Properties

Label 225.2.e.c.76.2
Level $225$
Weight $2$
Character 225.76
Analytic conductor $1.797$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,2,Mod(76,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79663404548\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1223810289.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} - 2x^{5} + 23x^{4} - 8x^{3} + 37x^{2} + 15x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 76.2
Root \(0.736627 + 1.27588i\) of defining polynomial
Character \(\chi\) \(=\) 225.76
Dual form 225.2.e.c.151.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.736627 - 1.27588i) q^{2} +(1.69629 + 0.350156i) q^{3} +(-0.0852394 + 0.147639i) q^{4} +(-0.802776 - 2.42219i) q^{6} +(-1.93291 - 3.34791i) q^{7} -2.69535 q^{8} +(2.75478 + 1.18793i) q^{9} +(-0.130139 - 0.225407i) q^{11} +(-0.196287 + 0.220591i) q^{12} +(2.03940 - 3.53235i) q^{13} +(-2.84768 + 4.93232i) q^{14} +(2.15595 + 3.73421i) q^{16} +3.26028 q^{17} +(-0.513594 - 4.38982i) q^{18} +4.24928 q^{19} +(-2.10649 - 6.35583i) q^{21} +(-0.191728 + 0.332082i) q^{22} +(-4.34768 + 7.53039i) q^{23} +(-4.57209 - 0.943794i) q^{24} -6.00912 q^{26} +(4.25694 + 2.97968i) q^{27} +0.659042 q^{28} +(-2.11105 - 3.65644i) q^{29} +(-1.32643 + 2.29744i) q^{31} +(0.480909 - 0.832959i) q^{32} +(-0.141825 - 0.427924i) q^{33} +(-2.40161 - 4.15971i) q^{34} +(-0.410201 + 0.305455i) q^{36} -2.27559 q^{37} +(-3.13014 - 5.42156i) q^{38} +(4.69629 - 5.27777i) q^{39} +(-2.82093 + 4.88599i) q^{41} +(-6.55756 + 7.36950i) q^{42} +(4.53631 + 7.85712i) q^{43} +0.0443719 q^{44} +12.8105 q^{46} +(0.714441 + 1.23745i) q^{47} +(2.34955 + 7.08921i) q^{48} +(-3.97232 + 6.88026i) q^{49} +(5.53037 + 1.14161i) q^{51} +(0.347675 + 0.602191i) q^{52} +11.3816 q^{53} +(0.665919 - 7.62624i) q^{54} +(5.20988 + 9.02378i) q^{56} +(7.20801 + 1.48791i) q^{57} +(-3.11011 + 5.38687i) q^{58} +(3.56212 - 6.16977i) q^{59} +(-1.26244 - 2.18660i) q^{61} +3.90833 q^{62} +(-1.34768 - 11.5189i) q^{63} +7.20679 q^{64} +(-0.441506 + 0.496172i) q^{66} +(-5.64280 + 9.77361i) q^{67} +(-0.277904 + 0.481344i) q^{68} +(-10.0117 + 11.2513i) q^{69} -8.38158 q^{71} +(-7.42510 - 3.20189i) q^{72} +0.403568 q^{73} +(1.67626 + 2.90337i) q^{74} +(-0.362207 + 0.627360i) q^{76} +(-0.503095 + 0.871386i) q^{77} +(-10.1932 - 2.10413i) q^{78} +(1.52125 + 2.63488i) q^{79} +(6.17764 + 6.54498i) q^{81} +8.31189 q^{82} +(-2.29012 - 3.96660i) q^{83} +(1.11792 + 0.230768i) q^{84} +(6.68314 - 11.5755i) q^{86} +(-2.30062 - 6.94157i) q^{87} +(0.350770 + 0.607551i) q^{88} +7.17772 q^{89} -15.7680 q^{91} +(-0.741187 - 1.28377i) q^{92} +(-3.05446 + 3.43266i) q^{93} +(1.05255 - 1.82308i) q^{94} +(1.10743 - 1.24454i) q^{96} +(-1.55756 - 2.69777i) q^{97} +11.7045 q^{98} +(-0.0907360 - 0.775544i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + q^{3} - 4 q^{4} + 8 q^{6} + q^{7} + 18 q^{8} + 5 q^{9} + q^{11} + 11 q^{12} - 2 q^{13} - 3 q^{14} - 4 q^{16} + 22 q^{17} - 5 q^{18} + 4 q^{19} - 15 q^{21} - 3 q^{22} - 15 q^{23} - 33 q^{24}+ \cdots - 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.736627 1.27588i −0.520874 0.902180i −0.999705 0.0242735i \(-0.992273\pi\)
0.478831 0.877907i \(-0.341061\pi\)
\(3\) 1.69629 + 0.350156i 0.979352 + 0.202163i
\(4\) −0.0852394 + 0.147639i −0.0426197 + 0.0738195i
\(5\) 0 0
\(6\) −0.802776 2.42219i −0.327732 0.988854i
\(7\) −1.93291 3.34791i −0.730573 1.26539i −0.956639 0.291278i \(-0.905920\pi\)
0.226066 0.974112i \(-0.427414\pi\)
\(8\) −2.69535 −0.952950
\(9\) 2.75478 + 1.18793i 0.918260 + 0.395977i
\(10\) 0 0
\(11\) −0.130139 0.225407i −0.0392384 0.0679628i 0.845739 0.533596i \(-0.179160\pi\)
−0.884978 + 0.465634i \(0.845826\pi\)
\(12\) −0.196287 + 0.220591i −0.0566633 + 0.0636792i
\(13\) 2.03940 3.53235i 0.565629 0.979697i −0.431362 0.902179i \(-0.641967\pi\)
0.996991 0.0775187i \(-0.0246997\pi\)
\(14\) −2.84768 + 4.93232i −0.761073 + 1.31822i
\(15\) 0 0
\(16\) 2.15595 + 3.73421i 0.538987 + 0.933553i
\(17\) 3.26028 0.790734 0.395367 0.918523i \(-0.370617\pi\)
0.395367 + 0.918523i \(0.370617\pi\)
\(18\) −0.513594 4.38982i −0.121055 1.03469i
\(19\) 4.24928 0.974853 0.487426 0.873164i \(-0.337936\pi\)
0.487426 + 0.873164i \(0.337936\pi\)
\(20\) 0 0
\(21\) −2.10649 6.35583i −0.459673 1.38696i
\(22\) −0.191728 + 0.332082i −0.0408765 + 0.0708002i
\(23\) −4.34768 + 7.53039i −0.906553 + 1.57020i −0.0877339 + 0.996144i \(0.527963\pi\)
−0.818819 + 0.574052i \(0.805371\pi\)
\(24\) −4.57209 0.943794i −0.933274 0.192651i
\(25\) 0 0
\(26\) −6.00912 −1.17849
\(27\) 4.25694 + 2.97968i 0.819248 + 0.573439i
\(28\) 0.659042 0.124547
\(29\) −2.11105 3.65644i −0.392012 0.678984i 0.600703 0.799472i \(-0.294887\pi\)
−0.992715 + 0.120488i \(0.961554\pi\)
\(30\) 0 0
\(31\) −1.32643 + 2.29744i −0.238233 + 0.412632i −0.960207 0.279288i \(-0.909902\pi\)
0.721974 + 0.691920i \(0.243235\pi\)
\(32\) 0.480909 0.832959i 0.0850135 0.147248i
\(33\) −0.141825 0.427924i −0.0246886 0.0744921i
\(34\) −2.40161 4.15971i −0.411873 0.713384i
\(35\) 0 0
\(36\) −0.410201 + 0.305455i −0.0683668 + 0.0509091i
\(37\) −2.27559 −0.374104 −0.187052 0.982350i \(-0.559893\pi\)
−0.187052 + 0.982350i \(0.559893\pi\)
\(38\) −3.13014 5.42156i −0.507776 0.879493i
\(39\) 4.69629 5.27777i 0.752008 0.845120i
\(40\) 0 0
\(41\) −2.82093 + 4.88599i −0.440555 + 0.763064i −0.997731 0.0673308i \(-0.978552\pi\)
0.557176 + 0.830395i \(0.311885\pi\)
\(42\) −6.55756 + 7.36950i −1.01185 + 1.13714i
\(43\) 4.53631 + 7.85712i 0.691780 + 1.19820i 0.971254 + 0.238046i \(0.0765068\pi\)
−0.279474 + 0.960153i \(0.590160\pi\)
\(44\) 0.0443719 0.00668931
\(45\) 0 0
\(46\) 12.8105 1.88880
\(47\) 0.714441 + 1.23745i 0.104212 + 0.180500i 0.913416 0.407027i \(-0.133435\pi\)
−0.809204 + 0.587528i \(0.800101\pi\)
\(48\) 2.34955 + 7.08921i 0.339128 + 1.02324i
\(49\) −3.97232 + 6.88026i −0.567474 + 0.982894i
\(50\) 0 0
\(51\) 5.53037 + 1.14161i 0.774406 + 0.159857i
\(52\) 0.347675 + 0.602191i 0.0482139 + 0.0835089i
\(53\) 11.3816 1.56338 0.781690 0.623667i \(-0.214358\pi\)
0.781690 + 0.623667i \(0.214358\pi\)
\(54\) 0.665919 7.62624i 0.0906201 1.03780i
\(55\) 0 0
\(56\) 5.20988 + 9.02378i 0.696200 + 1.20585i
\(57\) 7.20801 + 1.48791i 0.954724 + 0.197079i
\(58\) −3.11011 + 5.38687i −0.408378 + 0.707331i
\(59\) 3.56212 6.16977i 0.463748 0.803235i −0.535396 0.844601i \(-0.679838\pi\)
0.999144 + 0.0413660i \(0.0131710\pi\)
\(60\) 0 0
\(61\) −1.26244 2.18660i −0.161638 0.279966i 0.773818 0.633408i \(-0.218344\pi\)
