Newspace parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.79663404548\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\zeta_{24})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 3^{2} \) |
Twist minimal: | no (minimal twist has level 45) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( \zeta_{24}^{4} \)
|
\(\beta_{2}\) | \(=\) |
\( \zeta_{24}^{6} + \zeta_{24}^{2} \)
|
\(\beta_{3}\) | \(=\) |
\( \zeta_{24}^{7} + \zeta_{24} \)
|
\(\beta_{4}\) | \(=\) |
\( -\zeta_{24}^{6} + 2\zeta_{24}^{2} \)
|
\(\beta_{5}\) | \(=\) |
\( -\zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} \)
|
\(\beta_{6}\) | \(=\) |
\( -\zeta_{24}^{7} + \zeta_{24}^{5} \)
|
\(\beta_{7}\) | \(=\) |
\( -\zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24} \)
|
\(\zeta_{24}\) | \(=\) |
\( ( \beta_{7} + \beta_{6} + 2\beta_{3} ) / 3 \)
|
\(\zeta_{24}^{2}\) | \(=\) |
\( ( \beta_{4} + \beta_{2} ) / 3 \)
|
\(\zeta_{24}^{3}\) | \(=\) |
\( ( -2\beta_{7} + \beta_{6} + 3\beta_{5} - \beta_{3} ) / 3 \)
|
\(\zeta_{24}^{4}\) | \(=\) |
\( \beta_1 \)
|
\(\zeta_{24}^{5}\) | \(=\) |
\( ( -\beta_{7} + 2\beta_{6} + \beta_{3} ) / 3 \)
|
\(\zeta_{24}^{6}\) | \(=\) |
\( ( -\beta_{4} + 2\beta_{2} ) / 3 \)
|
\(\zeta_{24}^{7}\) | \(=\) |
\( ( -\beta_{7} - \beta_{6} + \beta_{3} ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(-\beta_{1}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
76.1 |
|
−0.965926 | − | 1.67303i | −0.448288 | − | 1.67303i | −0.866025 | + | 1.50000i | 0 | −2.36603 | + | 2.36603i | −0.448288 | − | 0.776457i | −0.517638 | −2.59808 | + | 1.50000i | 0 | ||||||||||||||||||||||||||||||
76.2 | −0.258819 | − | 0.448288i | 1.67303 | − | 0.448288i | 0.866025 | − | 1.50000i | 0 | −0.633975 | − | 0.633975i | 1.67303 | + | 2.89778i | −1.93185 | 2.59808 | − | 1.50000i | 0 | |||||||||||||||||||||||||||||||
76.3 | 0.258819 | + | 0.448288i | −1.67303 | + | 0.448288i | 0.866025 | − | 1.50000i | 0 | −0.633975 | − | 0.633975i | −1.67303 | − | 2.89778i | 1.93185 | 2.59808 | − | 1.50000i | 0 | |||||||||||||||||||||||||||||||
76.4 | 0.965926 | + | 1.67303i | 0.448288 | + | 1.67303i | −0.866025 | + | 1.50000i | 0 | −2.36603 | + | 2.36603i | 0.448288 | + | 0.776457i | 0.517638 | −2.59808 | + | 1.50000i | 0 | |||||||||||||||||||||||||||||||
151.1 | −0.965926 | + | 1.67303i | −0.448288 | + | 1.67303i | −0.866025 | − | 1.50000i | 0 | −2.36603 | − | 2.36603i | −0.448288 | + | 0.776457i | −0.517638 | −2.59808 | − | 1.50000i | 0 | |||||||||||||||||||||||||||||||
151.2 | −0.258819 | + | 0.448288i | 1.67303 | + | 0.448288i | 0.866025 | + | 1.50000i | 0 | −0.633975 | + | 0.633975i | 1.67303 | − | 2.89778i | −1.93185 | 2.59808 | + | 1.50000i | 0 | |||||||||||||||||||||||||||||||
151.3 | 0.258819 | − | 0.448288i | −1.67303 | − | 0.448288i | 0.866025 | + | 1.50000i | 0 | −0.633975 | + | 0.633975i | −1.67303 | + | 2.89778i | 1.93185 | 2.59808 | + | 1.50000i | 0 | |||||||||||||||||||||||||||||||
151.4 | 0.965926 | − | 1.67303i | 0.448288 | − | 1.67303i | −0.866025 | − | 1.50000i | 0 | −2.36603 | − | 2.36603i | 0.448288 | − | 0.776457i | 0.517638 | −2.59808 | − | 1.50000i | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
45.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 225.2.e.d | 8 | |
