.49.4 16
5.4 even 2 225.2.e.c.76.3 8
9.2 odd 6 675.2.e.c.451.3 8
9.4 even 3 2025.2.a.q.1.3 4
9.5 odd 6 2025.2.a.z.1.2 4
9.7 even 3 inner 225.2.e.e.151.2 yes 8
15.2 even 4 675.2.k.c.199.4 16
15.8 even 4 675.2.k.c.199.5 16
15.14 odd 2 675.2.e.e.226.2 8
45.2 even 12 675.2.k.c.424.5 16
45.4 even 6 2025.2.a.y.1.2 4
45.7 odd 12 225.2.k.c.124.4 16
45.13 odd 12 2025.2.b.n.649.4 8
45.14 odd 6 2025.2.a.p.1.3 4
45.22 odd 12 2025.2.b.n.649.5 8
45.23 even 12 2025.2.b.o.649.5 8
45.29 odd 6 675.2.e.e.451.2 8
45.32 even 12 2025.2.b.o.649.4 8
45.34 even 6 225.2.e.c.151.3 yes 8
45.38 even 12 675.2.k.c.424.4 16
45.43 odd 12 225.2.k.c.124.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.e.c.76.3 8 5.4 even 2
225.2.e.c.151.3 yes 8 45.34 even 6
225.2.e.e.76.2 yes 8 1.1 even 1 trivial
225.2.e.e.151.2 yes 8 9.7 even 3 inner
225.2.k.c.49.4 16 5.3 odd 4
225.2.k.c.49.5 16 5.2 odd 4
225.2.k.c.124.4 16 45.7 odd 12
225.2.k.c.124.5 16 45.43 odd 12
675.2.e.c.226.3 8 3.2 odd 2
675.2.e.c.451.3 8 9.2 odd 6
675.2.e.e.226.2 8 15.14 odd 2
675.2.e.e.451.2 8 45.29 odd 6
675.2.k.c.199.4 16 15.2 even 4
675.2.k.c.199.5 16 15.8 even 4
675.2.k.c.424.4 16 45.38 even 12
675.2.k.c.424.5 16 45.2 even 12
2025.2.a.p.1.3 4 45.14 odd 6
2025.2.a.q.1.3 4 9.4 even 3
2025.2.a.y.1.2 4 45.4 even 6
2025.2.a.z.1.2 4 9.5 odd 6
2025.2.b.n.649.4 8 45.13 odd 12
2025.2.b.n.649.5 8 45.22 odd 12
2025.2.b.o.649.4 8 45.32 even 12
2025.2.b.o.649.5 8 45.23 even 12