−0.935456 + 0.353442i \(0.885011\pi\)
\(62\) 3.90833 0.496358
\(63\) −1.34768 11.5189i −0.169791 1.45125i
\(64\) 7.20679 0.900848
\(65\) 0 0
\(66\) −0.441506 + 0.496172i −0.0543456 + 0.0610746i
\(67\) −5.64280 + 9.77361i −0.689377 + 1.19404i 0.282662 + 0.959219i \(0.408782\pi\)
−0.972040 + 0.234817i \(0.924551\pi\)
\(68\) −0.277904 + 0.481344i −0.0337008 + 0.0583716i
\(69\) −10.0117 + 11.2513i −1.20527 + 1.35450i
\(70\) 0 0
\(71\) −8.38158 −0.994711 −0.497355 0.867547i \(-0.665695\pi\)
−0.497355 + 0.867547i \(0.665695\pi\)
\(72\) −7.42510 3.20189i −0.875056 0.377346i
\(73\) 0.403568 0.0472340 0.0236170 0.999721i \(-0.492482\pi\)
0.0236170 + 0.999721i \(0.492482\pi\)
\(74\) 1.67626 + 2.90337i 0.194861 + 0.337509i
\(75\) 0 0
\(76\) −0.362207 + 0.627360i −0.0415480 + 0.0719632i
\(77\) −0.503095 + 0.871386i −0.0573330 + 0.0993036i
\(78\) −10.1932 2.10413i −1.15415 0.238246i
\(79\) 1.52125 + 2.63488i 0.171154 + 0.296447i 0.938824 0.344399i \(-0.111917\pi\)
−0.767670 + 0.640846i \(0.778584\pi\)
\(80\) 0 0
\(81\) 6.17764 + 6.54498i 0.686404 + 0.727220i
\(82\) 8.31189 0.917895
\(83\) −2.29012 3.96660i −0.251373 0.435391i 0.712531 0.701641i \(-0.247549\pi\)
−0.963904 + 0.266250i \(0.914215\pi\)
\(84\) 1.11792 + 0.230768i 0.121976 + 0.0251788i
\(85\) 0 0
\(86\) 6.68314 11.5755i 0.720661 1.24822i
\(87\) −2.30062 6.94157i −0.246652 0.744215i
\(88\) 0.350770 + 0.607551i 0.0373922 + 0.0647652i
\(89\) 7.17772 0.760837 0.380419 0.924814i \(-0.375780\pi\)
0.380419 + 0.924814i \(0.375780\pi\)
\(90\) 0 0
\(91\) −15.7680 −1.65293
\(92\) −0.741187 1.28377i −0.0772741 0.133843i
\(93\) −3.05446 + 3.43266i −0.316733 + 0.355950i
\(94\) 1.05255 1.82308i 0.108563 0.188036i
\(95\) 0 0
\(96\) 1.10743 1.24454i 0.113026 0.127021i
\(97\) −1.55756 2.69777i −0.158146 0.273917i 0.776054 0.630666i \(-0.217218\pi\)
−0.934200 + 0.356749i \(0.883885\pi\)
\(98\) 11.7045 1.18233
\(99\) −0.0907360 0.775544i −0.00911931 0.0779451i
\(100\) 0 0
\(101\) −1.92286 3.33049i −0.191332 0.331396i 0.754360 0.656461i \(-0.227947\pi\)
−0.945692 + 0.325065i \(0.894614\pi\)
\(102\) −2.61727 7.89700i −0.259149 0.781920i
\(103\) 2.10339 3.64318i 0.207254 0.358974i −0.743595 0.668630i \(-0.766881\pi\)
0.950848 + 0.309657i \(0.100214\pi\)
\(104\) −5.49691 + 9.52092i −0.539016 + 0.933603i
\(105\) 0 0
\(106\) −8.38398 14.5215i −0.814324 1.41045i
\(107\) −1.62655 −0.157245 −0.0786223 0.996904i \(-0.525052\pi\)
−0.0786223 + 0.996904i \(0.525052\pi\)
\(108\) −0.802776 + 0.374504i −0.0772471 + 0.0360367i
\(109\) −12.9021 −1.23580 −0.617900 0.786256i \(-0.712016\pi\)
−0.617900 + 0.786256i \(0.712016\pi\)
\(110\) 0 0
\(111\) −3.86005 0.796811i −0.366380 0.0756299i
\(112\) 8.33452 14.4358i 0.787539 1.36406i
\(113\) −0.664539 + 1.15102i −0.0625146 + 0.108278i −0.895589 0.444883i \(-0.853245\pi\)
0.833074 + 0.553161i \(0.186579\pi\)
\(114\) −3.41122 10.2926i −0.319490 0.963987i
\(115\) 0 0
\(116\) 0.719778 0.0668297
\(117\) 9.81430 7.30818i 0.907332 0.675641i
\(118\) −10.4958 −0.966217
\(119\) −6.30184 10.9151i −0.577689 1.00059i
\(120\) 0 0
\(121\) 5.46613 9.46761i 0.496921 0.860692i
\(122\) −1.85989 + 3.22142i −0.168386 + 0.291654i
\(123\) −6.49597 + 7.30028i −0.585722 + 0.658244i
\(124\) −0.226128 0.391665i −0.0203069 0.0351725i
\(125\) 0 0
\(126\) −13.7040 + 10.2046i −1.22085 + 0.909099i
\(127\) −1.65285 −0.146667 −0.0733335 0.997307i \(-0.523364\pi\)
−0.0733335 + 0.997307i \(0.523364\pi\)
\(128\) −6.27053 10.8609i −0.554242 0.959975i
\(129\) 4.94366 + 14.9163i 0.435265 + 1.31331i
\(130\) 0 0
\(131\) 6.58886 11.4122i 0.575672 0.997092i −0.420297 0.907387i \(-0.638074\pi\)
0.995968 0.0897057i \(-0.0285926\pi\)
\(132\) 0.0752675 + 0.0155371i 0.00655119 + 0.00135233i
\(133\) −8.21350 14.2262i −0.712201 1.23357i
\(134\) 16.6266 1.43632
\(135\) 0 0
\(136\) −8.78759 −0.753530
\(137\) −10.1464 17.5741i −0.866867 1.50146i −0.865181 0.501459i \(-0.832797\pi\)
−0.00168578 0.999999i \(-0.500537\pi\)
\(138\) 21.7302 + 4.48566i 1.84980 + 0.381845i
\(139\) −1.53440 + 2.65766i −0.130146 + 0.225420i −0.923733 0.383038i \(-0.874878\pi\)
0.793587 + 0.608457i \(0.208211\pi\)
\(140\) 0 0
\(141\) 0.778597 + 2.34923i 0.0655697 + 0.197841i
\(142\) 6.17410 + 10.6939i 0.518119 + 0.897409i
\(143\) −1.06162 −0.0887774
\(144\) 1.50318 + 12.8480i 0.125265 + 1.07067i
\(145\) 0 0
\(146\) −0.297279 0.514902i −0.0246030 0.0426136i
\(147\) −9.14736 + 10.2800i −0.754461 + 0.847877i
\(148\) 0.193970 0.335965i 0.0159442 0.0276162i
\(149\) −2.03081 + 3.51747i −0.166371 + 0.288162i −0.937141 0.348951i \(-0.886538\pi\)
0.770771 + 0.637113i \(0.219871\pi\)
\(150\) 0 0
\(151\) 6.80994 + 11.7952i 0.554185 + 0.959876i 0.997966 + 0.0637412i \(0.0203032\pi\)
−0.443782 + 0.896135i \(0.646363\pi\)
\(152\) −11.4533 −0.928986
\(153\) 8.98135 + 3.87299i 0.726099 + 0.313112i
\(154\) 1.48237 0.119453
\(155\) 0 0
\(156\) 0.378896 + 1.14323i 0.0303360 + 0.0915316i
\(157\) −1.03131 + 1.78627i −0.0823071 + 0.142560i −0.904241 0.427023i \(-0.859562\pi\)
0.821933 + 0.569584i \(0.192896\pi\)
\(158\) 2.24119 3.88185i 0.178299 0.308823i
\(159\) 19.3064 + 3.98533i 1.53110 + 0.316057i
\(160\) 0 0
\(161\) 33.6147 2.64921
\(162\) 3.79996 12.7031i 0.298553 0.998051i
\(163\) −3.50525 −0.274552 −0.137276 0.990533i \(-0.543835\pi\)
−0.137276 + 0.990533i \(0.543835\pi\)
\(164\) −0.480909 0.832959i −0.0375527 0.0650431i
\(165\) 0 0
\(166\) −3.37393 + 5.84381i −0.261868 + 0.453568i
\(167\) −10.2674 + 17.7837i −0.794518 + 1.37615i 0.128626 + 0.991693i \(0.458943\pi\)
−0.923145 + 0.384453i \(0.874390\pi\)
\(168\) 5.67772 + 17.1312i 0.438046 + 1.32170i
\(169\) −1.81833 3.14944i −0.139871 0.242264i
\(170\) 0 0
\(171\) 11.7058 + 5.04786i 0.895169 + 0.386019i
\(172\) −1.54669 −0.117934
\(173\) 3.87589 + 6.71323i 0.294678 + 0.510397i 0.974910 0.222600i \(-0.0714542\pi\)
−0.680232 + 0.732997i \(0.738121\pi\)
\(174\) −7.16189 + 8.04865i −0.542941 + 0.610167i
\(175\) 0 0
\(176\) 0.561145 0.971932i 0.0422979 0.0732622i
\(177\) 8.20275 9.21840i 0.616557 0.692897i
\(178\) −5.28731 9.15788i −0.396300 0.686412i
\(179\) −10.7632 −0.804477 −0.402238 0.915535i \(-0.631768\pi\)
−0.402238 + 0.915535i \(0.631768\pi\)
\(180\) 0 0
\(181\) −7.84572 −0.583168 −0.291584 0.956545i \(-0.594182\pi\)
−0.291584 + 0.956545i \(0.594182\pi\)
\(182\) 11.6151 + 20.1180i 0.860970 + 1.49124i
\(183\) −1.37580 4.15116i −0.101702 0.306862i
\(184\) 11.7185 20.2970i 0.863900 1.49632i