3.b | odd | 2 | 1 | 675.2.e.d | 8 | ||
5.b | even | 2 | 1 | inner | 225.2.e.d | 8 | |
5.c | odd | 4 | 2 | 45.2.j.a | ✓ | 8 | |
9.c | even | 3 | 1 | inner | 225.2.e.d | 8 | |
9.c | even | 3 | 1 | 2025.2.a.t | 4 | ||
9.d | odd | 6 | 1 | 675.2.e.d | 8 | ||
9.d | odd | 6 | 1 | 2025.2.a.r | 4 | ||
15.d | odd | 2 | 1 | 675.2.e.d | 8 | ||
15.e | even | 4 | 2 | 135.2.j.a | 8 | ||
20.e | even | 4 | 2 | 720.2.by.d | 8 | ||
45.h | odd | 6 | 1 | 675.2.e.d | 8 | ||
45.h | odd | 6 | 1 | 2025.2.a.r | 4 | ||
45.j | even | 6 | 1 | inner | 225.2.e.d | 8 | |
45.j | even | 6 | 1 | 2025.2.a.t | 4 | ||
45.k | odd | 12 | 2 | 45.2.j.a | ✓ | 8 | |
45.k | odd | 12 | 2 | 405.2.b.d | 4 | ||
45.l | even | 12 | 2 | 135.2.j.a | 8 | ||
45.l | even | 12 | 2 | 405.2.b.c | 4 | ||
60.l | odd | 4 | 2 | 2160.2.by.c | 8 | ||
180.v | odd | 12 | 2 | 2160.2.by.c | 8 | ||
180.x | even | 12 | 2 | 720.2.by.d | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
45.2.j.a | ✓ | 8 | 5.c | odd | 4 | 2 | |
45.2.j.a | ✓ | 8 | 45.k | odd | 12 | 2 | |
135.2.j.a | 8 | 15.e | even | 4 | 2 | ||
135.2.j.a | 8 | 45.l | even | 12 | 2 | ||
225.2.e.d | 8 | 1.a | even | 1 | 1 | trivial | |
225.2.e.d | 8 | 5.b | even | 2 | 1 | inner | |
225.2.e.d | 8 | 9.c | even | 3 | 1 | inner | |
225.2.e.d | 8 | 45.j | even | 6 | 1 | inner | |
405.2.b.c | 4 | 45.l | even | 12 | 2 | ||
405.2.b.d | 4 | 45.k | odd | 12 | 2 | ||
675.2.e.d | 8 | 3.b | odd | 2 | 1 | ||
675.2.e.d | 8 | 9.d | odd | 6 | 1 | ||
675.2.e.d | 8 | 15.d | odd | 2 | 1 | ||
675.2.e.d | 8 | 45.h | odd | 6 | 1 | ||
720.2.by.d | 8 | 20.e | even | 4 | 2 | ||
720.2.by.d | 8 | 180.x | even | 12 | 2 | ||
2025.2.a.r | 4 | 9.d | odd | 6 | 1 | ||
2025.2.a.r | 4 | 45.h | odd | 6 | 1 | ||
2025.2.a.t | 4 | 9.c | even | 3 | 1 | ||
2025.2.a.t | 4 | 45.j | even | 6 | 1 | ||
2160.2.by.c | 8 | 60.l | odd | 4 | 2 | ||
2160.2.by.c | 8 | 180.v | odd | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 4T_{2}^{6} + 15T_{2}^{4} + 4T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(225, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 4 T^{6} + 15 T^{4} + 4 T^{2} + \cdots + 1 \)
$3$
\( T^{8} - 9T^{4} + 81 \)
$5$
\( T^{8} \)
$7$
\( T^{8} + 12 T^{6} + 135 T^{4} + \cdots + 81 \)
$11$
\( (T^{4} + 6 T^{3} + 30 T^{2} + 36 T + 36)^{2} \)
$13$
\( (T^{4} + 6 T^{2} + 36)^{2} \)
$17$
\( (T^{4} - 28 T^{2} + 4)^{2} \)
$19$
\( (T^{2} - 2 T - 2)^{4} \)
$23$
\( T^{8} + 4 T^{6} + 15 T^{4} + 4 T^{2} + \cdots + 1 \)
$29$
\( (T^{4} + 6 T^{3} + 39 T^{2} - 18 T + 9)^{2} \)
$31$
\( (T^{4} - 2 T^{3} + 6 T^{2} + 4 T + 4)^{2} \)
$37$
\( (T^{2} - 18)^{4} \)
$41$
\( (T^{4} + 12 T^{3} + 111 T^{2} + 396 T + 1089)^{2} \)
$43$
\( T^{8} + 84 T^{6} + 7020 T^{4} + \cdots + 1296 \)
$47$
\( T^{8} + 28 T^{6} + 615 T^{4} + \cdots + 28561 \)
$53$
\( (T^{4} - 16 T^{2} + 16)^{2} \)
$59$
\( (T^{4} + 12 T^{3} + 120 T^{2} + 288 T + 576)^{2} \)
$61$
\( (T^{4} + 4 T^{3} + 87 T^{2} - 284 T + 5041)^{2} \)
$67$
\( T^{8} + 84 T^{6} + 5535 T^{4} + \cdots + 2313441 \)
$71$
\( (T^{2} - 18 T + 54)^{4} \)
$73$
\( (T^{2} - 72)^{4} \)
$79$
\( (T^{4} + 8 T^{3} + 60 T^{2} + 32 T + 16)^{2} \)
$83$
\( T^{8} + 172 T^{6} + \cdots + 47458321 \)
$89$
\( (T^{2} - 6 T - 99)^{4} \)
$97$
\( T^{8} + 336 T^{6} + \cdots + 592240896 \)
show more
show less