\(185\) 0 0
\(186\) 6.62965 + 1.36852i 0.486109 + 0.100345i
\(187\) −0.424289 0.734890i −0.0310271 0.0537405i
\(188\) −0.243594 −0.0177659
\(189\) 1.74738 20.0113i 0.127103 1.45561i
\(190\) 0 0
\(191\) 2.86627 + 4.96453i 0.207396 + 0.359221i 0.950894 0.309518i \(-0.100168\pi\)
−0.743497 + 0.668739i \(0.766834\pi\)
\(192\) 12.2248 + 2.52350i 0.882248 + 0.182118i
\(193\) 4.24119 7.34595i 0.305287 0.528773i −0.672038 0.740517i \(-0.734581\pi\)
0.977325 + 0.211744i \(0.0679142\pi\)
\(194\) −2.29468 + 3.97450i −0.164748 + 0.285352i
\(195\) 0 0
\(196\) −0.677196 1.17294i −0.0483712 0.0837813i
\(197\) 10.6266 0.757110 0.378555 0.925579i \(-0.376421\pi\)
0.378555 + 0.925579i \(0.376421\pi\)
\(198\) −0.922659 + 0.687055i −0.0655705 + 0.0488268i
\(199\) −18.5784 −1.31699 −0.658495 0.752585i \(-0.728807\pi\)
−0.658495 + 0.752585i \(0.728807\pi\)
\(200\) 0 0
\(201\) −12.9941 + 14.6030i −0.916533 + 1.03002i
\(202\) −2.83286 + 4.90666i −0.199319 + 0.345231i
\(203\) −8.16095 + 14.1352i −0.572786 + 0.992095i
\(204\) −0.639951 + 0.719188i −0.0448055 + 0.0503533i
\(205\) 0 0
\(206\) −6.19767 −0.431812
\(207\) −20.9225 + 15.5799i −1.45421 + 1.08287i
\(208\) 17.5874 1.21947
\(209\) −0.552997 0.957820i −0.0382516 0.0662538i
\(210\) 0 0
\(211\) −5.22666 + 9.05283i −0.359818 + 0.623223i −0.987930 0.154900i \(-0.950494\pi\)
0.628112 + 0.778123i \(0.283828\pi\)
\(212\) −0.970160 + 1.68037i −0.0666308 + 0.115408i
\(213\) −14.2176 2.93486i −0.974172 0.201093i
\(214\) 1.19816 + 2.07528i 0.0819046 + 0.141863i
\(215\) 0 0
\(216\) −11.4739 8.03127i −0.780703 0.546459i
\(217\) 10.2555 0.696187
\(218\) 9.50407 + 16.4615i 0.643697 + 1.11492i
\(219\) 0.684567 + 0.141312i 0.0462587 + 0.00954896i
\(220\) 0 0
\(221\) 6.64902 11.5164i 0.447261 0.774680i
\(222\) 1.82679 + 5.51190i 0.122606 + 0.369934i
\(223\) −1.96560 3.40452i −0.131626 0.227983i 0.792677 0.609641i \(-0.208687\pi\)
−0.924304 + 0.381658i \(0.875353\pi\)
\(224\) −3.71822 −0.248434
\(225\) 0 0
\(226\) 1.95807 0.130249
\(227\) −2.41570 4.18411i −0.160335 0.277709i 0.774654 0.632386i \(-0.217924\pi\)
−0.934989 + 0.354677i \(0.884591\pi\)
\(228\) −0.834081 + 0.937354i −0.0552383 + 0.0620778i
\(229\) 9.42648 16.3271i 0.622919 1.07893i −0.366020 0.930607i \(-0.619280\pi\)
0.988939 0.148321i \(-0.0473869\pi\)
\(230\) 0 0
\(231\) −1.15851 + 1.30196i −0.0762247 + 0.0856626i
\(232\) 5.69001 + 9.85539i 0.373568 + 0.647038i
\(233\) −11.9021 −0.779735 −0.389867 0.920871i \(-0.627479\pi\)
−0.389867 + 0.920871i \(0.627479\pi\)
\(234\) −16.5538 7.13842i −1.08216 0.466653i
\(235\) 0 0
\(236\) 0.607266 + 1.05181i 0.0395296 + 0.0684673i
\(237\) 1.65786 + 5.00219i 0.107689 + 0.324927i
\(238\) −9.28421 + 16.0807i −0.601806 + 1.04236i
\(239\) 10.8147 18.7317i 0.699547 1.21165i −0.269076 0.963119i \(-0.586718\pi\)
0.968624 0.248533i \(-0.0799483\pi\)
\(240\) 0 0
\(241\) −1.94916 3.37604i −0.125556 0.217470i 0.796394 0.604778i \(-0.206738\pi\)
−0.921950 + 0.387308i \(0.873405\pi\)
\(242\) −16.1060 −1.03533
\(243\) 8.18729 + 13.2653i 0.525215 + 0.850970i
\(244\) 0.430437 0.0275559
\(245\) 0 0
\(246\) 14.0994 + 2.91046i 0.898942 + 0.185564i
\(247\) 8.66600 15.0100i 0.551405 0.955061i
\(248\) 3.57518 6.19240i 0.227024 0.393218i
\(249\) −2.49577 7.53039i −0.158163 0.477219i
\(250\) 0 0
\(251\) −30.1033 −1.90010 −0.950052 0.312092i \(-0.898970\pi\)
−0.950052 + 0.312092i \(0.898970\pi\)
\(252\) 1.81552 + 0.782897i 0.114367 + 0.0493179i
\(253\) 2.26321 0.142287
\(254\) 1.21754 + 2.10883i 0.0763950 + 0.132320i
\(255\) 0 0
\(256\) −2.03131 + 3.51832i −0.126957 + 0.219895i
\(257\) 8.20707 14.2151i 0.511943 0.886711i −0.487961 0.872865i \(-0.662259\pi\)
0.999904 0.0138459i \(-0.00440744\pi\)
\(258\) 15.3898 17.2953i 0.958125 1.07676i
\(259\) 4.39851 + 7.61845i 0.273310 + 0.473388i
\(260\) 0 0
\(261\) −1.47187 12.5805i −0.0911067 0.778712i
\(262\) −19.4141 −1.19941
\(263\) −12.9036 22.3497i −0.795670 1.37814i −0.922413 0.386206i \(-0.873786\pi\)
0.126743 0.991936i \(-0.459548\pi\)
\(264\) 0.382269 + 1.15341i 0.0235270 + 0.0709872i
\(265\) 0 0
\(266\) −12.1006 + 20.9588i −0.741934 + 1.28507i
\(267\) 12.1755 + 2.51332i 0.745127 + 0.153813i
\(268\) −0.961978 1.66619i −0.0587621 0.101779i
\(269\) −12.5206 −0.763392 −0.381696 0.924288i \(-0.624660\pi\)
−0.381696 + 0.924288i \(0.624660\pi\)
\(270\) 0 0
\(271\) 19.6462 1.19342 0.596710 0.802457i \(-0.296474\pi\)
0.596710 + 0.802457i \(0.296474\pi\)
\(272\) 7.02899 + 12.1746i 0.426195 + 0.738191i
\(273\) −26.7470 5.52125i −1.61880 0.334161i
\(274\) −14.9483 + 25.8911i −0.903057 + 1.56414i
\(275\) 0 0
\(276\) −0.807745 2.43718i −0.0486205 0.146701i
\(277\) 10.4150 + 18.0394i 0.625779 + 1.08388i 0.988390 + 0.151941i \(0.0485523\pi\)
−0.362610 + 0.931941i \(0.618114\pi\)
\(278\) 4.52112 0.271159
\(279\) −6.38321 + 4.75324i −0.382153 + 0.284569i
\(280\) 0 0
\(281\) −2.36221 4.09146i −0.140917 0.244076i 0.786925 0.617049i \(-0.211672\pi\)
−0.927842 + 0.372973i \(0.878339\pi\)
\(282\) 2.42380 2.72390i 0.144335 0.162206i
\(283\) −11.5762 + 20.0506i −0.688136 + 1.19189i 0.284304 + 0.958734i \(0.408237\pi\)
−0.972440 + 0.233152i \(0.925096\pi\)
\(284\) 0.714441 1.23745i 0.0423943 0.0734291i
\(285\) 0 0
\(286\) 0.782020 + 1.35450i 0.0462418 + 0.0800932i
\(287\) 21.8105 1.28743
\(288\) 2.31430 1.72333i 0.136371 0.101548i
\(289\) −6.37059 −0.374740
\(290\) 0 0
\(291\) −1.69742 5.12158i −0.0995048 0.300232i
\(292\) −0.0343999 + 0.0595824i −0.00201310 + 0.00348679i
\(293\) 8.43963 14.6179i 0.493049 0.853985i −0.506919 0.861993i \(-0.669216\pi\)
0.999968 + 0.00800832i \(0.00254915\pi\)
\(294\) 19.8541 + 4.09839i 1.15792 + 0.239023i
\(295\) 0 0
\(296\) 6.13350 0.356503
\(297\) 0.117647 1.34732i 0.00682657 0.0781792i
\(298\) 5.98380 0.346632
\(299\) 17.7333 + 30.7150i 1.02554 + 1.77630i
\(300\) 0 0
\(301\) 17.5366 30.3743i 1.01079 1.75074i
\(302\) 10.0328 17.3773i 0.577321 0.999949i
\(303\) −2.09553 6.32277i −0.120385 0.363233i
\(304\) 9.16123 + 15.8677i 0.525433 + 0.910076i
\(305\) 0 0
\(306\) −1.67446 14.3120i −0.0957225 0.818165i
\(307\) −22.7177 −1.29657 −0.648285 0.761398i \(-0.724513\pi\)
−0.648285 + 0.761398i \(0.724513\pi\)
\(308\) −0.0857671 0.148553i −0.00488703 0.00846459i
\(309\) 4.84364 5.44337i 0.275545 0.309663i
\(310\) 0 0
\(311\) −15.7968 + 27.3608i −0.895754 + 1.55149i −0.0628843 + 0.998021i \(0.520030\pi\)
−0.832869 + 0.553470i \(0.813303\pi\)
\(312\) −12.6581 + 14.2254i −0.716626 + 0.805357i
\(313\) 15.2498 + 26.4134i 0.861970 + 1.49298i 0.870024 + 0.493009i \(0.164103\pi\)
−0.00805392 + 0.999968i \(0.502564\pi\)
\(314\) 3.03875 0.171487
\(315\) 0 0
\(316\) −0.518682 −0.0291781
\(317\) −11.0445 19.1296i −0.620320 1.07443i −0.989426 0.145039i \(-0.953669\pi\)
0.369106 0.929387i \(-0.379664\pi\)
\(318\) −9.13686 27.5683i −0.512369 1.54595i
\(319\) −0.549459 + 0.951691i −0.0307638 + 0.0532845i
\(320\) 0 0
\(321\) −2.75910 0.569547i −0.153998 0.0317890i
\(322\) −24.7615 42.8882i −1.37991 2.39007i
\(323\) 13.8538 0.770849
\(324\) −1.49287 + 0.354170i −0.0829374 + 0.0196761i
\(325\) 0 0
\(326\) 2.58206 + 4.47226i 0.143007 + 0.247696i
\(327\) −21.8857 4.51776i −1.21028 0.249833i
\(328\) 7.60339 13.1695i 0.419827 0.727162i
\(329\) 2.76191 4.78377i 0.152269 0.263738i
\(330\) 0 0
\(331\) 14.8024 + 25.6385i 0.813612 + 1.40922i 0.910321 + 0.413904i \(0.135835\pi\)
−0.0967089 + 0.995313i \(0.530832\pi\)
\(332\) 0.780834 0.0428538
\(333\) −6.26874 2.70324i −0.343525 0.148137i
\(334\) 30.2531 1.65538
\(335\) 0 0
\(336\) 19.1925 21.5689i 1.04704 1.17668i
\(337\) −6.26553 + 10.8522i −0.341305 + 0.591158i −0.984675 0.174397i \(-0.944202\pi\)
0.643370 + 0.765555i \(0.277536\pi\)
\(338\) −2.67886 + 4.63992i −0.145711 + 0.252379i
\(339\) −1.53028 + 1.71976i −0.0831136 + 0.0934045i
\(340\) 0 0
\(341\) 0.690479 0.0373915
\(342\) −2.18241 18.6536i −0.118011 1.00867i
\(343\) 3.65180 0.197179
\(344\) −12.2269 21.1777i −0.659232 1.14182i
\(345\) 0 0
\(346\) 5.71017 9.89030i 0.306980 0.531706i
\(347\) 8.54872 14.8068i 0.458919 0.794872i −0.539985 0.841675i \(-0.681570\pi\)
0.998904 + 0.0468031i \(0.0149033\pi\)
\(348\) 1.22095 + 0.252035i 0.0654498 + 0.0135105i
\(349\) 9.20231 + 15.9389i 0.492588 + 0.853188i 0.999964 0.00853709i \(-0.00271747\pi\)
−0.507375 + 0.861725i \(0.669384\pi\)
\(350\) 0 0
\(351\) 19.2069 8.96024i 1.02519 0.478262i
\(352\) −0.250340 −0.0133432
\(353\) 15.8594 + 27.4693i 0.844110 + 1.46204i 0.886391 + 0.462936i \(0.153204\pi\)
−0.0422810 + 0.999106i \(0.513462\pi\)
\(354\) −17.8039 3.67517i −0.946267 0.195333i
\(355\) 0 0
\(356\) −0.611825 + 1.05971i −0.0324267 + 0.0561646i
\(357\) −6.86774 20.7218i −0.363479 1.09671i
\(358\) 7.92844 + 13.7325i 0.419031 + 0.725783i
\(359\) −11.4533 −0.604483 −0.302241 0.953231i \(-0.597735\pi\)
−0.302241 + 0.953231i \(0.597735\pi\)
\(360\) 0 0
\(361\) −0.943580 −0.0496621
\(362\) 5.77937 + 10.0102i 0.303757 + 0.526122i
\(363\) 12.5873 14.1458i 0.660660 0.742461i
\(364\) 1.34405 2.32797i 0.0704475 0.122019i
\(365\) 0 0
\(366\) −4.28291 + 4.81321i −0.223871 + 0.251590i
\(367\) −1.24619 2.15846i −0.0650506 0.112671i 0.831666 0.555276i \(-0.187388\pi\)
−0.896716 + 0.442606i \(0.854054\pi\)
\(368\) −37.4934 −1.95448
\(369\) −13.5753 + 10.1088i −0.706700 + 0.526242i
\(370\) 0 0
\(371\) −21.9996 38.1045i −1.14216 1.97829i
\(372\) −0.246434 0.743556i −0.0127770 0.0385516i
\(373\) 7.51868 13.0227i 0.389303 0.674292i −0.603053 0.797701i \(-0.706049\pi\)
0.992356 + 0.123409i \(0.0393827\pi\)
\(374\) −0.625086 + 1.08268i −0.0323224 + 0.0559841i
\(375\) 0 0
\(376\) −1.92567 3.33536i −0.0993088 0.172008i
\(377\) −17.2211 −0.886932
\(378\) −26.8191 + 12.5114i −1.37943 + 0.643518i
\(379\) 6.27273 0.322208 0.161104 0.986937i \(-0.448495\pi\)
0.161104 + 0.986937i \(0.448495\pi\)
\(380\) 0 0
\(381\) −2.80371 0.578757i −0.143639 0.0296506i
\(382\) 4.22275 7.31402i 0.216055 0.374218i
\(383\) 11.0944 19.2161i 0.566897 0.981894i −0.429973 0.902842i \(-0.641477\pi\)
0.996870 0.0790528i \(-0.0251896\pi\)
\(384\) −6.83362 20.6188i −0.348727 1.05220i
\(385\) 0 0
\(386\) −12.4967 −0.636065
\(387\) 3.16282 + 27.0335i 0.160775 + 1.37419i
\(388\) 0.531061 0.0269605
\(389\) 15.0461 + 26.0606i 0.762869 + 1.32133i 0.941366 + 0.337387i \(0.109543\pi\)
−0.178498 + 0.983940i \(0.557124\pi\)
\(390\) 0 0
\(391\) −14.1746 + 24.5512i −0.716842 + 1.24161i
\(392\) 10.7068 18.5447i 0.540774 0.936649i
\(393\) 15.1727 17.0513i 0.765360 0.860125i
\(394\) −7.82781 13.5582i −0.394359 0.683050i
\(395\) 0 0
\(396\) 0.122235 + 0.0527107i 0.00614253 + 0.00264881i
\(397\) 29.2313 1.46708 0.733538 0.679648i \(-0.237868\pi\)
0.733538 + 0.679648i \(0.237868\pi\)
\(398\) 13.6854 + 23.7038i 0.685986 + 1.18816i
\(399\) −8.95107 27.0077i −0.448114 1.35208i
\(400\) 0 0
\(401\) −12.1171 + 20.9874i −0.605098 + 1.04806i 0.386938 + 0.922106i \(0.373533\pi\)
−0.992036 + 0.125954i \(0.959801\pi\)
\(402\) 28.2034 + 5.82189i 1.40666 + 0.290369i
\(403\) 5.41024 + 9.37080i 0.269503 + 0.466793i
\(404\) 0.655614 0.0326180
\(405\) 0 0
\(406\) 24.0463 1.19340
\(407\) 0.296142 + 0.512934i 0.0146792 + 0.0254252i
\(408\) −14.9063 3.07703i −0.737971 0.152336i
\(409\) −1.16995 + 2.02642i −0.0578504 + 0.100200i −0.893500 0.449063i \(-0.851758\pi\)
0.835650 + 0.549263i \(0.185091\pi\)
\(410\) 0 0
\(411\) −11.0576 33.3636i −0.545429 1.64570i
\(412\) 0.358584 + 0.621086i 0.0176662 + 0.0305987i
\(413\) −27.5411 −1.35521
\(414\) 35.2900 + 15.2179i 1.73441 + 0.747921i
\(415\) 0 0
\(416\) −1.96153 3.39748i −0.0961721 0.166575i
\(417\) −3.53338 + 3.97087i −0.173030 + 0.194454i
\(418\) −0.814706 + 1.41111i −0.0398486 + 0.0690197i
\(419\) −11.4212 + 19.7821i −0.557964 + 0.966421i 0.439703 + 0.898143i \(0.355084\pi\)
−0.997666 + 0.0682778i \(0.978250\pi\)
\(420\) 0 0
\(421\) −5.93792 10.2848i −0.289396 0.501249i 0.684269 0.729229i \(-0.260121\pi\)
−0.973666 + 0.227980i \(0.926788\pi\)
\(422\) 15.4004 0.749679
\(423\) 0.498126 + 4.25761i 0.0242197 + 0.207012i
\(424\) −30.6773 −1.48982
\(425\) 0 0
\(426\) 6.72853 + 20.3018i 0.325998 + 0.983623i
\(427\) −4.88036 + 8.45303i −0.236177 + 0.409071i
\(428\) 0.138646 0.240142i 0.00670172 0.0116077i
\(429\) −1.80082 0.371734i −0.0869443 0.0179475i
\(430\) 0 0
\(431\) 8.86916 0.427212 0.213606 0.976920i \(-0.431479\pi\)
0.213606 + 0.976920i \(0.431479\pi\)
\(432\) −1.94900 + 22.3203i −0.0937713 + 1.07389i
\(433\) 9.37059 0.450322 0.225161 0.974322i \(-0.427709\pi\)
0.225161 + 0.974322i \(0.427709\pi\)
\(434\) −7.55446 13.0847i −0.362626 0.628086i
\(435\) 0 0
\(436\) 1.09977 1.90486i 0.0526695 0.0912262i
\(437\) −18.4745 + 31.9988i −0.883756 + 1.53071i
\(438\) −0.323974 0.977517i −0.0154801 0.0467075i
\(439\) −9.71155 16.8209i −0.463507 0.802817i 0.535626 0.844455i \(-0.320076\pi\)
−0.999133 + 0.0416380i \(0.986742\pi\)
\(440\) 0 0
\(441\) −19.1161 + 14.2348i −0.910292 + 0.677846i
\(442\) −19.5914 −0.931868
\(443\) −5.43963 9.42172i −0.258445 0.447639i 0.707381 0.706833i \(-0.249877\pi\)
−0.965825 + 0.259193i \(0.916543\pi\)
\(444\) 0.446669 0.501974i 0.0211980 0.0238226i
\(445\) 0 0
\(446\) −2.89583 + 5.01572i −0.137121 + 0.237501i
\(447\) −4.67650 + 5.25554i −0.221191 + 0.248578i
\(448\) −13.9301 24.1276i −0.658136 1.13992i
\(449\) 1.34014 0.0632451 0.0316225 0.999500i \(-0.489933\pi\)
0.0316225 + 0.999500i \(0.489933\pi\)
\(450\) 0 0
\(451\) 1.46845 0.0691467
\(452\) −0.113290 0.196224i −0.00532871 0.00922959i
\(453\) 7.42146 + 22.3925i 0.348691 + 1.05209i
\(454\) −3.55894 + 6.16426i −0.167029 + 0.289303i
\(455\) 0 0
\(456\) −19.4281 4.01045i −0.909804 0.187806i
\(457\) −10.0556 17.4169i −0.470383 0.814728i 0.529043 0.848595i \(-0.322551\pi\)
−0.999426 + 0.0338671i \(0.989218\pi\)
\(458\) −27.7752 −1.29785
\(459\) 13.8788 + 9.71457i 0.647807 + 0.453437i
\(460\) 0 0
\(461\) 16.8766 + 29.2312i 0.786024 + 1.36143i 0.928386 + 0.371618i \(0.121197\pi\)
−0.142362 + 0.989815i \(0.545470\pi\)
\(462\) 2.51453 + 0.519062i 0.116987 + 0.0241490i
\(463\) 2.62268 4.54262i 0.121886 0.211114i −0.798625 0.601829i \(-0.794439\pi\)
0.920512 + 0.390715i \(0.127772\pi\)
\(464\) 9.10262 15.7662i 0.422578 0.731927i
\(465\) 0 0
\(466\) 8.76744 + 15.1856i 0.406144 + 0.703462i
\(467\) 14.2120 0.657652 0.328826 0.944390i \(-0.393347\pi\)
0.328826 + 0.944390i \(0.393347\pi\)
\(468\) 0.242408 + 2.07192i 0.0112053 + 0.0957745i
\(469\) 43.6282 2.01456
\(470\) 0 0
\(471\) −2.37486 + 2.66891i −0.109428 + 0.122977i
\(472\) −9.60115 + 16.6297i −0.441929 + 0.765443i
\(473\) 1.18070 2.04503i 0.0542887 0.0940307i
\(474\) 5.16095 5.79997i 0.237050 0.266401i
\(475\) 0 0
\(476\) 2.14866 0.0984837
\(477\) 31.3538 + 13.5205i 1.43559 + 0.619063i
\(478\) −31.8657 −1.45750
\(479\) −10.2417 17.7391i −0.467954 0.810519i 0.531376 0.847136i \(-0.321675\pi\)
−0.999329 + 0.0366168i \(0.988342\pi\)
\(480\) 0 0
\(481\) −4.64084 + 8.03817i −0.211604 + 0.366509i
\(482\) −2.87161 + 4.97377i −0.130798 + 0.226549i
\(483\) 57.0203 + 11.7704i 2.59451 + 0.535572i
\(484\) 0.931859 + 1.61403i 0.0423572 + 0.0733649i
\(485\) 0 0
\(486\) 10.8939 20.2175i 0.494158 0.917087i
\(487\) 31.3554 1.42085 0.710425 0.703772i \(-0.248503\pi\)
0.710425 + 0.703772i \(0.248503\pi\)
\(488\) 3.40271 + 5.89366i 0.154033 + 0.266793i
\(489\) −5.94591 1.22738i −0.268883 0.0555042i
\(490\) 0 0
\(491\) 5.19604 8.99980i 0.234494 0.406155i −0.724632 0.689136i \(-0.757990\pi\)
0.959125 + 0.282981i \(0.0913234\pi\)
\(492\) −0.524094 1.58133i −0.0236280 0.0712919i
\(493\) −6.88260 11.9210i −0.309977 0.536896i
\(494\) −25.5345 −1.14885
\(495\) 0 0
\(496\) −11.4388 −0.513618
\(497\) 16.2009 + 28.0607i 0.726709 + 1.25870i
\(498\) −7.76940 + 8.73138i −0.348155 + 0.391263i
\(499\) 1.91285 3.31316i 0.0856310 0.148317i −0.820029 0.572322i \(-0.806043\pi\)
0.905660 + 0.424005i \(0.139376\pi\)
\(500\) 0 0
\(501\) −23.6436 + 26.5711i −1.05632 + 1.18711i
\(502\) 22.1749 + 38.4081i 0.989715 + 1.71424i
\(503\) 1.00236 0.0446931 0.0223466 0.999750i \(-0.492886\pi\)
0.0223466 + 0.999750i \(0.492886\pi\)
\(504\) 3.63246 + 31.0475i 0.161802 + 1.38297i
\(505\) 0 0
\(506\) −1.66714 2.88757i −0.0741134 0.128368i
\(507\) −1.98161 5.97905i −0.0880065 0.265539i
\(508\) 0.140888 0.244026i 0.00625090 0.0108269i
\(509\) −2.28161 + 3.95187i −0.101131 + 0.175163i −0.912151 0.409855i \(-0.865579\pi\)
0.811020 + 0.585018i \(0.198913\pi\)
\(510\) 0 0
\(511\) −0.780062 1.35111i −0.0345079 0.0597695i
\(512\) −19.0969 −0.843971
\(513\) 18.0889 + 12.6615i 0.798646 + 0.559019i
\(514\) −24.1822 −1.06663
\(515\) 0 0
\(516\) −2.62363 0.541583i −0.115499 0.0238419i
\(517\) 0.185953 0.322080i 0.00817822 0.0141651i
\(518\) 6.48013 11.2239i 0.284721 0.493151i
\(519\) 4.22394 + 12.7447i 0.185410 + 0.559432i
\(520\) 0 0
\(521\) 39.3708 1.72486 0.862432 0.506173i \(-0.168940\pi\)
0.862432 + 0.506173i \(0.168940\pi\)
\(522\) −14.9669 + 11.1451i −0.655084 + 0.487806i
\(523\) −10.3998 −0.454749 −0.227375 0.973807i \(-0.573014\pi\)
−0.227375 + 0.973807i \(0.573014\pi\)
\(524\) 1.12326 + 1.94555i 0.0490699 + 0.0849916i
\(525\) 0 0
\(526\) −19.0103 + 32.9268i −0.828888 + 1.43568i
\(527\) −4.32452 + 7.49029i −0.188379 + 0.326282i
\(528\) 1.29219 1.45219i 0.0562354 0.0631984i
\(529\) −26.3046 45.5608i −1.14368 1.98091i
\(530\) 0 0
\(531\) 17.1421 12.7648i 0.743904 0.553946i
\(532\) 2.80046 0.121415
\(533\) 11.5060 + 19.9290i 0.498381 + 0.863222i
\(534\) −5.76210 17.3858i −0.249351 0.752357i
\(535\) 0 0
\(536\) 15.2093 26.3433i 0.656942 1.13786i
\(537\) −18.2574 3.76879i −0.787866 0.162635i
\(538\) 9.22298 + 15.9747i 0.397631 + 0.688717i
\(539\) 2.06781 0.0890670
\(540\) 0 0
\(541\) 13.7093 0.589408 0.294704 0.955589i \(-0.404779\pi\)
0.294704 + 0.955589i \(0.404779\pi\)
\(542\) −14.4719 25.0661i −0.621622 1.07668i
\(543\) −13.3086 2.74723i −0.571126 0.117895i
\(544\) 1.56790 2.71568i 0.0672230 0.116434i
\(545\) 0 0
\(546\) 12.6581 + 38.1930i 0.541718 + 1.63451i
\(547\) −11.3924 19.7322i −0.487102 0.843686i 0.512788 0.858515i \(-0.328613\pi\)
−0.999890 + 0.0148294i \(0.995279\pi\)
\(548\) 3.45950 0.147783
\(549\) −0.880201 7.52330i −0.0375661 0.321087i
\(550\) 0 0
\(551\) −8.97044 15.5373i −0.382154 0.661910i
\(552\) 26.9851 30.3263i 1.14856 1.29077i
\(553\) 5.88089 10.1860i 0.250081 0.433153i
\(554\) 15.3440 26.5766i 0.651905 1.12913i
\(555\) 0 0
\(556\) −0.261583 0.453075i −0.0110936 0.0192146i
\(557\) −18.2341 −0.772605 −0.386303 0.922372i \(-0.626248\pi\)
−0.386303 + 0.922372i \(0.626248\pi\)
\(558\) 10.7666 + 4.64282i 0.455786 + 0.196546i
\(559\) 37.0054 1.56516
\(560\) 0 0
\(561\) −0.462390 1.39515i −0.0195221 0.0589034i
\(562\) −3.48013 + 6.02776i −0.146800 + 0.254266i
\(563\) −12.0556 + 20.8809i −0.508083 + 0.880025i 0.491873 + 0.870667i \(0.336312\pi\)
−0.999956 + 0.00935862i \(0.997021\pi\)
\(564\) −0.413206 0.0852961i −0.0173991 0.00359161i
\(565\) 0 0
\(566\) 34.1095 1.43373
\(567\) 9.97113 33.3330i 0.418748 1.39986i
\(568\) 22.5913 0.947910
\(569\) 16.0024 + 27.7170i 0.670857 + 1.16196i 0.977661 + 0.210186i \(0.0674069\pi\)
−0.306804 + 0.951773i \(0.599260\pi\)
\(570\) 0 0
\(571\) 9.89042 17.1307i 0.413901 0.716898i −0.581411 0.813610i \(-0.697499\pi\)
0.995312 + 0.0967121i \(0.0308326\pi\)
\(572\) 0.0904921 0.156737i 0.00378367 0.00655350i
\(573\) 3.12366 + 9.42491i 0.130493 + 0.393731i
\(574\) −16.0662 27.8274i −0.670589 1.16150i
\(575\) 0 0
\(576\) 19.8531 + 8.56117i 0.827213 + 0.356715i
\(577\) −35.4119 −1.47422 −0.737108 0.675775i \(-0.763809\pi\)
−0.737108 + 0.675775i \(0.763809\pi\)
\(578\) 4.69275 + 8.12808i 0.195193 + 0.338084i
\(579\) 9.76650 10.9758i 0.405882 0.456137i
\(580\) 0 0
\(581\) −8.85321 + 15.3342i −0.367293 + 0.636170i
\(582\) −5.28413 + 5.93840i −0.219034 + 0.246154i
\(583\) −1.48119 2.56549i −0.0613445 0.106252i
\(584\) −1.08776 −0.0450117
\(585\) 0 0
\(586\) −24.8675 −1.02726
\(587\) 16.1925 + 28.0463i 0.668338 + 1.15759i 0.978369 + 0.206868i \(0.0663272\pi\)
−0.310031 + 0.950726i \(0.600339\pi\)
\(588\) −0.738008 2.22676i −0.0304349 0.0918302i
\(589\) −5.63636 + 9.76247i −0.232242 + 0.402255i
\(590\) 0 0
\(591\) 18.0257 + 3.72095i 0.741478 + 0.153060i
\(592\) −4.90605 8.49752i −0.201637 0.349246i
\(593\) 29.2504 1.20117 0.600585 0.799561i \(-0.294934\pi\)
0.600585 + 0.799561i \(0.294934\pi\)
\(594\) −1.80567 + 0.842367i −0.0740876 + 0.0345627i
\(595\) 0 0
\(596\) −0.346210 0.599654i −0.0141813 0.0245628i
\(597\) −31.5144 6.50535i −1.28980 0.266246i
\(598\) 26.1257 45.2510i 1.06836 1.85045i
\(599\) −2.03081 + 3.51747i −0.0829767 + 0.143720i −0.904527 0.426416i \(-0.859776\pi\)
0.821551 + 0.570136i \(0.193109\pi\)
\(600\) 0 0
\(601\) −23.4538 40.6232i −0.956700 1.65705i −0.730429 0.682989i \(-0.760680\pi\)
−0.226271 0.974064i \(-0.572653\pi\)
\(602\) −51.6717 −2.10598
\(603\) −27.1550 + 20.2209i −1.10584 + 0.823459i
\(604\) −2.32190 −0.0944768
\(605\) 0 0
\(606\) −6.52344 + 7.33116i −0.264997 + 0.297808i
\(607\) 20.4733 35.4608i 0.830987 1.43931i −0.0662702 0.997802i \(-0.521110\pi\)
0.897257 0.441509i \(-0.145557\pi\)
\(608\) 2.04352 3.53948i 0.0828756 0.143545i
\(609\) −18.7928 + 21.1197i −0.761524 + 0.855814i
\(610\) 0 0
\(611\) 5.82813 0.235781
\(612\) −1.33737 + 0.995867i −0.0540599 + 0.0402555i
\(613\) −33.3827 −1.34831 −0.674157 0.738588i \(-0.735493\pi\)
−0.674157 + 0.738588i \(0.735493\pi\)
\(614\) 16.7345 + 28.9850i 0.675350 + 1.16974i
\(615\) 0 0
\(616\) 1.35602 2.34869i 0.0546355 0.0946314i
\(617\) −1.12440 + 1.94752i −0.0452666 + 0.0784040i −0.887771 0.460285i \(-0.847747\pi\)
0.842504 + 0.538689i \(0.181080\pi\)
\(618\) −10.5130 2.17015i −0.422896 0.0872963i
\(619\) 17.1467 + 29.6990i 0.689184 + 1.19370i 0.972102 + 0.234558i \(0.0753642\pi\)
−0.282918 + 0.959144i \(0.591302\pi\)
\(620\) 0 0
\(621\) −40.9459 + 19.1018i −1.64310 + 0.766527i
\(622\) 46.5454 1.86630
\(623\) −13.8739 24.0303i −0.555847 0.962756i
\(624\) 29.8333 + 6.15833i 1.19429 + 0.246531i
\(625\) 0 0
\(626\) 22.4669 38.9137i 0.897956 1.55531i
\(627\) −0.602656 1.81837i −0.0240678 0.0726188i
\(628\) −0.175816 0.304522i −0.00701581 0.0121517i
\(629\) −7.41904 −0.295817
\(630\) 0 0
\(631\) −18.7552 −0.746633 −0.373316 0.927704i \(-0.621779\pi\)
−0.373316 + 0.927704i \(0.621779\pi\)
\(632\) −4.10030 7.10193i −0.163101 0.282499i
\(633\) −12.0358 + 13.5261i −0.478381 + 0.537613i
\(634\) −16.2713 + 28.1828i −0.646218 + 1.11928i
\(635\) 0 0
\(636\) −2.23406 + 2.51068i −0.0885862 + 0.0995548i
\(637\) 16.2023 + 28.0632i 0.641959 + 1.11191i
\(638\) 1.61899 0.0640963
\(639\) −23.0894 9.95674i −0.913403 0.393883i
\(640\) 0 0
\(641\) −10.3175 17.8704i −0.407517 0.705840i 0.587094 0.809519i \(-0.300272\pi\)
−0.994611 + 0.103679i \(0.966939\pi\)
\(642\) 1.30576 + 3.93981i 0.0515340 + 0.155492i
\(643\) −13.5970 + 23.5506i −0.536212 + 0.928746i 0.462892 + 0.886415i \(0.346812\pi\)
−0.999104 + 0.0423312i \(0.986522\pi\)
\(644\) −2.86530 + 4.96285i −0.112909 + 0.195564i
\(645\) 0 0
\(646\) −10.2051 17.6758i −0.401515 0.695445i
\(647\) 16.7316 0.657787 0.328893 0.944367i \(-0.393324\pi\)
0.328893 + 0.944367i \(0.393324\pi\)
\(648\) −16.6509 17.6410i −0.654109 0.693004i
\(649\) −1.85428 −0.0727869
\(650\) 0 0
\(651\) 17.3962 + 3.59102i 0.681812 + 0.140743i
\(652\) 0.298785 0.517511i 0.0117013 0.0202673i
\(653\) 22.8666 39.6060i 0.894837 1.54990i 0.0608319 0.998148i \(-0.480625\pi\)
0.834006 0.551756i \(-0.186042\pi\)
\(654\) 10.3575 + 31.2514i 0.405011 + 1.22203i
\(655\) 0 0
\(656\) −24.3271 −0.949814
\(657\) 1.11174 + 0.479411i 0.0433731 + 0.0187036i
\(658\) −8.13799 −0.317252
\(659\) −9.30543 16.1175i −0.362488 0.627848i 0.625882 0.779918i \(-0.284739\pi\)
−0.988370 + 0.152070i \(0.951406\pi\)
\(660\) 0 0
\(661\) −8.39799 + 14.5457i −0.326644 + 0.565764i −0.981844 0.189692i \(-0.939251\pi\)
0.655200 + 0.755456i \(0.272584\pi\)
\(662\) 21.8077 37.7720i 0.847579 1.46805i
\(663\) 15.3112 17.2070i 0.594638 0.668264i
\(664\) 6.17267 + 10.6914i 0.239546 + 0.414906i
\(665\) 0 0
\(666\) 1.16873 + 9.98942i 0.0452873 + 0.387082i
\(667\) 36.7126 1.42152
\(668\) −1.75038 3.03175i −0.0677243 0.117302i
\(669\) −2.14211 6.46331i −0.0828187 0.249886i
\(670\) 0 0
\(671\) −0.328584 + 0.569124i −0.0126848 + 0.0219708i
\(672\) −6.30718 1.30196i −0.243305 0.0502242i
\(673\) −24.9740 43.2562i −0.962676 1.66740i −0.715733 0.698374i \(-0.753907\pi\)
−0.246944 0.969030i \(-0.579426\pi\)
\(674\) 18.4614 0.711108
\(675\) 0 0
\(676\) 0.619973 0.0238451
\(677\) −5.41553 9.37998i −0.208136 0.360502i 0.742991 0.669301i \(-0.233406\pi\)
−0.951127 + 0.308799i \(0.900073\pi\)
\(678\) 3.32145 + 0.685630i 0.127559 + 0.0263315i
\(679\) −6.02125 + 10.4291i −0.231074 + 0.400232i
\(680\) 0 0
\(681\) −2.63262 7.94333i −0.100882 0.304389i
\(682\) −0.508625 0.880965i −0.0194763 0.0337339i
\(683\) 0.429870 0.0164485 0.00822426 0.999966i \(-0.497382\pi\)
0.00822426 + 0.999966i \(0.497382\pi\)
\(684\) −1.74306 + 1.29796i −0.0666476 + 0.0496289i
\(685\) 0 0
\(686\) −2.69001 4.65924i −0.102705 0.177891i
\(687\) 21.7071 24.3948i 0.828176 0.930719i
\(688\) −19.5601 + 33.8791i −0.745721 + 1.29163i
\(689\) 23.2116 40.2037i 0.884293 1.53164i
\(690\) 0 0
\(691\) −17.3518 30.0542i −0.660093 1.14331i −0.980591 0.196065i \(-0.937184\pi\)
0.320498 0.947249i \(-0.396150\pi\)
\(692\) −1.32151 −0.0502364
\(693\) −2.42106 + 1.80284i −0.0919686 + 0.0684841i
\(694\) −25.1889 −0.956157
\(695\) 0 0
\(696\) 6.20097 + 18.7100i 0.235047 + 0.709200i
\(697\) −9.19701 + 15.9297i −0.348362 + 0.603380i
\(698\) 13.5573 23.4820i 0.513153 0.888807i
\(699\) −20.1894 4.16761i −0.763635 0.157633i
\(700\) 0 0
\(701\) 1.84808 0.0698010 0.0349005 0.999391i \(-0.488889\pi\)
0.0349005 + 0.999391i \(0.488889\pi\)
\(702\) −25.5805 17.9052i −0.965472 0.675789i
\(703\) −9.66962 −0.364696
\(704\) −0.937884 1.62446i −0.0353478 0.0612242i
\(705\) 0 0
\(706\) 23.3649 40.4692i 0.879351 1.52308i
\(707\) −7.43344 + 12.8751i −0.279563 + 0.484218i
\(708\) 0.661797 + 1.99682i 0.0248719 + 0.0750450i
\(709\) 3.15338 + 5.46181i 0.118428 + 0.205123i 0.919145 0.393920i \(-0.128881\pi\)
−0.800717 + 0.599043i \(0.795548\pi\)
\(710\) 0 0
\(711\) 1.06065 + 9.06566i 0.0397775 + 0.339989i
\(712\) −19.3465 −0.725040
\(713\) −11.5337 19.9770i −0.431942 0.748145i
\(714\) −21.3795 + 24.0266i −0.800106 + 0.899173i
\(715\) 0 0
\(716\) 0.917446 1.58906i 0.0342866 0.0593861i
\(717\) 24.9039 27.9875i 0.930054 1.04521i
\(718\) 8.43682 + 14.6130i 0.314859 + 0.545352i
\(719\) 18.0129 0.671770 0.335885 0.941903i \(-0.390965\pi\)
0.335885 + 0.941903i \(0.390965\pi\)
\(720\) 0 0
\(721\) −16.2627 −0.605655
\(722\) 0.695067 + 1.20389i 0.0258677 + 0.0448042i
\(723\) −2.12419 6.40925i −0.0789996 0.238363i
\(724\) 0.668765 1.15833i 0.0248544 0.0430491i
\(725\) 0 0
\(726\) −27.3204 5.63961i −1.01395 0.209306i
\(727\) −13.1412 22.7612i −0.487379 0.844165i 0.512516 0.858678i \(-0.328714\pi\)
−0.999895 + 0.0145126i \(0.995380\pi\)
\(728\) 42.5002 1.57516
\(729\) 9.24306 + 25.3686i 0.342336 + 0.939578i
\(730\) 0 0
\(731\) 14.7896 + 25.6164i 0.547014 + 0.947456i
\(732\) 0.730145 + 0.150720i 0.0269869 + 0.00557078i
\(733\) −23.8317 + 41.2777i −0.880243 + 1.52462i −0.0291714 + 0.999574i \(0.509287\pi\)
−0.851071 + 0.525050i \(0.824046\pi\)
\(734\) −1.83595 + 3.17997i −0.0677663 + 0.117375i
\(735\) 0 0
\(736\) 4.18167 + 7.24287i 0.154138 + 0.266976i
\(737\) 2.93739 0.108200
\(738\) 22.8975 + 9.87396i 0.842867 + 0.363465i
\(739\) −10.0273 −0.368859 −0.184429 0.982846i \(-0.559044\pi\)
−0.184429 + 0.982846i \(0.559044\pi\)
\(740\) 0 0
\(741\) 19.9559 22.4267i 0.733097 0.823867i
\(742\) −32.4110 + 56.1376i −1.18985 + 2.06088i
\(743\) −4.13633 + 7.16433i −0.151747 + 0.262834i −0.931870 0.362793i \(-0.881823\pi\)
0.780123 + 0.625627i \(0.215157\pi\)
\(744\) 8.23285 9.25222i 0.301831 0.339203i
\(745\) 0 0
\(746\) −22.1539 −0.811111
\(747\) −1.59673 13.6476i −0.0584212 0.499340i
\(748\) 0.144665 0.00528946
\(749\) 3.14398 + 5.44554i 0.114879 + 0.198976i
\(750\) 0 0
\(751\) 2.89880 5.02087i 0.105779 0.183214i −0.808277 0.588802i \(-0.799600\pi\)
0.914056 + 0.405588i \(0.132933\pi\)
\(752\) −3.08060 + 5.33575i −0.112338 + 0.194575i
\(753\) −51.0638 10.5409i −1.86087 0.384130i
\(754\) 12.6855 + 21.9720i 0.461980 + 0.800173i
\(755\) 0 0
\(756\) 2.80550 + 1.96373i 0.102035 + 0.0714203i
\(757\) −25.2804 −0.918830 −0.459415 0.888222i \(-0.651941\pi\)
−0.459415 + 0.888222i \(0.651941\pi\)
\(758\) −4.62066 8.00322i −0.167830 0.290690i
\(759\) 3.83905 + 0.792476i 0.139349 + 0.0287651i
\(760\) 0 0
\(761\) −9.73190 + 16.8561i −0.352781 + 0.611035i −0.986736 0.162335i \(-0.948097\pi\)
0.633954 + 0.773370i \(0.281431\pi\)
\(762\) 1.32687 + 4.00352i 0.0480674 + 0.145032i
\(763\) 24.9387 + 43.1951i 0.902843 + 1.56377i
\(764\) −0.977278 −0.0353567
\(765\) 0 0
\(766\) −32.6897 −1.18113
\(767\) −14.5292 25.1653i −0.524618 0.908666i
\(768\) −4.67764 + 5.25681i −0.168790 + 0.189689i
\(769\) 24.6715 42.7324i 0.889678 1.54097i 0.0494224 0.998778i \(-0.484262\pi\)
0.840256 0.542190i \(-0.182405\pi\)
\(770\) 0 0
\(771\) 18.8990 21.2391i 0.680632 0.764907i
\(772\) 0.723033 + 1.25233i 0.0260225 + 0.0450723i
\(773\) 20.8502 0.749930 0.374965 0.927039i \(-0.377655\pi\)
0.374965 + 0.927039i \(0.377655\pi\)
\(774\) 32.1615 23.9490i 1.15602 0.860827i
\(775\) 0 0
\(776\) 4.19816 + 7.27143i 0.150705 + 0.261029i
\(777\) 4.79350 + 14.4632i 0.171966 + 0.518866i
\(778\) 22.1668 38.3940i 0.794717 1.37649i
\(779\) −11.9869 + 20.7620i −0.429476 + 0.743875i
\(780\) 0 0
\(781\) 1.09077 + 1.88927i 0.0390308 + 0.0676034i
\(782\) 41.7657 1.49354
\(783\) 1.90841 21.8555i 0.0682010 0.781052i
\(784\) −34.2564 −1.22344
\(785\) 0 0
\(786\) −32.9320 6.79798i −1.17464 0.242476i
\(787\) 22.0941 38.2682i 0.787571 1.36411i −0.139880 0.990169i \(-0.544672\pi\)
0.927451 0.373945i \(-0.121995\pi\)
\(788\) −0.905801 + 1.56889i −0.0322678 + 0.0558895i
\(789\) −14.0623 42.4298i −0.500632 1.51054i
\(790\) 0 0
\(791\) 5.13799 0.182686
\(792\) 0.244565 + 2.09036i 0.00869025 + 0.0742778i
\(793\) −10.2985 −0.365709
\(794\) −21.5326 37.2955i −0.764162 1.32357i
\(795\) 0 0
\(796\) 1.58362 2.74290i 0.0561297 0.0972196i
\(797\) −15.5187 + 26.8792i −0.549701 + 0.952110i 0.448594 + 0.893736i \(0.351925\pi\)
−0.998295 + 0.0583744i \(0.981408\pi\)
\(798\) −27.8649 + 31.3151i −0.986408 + 1.10854i
\(799\) 2.32928 + 4.03443i 0.0824039 + 0.142728i
\(800\) 0 0
\(801\) 19.7731 + 8.52664i 0.698647 + 0.301274i
\(802\) 35.7031 1.26072
\(803\) −0.0525199 0.0909671i −0.00185339 0.00321016i
\(804\) −1.04836 3.16319i −0.0369729 0.111557i
\(805\) 0 0
\(806\) 7.97065 13.8056i 0.280754 0.486281i
\(807\) −21.2385 4.38415i −0.747629 0.154329i
\(808\) 5.18278 + 8.97683i 0.182329 + 0.315804i
\(809\) 14.6229 0.514114 0.257057 0.966396i \(-0.417247\pi\)
0.257057 + 0.966396i \(0.417247\pi\)
\(810\) 0 0
\(811\) 26.7177 0.938187 0.469093 0.883149i \(-0.344581\pi\)
0.469093 + 0.883149i \(0.344581\pi\)
\(812\) −1.39127 2.40975i −0.0488240 0.0845656i
\(813\) 33.3256 + 6.87923i 1.16878 + 0.241265i
\(814\) 0.436293 0.755682i 0.0152921 0.0264866i
\(815\) 0 0
\(816\) 7.66018 + 23.1128i 0.268160 + 0.809110i
\(817\) 19.2761 + 33.3871i 0.674384 + 1.16807i
\(818\) 3.44727 0.120531
\(819\) −43.4373 18.7313i −1.51782 0.654523i
\(820\) 0 0
\(821\) 9.29903 + 16.1064i 0.324538 + 0.562117i 0.981419 0.191878i \(-0.0614577\pi\)
−0.656881 + 0.753995i \(0.728124\pi\)
\(822\) −34.4225 + 38.6846i −1.20062 + 1.34928i
\(823\) 1.53102 2.65181i 0.0533680 0.0924362i −0.838107 0.545506i \(-0.816338\pi\)
0.891475 + 0.453069i \(0.149671\pi\)
\(824\) −5.66938 + 9.81966i −0.197502 + 0.342084i
\(825\) 0 0
\(826\) 20.2875 + 35.1390i 0.705892 + 1.22264i
\(827\) 7.27526 0.252985 0.126493 0.991968i \(-0.459628\pi\)
0.126493 + 0.991968i \(0.459628\pi\)
\(828\) −0.516773 4.41699i −0.0179591 0.153501i
\(829\) 10.5211 0.365411 0.182706 0.983168i \(-0.441514\pi\)
0.182706 + 0.983168i \(0.441514\pi\)
\(830\) 0 0
\(831\) 11.3503 + 34.2469i 0.393738 + 1.18801i
\(832\) 14.6975 25.4569i 0.509546 0.882559i
\(833\) −12.9509 + 22.4315i −0.448721 + 0.777207i
\(834\) 7.66912 + 1.58310i 0.265560 + 0.0548182i
\(835\) 0 0
\(836\) 0.188549 0.00652109
\(837\) −12.4921 + 5.82773i −0.431791 + 0.201436i
\(838\) 33.6528 1.16252
\(839\) −7.59033 13.1468i −0.262047 0.453879i 0.704739 0.709467i \(-0.251064\pi\)
−0.966786 + 0.255588i \(0.917731\pi\)
\(840\) 0 0
\(841\) 5.58695 9.67689i 0.192654 0.333686i
\(842\) −8.74806 + 15.1521i −0.301478 + 0.522176i
\(843\) −2.57433 7.76744i −0.0886646 0.267525i
\(844\) −0.891034 1.54332i −0.0306707 0.0531232i
\(845\) 0 0
\(846\) 5.06525 3.77182i 0.174147 0.129678i
\(847\) −42.2622 −1.45215
\(848\) 24.5381 + 42.5012i 0.842641 + 1.45950i
\(849\) −26.6575 + 29.9581i −0.914882 + 1.02816i
\(850\) 0 0
\(851\) 9.89351 17.1361i 0.339145 0.587417i
\(852\) 1.64520 1.84890i 0.0563636 0.0633424i
\(853\) −5.24309 9.08131i −0.179520 0.310938i 0.762196 0.647346i \(-0.224121\pi\)
−0.941716 + 0.336408i \(0.890788\pi\)
\(854\) 14.3800 0.492074
\(855\) 0 0
\(856\) 4.38412 0.149846
\(857\) 4.42038 + 7.65631i 0.150997 + 0.261535i 0.931594 0.363500i \(-0.118418\pi\)
−0.780597 + 0.625034i \(0.785085\pi\)
\(858\) 0.852245 + 2.57145i 0.0290952 + 0.0877878i
\(859\) 1.03416 1.79121i 0.0352849 0.0611153i −0.847844 0.530246i \(-0.822099\pi\)
0.883129 + 0.469131i \(0.155433\pi\)
\(860\) 0 0
\(861\) 36.9968 + 7.63707i 1.26085 + 0.260271i
\(862\) −6.53326 11.3159i −0.222524 0.385423i
\(863\) −22.4434 −0.763984 −0.381992 0.924166i \(-0.624762\pi\)
−0.381992 + 0.924166i \(0.624762\pi\)
\(864\) 4.52915 2.11290i 0.154085 0.0718824i
\(865\) 0 0
\(866\) −6.90263 11.9557i −0.234561 0.406271i
\(867\) −10.8063 2.23070i −0.367003 0.0757586i
\(868\) −0.874171 + 1.51411i −0.0296713 + 0.0513922i
\(869\) 0.395947 0.685801i 0.0134316 0.0232642i
\(870\) 0 0
\(871\) 23.0159 + 39.8647i 0.779863 + 1.35076i
\(872\) 34.7758 1.17766
\(873\) −1.08597 9.28203i −0.0367544 0.314149i
\(874\) 54.4353 1.84130
\(875\) 0 0
\(876\) −0.0792152 + 0.0890235i −0.00267643 + 0.00300782i
\(877\) −13.9466 + 24.1562i −0.470943 + 0.815697i −0.999448 0.0332332i \(-0.989420\pi\)
0.528505 + 0.848930i \(0.322753\pi\)
\(878\) −14.3076 + 24.7815i −0.482857 + 0.836334i
\(879\) 19.4346 21.8409i 0.655512 0.736676i
\(880\) 0 0
\(881\) −9.22153 −0.310681 −0.155341 0.987861i \(-0.549647\pi\)
−0.155341 + 0.987861i \(0.549647\pi\)
\(882\) 32.2433 + 13.9041i 1.08569 + 0.468175i
\(883\) 49.2436 1.65718 0.828589 0.559858i \(-0.189144\pi\)
0.828589 + 0.559858i \(0.189144\pi\)
\(884\) 1.13352 + 1.96331i 0.0381243 + 0.0660333i
\(885\) 0 0
\(886\) −8.01396 + 13.8806i −0.269234 + 0.466328i
\(887\) −5.38403 + 9.32542i −0.180778 + 0.313117i −0.942146 0.335203i \(-0.891195\pi\)
0.761368 + 0.648320i \(0.224528\pi\)
\(888\) 10.4042 + 2.14768i 0.349142 + 0.0720716i
\(889\) 3.19482 + 5.53360i 0.107151 + 0.185591i
\(890\) 0 0
\(891\) 0.671335 2.24424i 0.0224906 0.0751849i
\(892\) 0.670187 0.0224395
\(893\) 3.03586 + 5.25827i 0.101591 + 0.175961i
\(894\) 10.1503 + 2.09527i 0.339475 + 0.0700762i
\(895\) 0 0
\(896\) −24.2408 + 41.9863i −0.809829 + 1.40266i
\(897\) 19.3258 + 58.3109i 0.645268 + 1.94695i
\(898\) −0.987183 1.70985i −0.0329427 0.0570585i
\(899\) 11.2006 0.373561
\(900\) 0 0
\(901\) 37.1071 1.23622
\(902\) −1.08170 1.87356i −0.0360167 0.0623828i
\(903\) 40.3828 45.3829i 1.34386 1.51025i
\(904\) 1.79116 3.10239i 0.0595733 0.103184i
\(905\) 0 0
\(906\) 23.1032 25.9638i 0.767553 0.862590i
\(907\) 15.9852 + 27.6871i 0.530779 + 0.919336i 0.999355 + 0.0359130i \(0.0114339\pi\)
−0.468576 + 0.883423i \(0.655233\pi\)
\(908\) 0.823651 0.0273338
\(909\) −1.34066 11.4590i −0.0444670 0.380071i
\(910\) 0 0
\(911\) 5.04010 + 8.72970i 0.166986 + 0.289228i 0.937359 0.348366i \(-0.113263\pi\)
−0.770373 + 0.637594i \(0.779930\pi\)
\(912\) 9.98390 + 30.1241i 0.330600 + 0.997508i
\(913\) −0.596067 + 1.03242i −0.0197269 + 0.0341681i
\(914\) −14.8145 + 25.6595i −0.490021 + 0.848741i
\(915\) 0 0
\(916\) 1.60702 + 2.78343i 0.0530973 + 0.0919672i
\(917\) −50.9428 −1.68228
\(918\) 2.17108 24.8636i 0.0716564 0.820623i
\(919\) −29.7976 −0.982932 −0.491466 0.870897i \(-0.663539\pi\)
−0.491466 + 0.870897i \(0.663539\pi\)
\(920\) 0 0
\(921\) −38.5358 7.95476i −1.26980 0.262118i
\(922\) 24.8636 43.0650i 0.818839 1.41827i
\(923\) −17.0934 + 29.6067i −0.562637 + 0.974516i
\(924\) −0.0934688 0.282020i −0.00307490 0.00927779i
\(925\) 0 0
\(926\) −7.72776 −0.253950
\(927\) 10.1222 7.53749i 0.332458 0.247564i
\(928\) −4.06089 −0.133305
\(929\) 6.19275 + 10.7262i 0.203178 + 0.351914i 0.949551 0.313614i \(-0.101540\pi\)
−0.746373 + 0.665528i \(0.768206\pi\)
\(930\) 0 0
\(931\) −16.8795 + 29.2362i −0.553204 + 0.958177i
\(932\) 1.01453 1.75722i 0.0332321 0.0575597i
\(933\) −36.3765 + 40.8805i −1.19091 + 1.33837i
\(934\) −10.4689 18.1327i −0.342554 0.593321i
\(935\) 0 0
\(936\) −26.4530 + 19.6981i −0.864642 + 0.643853i
\(937\) −44.4280 −1.45140 −0.725699 0.688012i \(-0.758484\pi\)
−0.725699 + 0.688012i \(0.758484\pi\)
\(938\) −32.1377 55.6641i −1.04933 1.81750i
\(939\) 16.6192 + 50.1446i 0.542348 + 1.63641i
\(940\) 0 0
\(941\) −7.66617 + 13.2782i −0.249910 + 0.432857i −0.963501 0.267706i \(-0.913734\pi\)
0.713591 + 0.700563i \(0.247068\pi\)
\(942\) 5.15459 + 1.06404i 0.167946 + 0.0346682i
\(943\) −24.5290 42.4854i −0.798773 1.38352i
\(944\) 30.7189 0.999816
\(945\) 0 0
\(946\) −3.47894 −0.113110
\(947\) 10.8498 + 18.7925i 0.352572 + 0.610673i 0.986699 0.162556i \(-0.0519738\pi\)
−0.634127 + 0.773229i \(0.718640\pi\)
\(948\) −0.879833 0.181620i −0.0285756 0.00589873i
\(949\) 0.823037 1.42554i 0.0267169 0.0462751i
\(950\) 0 0
\(951\) −12.0363 36.3166i −0.390303 1.17765i
\(952\) 16.9857 + 29.4200i 0.550508 + 0.953509i
\(953\) −36.9099 −1.19563 −0.597815 0.801634i \(-0.703964\pi\)
−0.597815 + 0.801634i \(0.703964\pi\)
\(954\) −5.84552 49.9631i −0.189256 1.61762i
\(955\) 0 0
\(956\) 1.84368 + 3.19336i 0.0596290 + 0.103281i
\(957\) −1.26528 + 1.42194i −0.0409007 + 0.0459649i
\(958\) −15.0886 + 26.1342i −0.487490 + 0.844357i
\(959\) −39.2243 + 67.9385i −1.26662 + 2.19385i
\(960\) 0 0
\(961\) 11.9812 + 20.7520i 0.386490 + 0.669420i
\(962\) 13.6743 0.440876
\(963\) −4.48079 1.93223i −0.144391 0.0622652i
\(964\) 0.664581 0.0214047
\(965\) 0 0
\(966\) −26.9851 81.4212i −0.868231 2.61968i
\(967\) −10.6691 + 18.4794i −0.343095 + 0.594258i −0.985006 0.172521i \(-0.944809\pi\)
0.641911 + 0.766779i \(0.278142\pi\)
\(968\) −14.7331 + 25.5185i −0.473541 + 0.820197i
\(969\) 23.5001 + 4.85101i 0.754932 + 0.155837i
\(970\) 0 0
\(971\) −42.5851 −1.36662 −0.683311 0.730128i \(-0.739460\pi\)
−0.683311 + 0.730128i \(0.739460\pi\)
\(972\) −2.65636 + 0.0780359i −0.0852027 + 0.00250300i
\(973\) 11.8635 0.380325
\(974\) −23.0973 40.0057i −0.740085 1.28186i
\(975\) 0 0
\(976\) 5.44349 9.42840i 0.174242 0.301796i
\(977\) 24.4696 42.3826i 0.782852 1.35594i −0.147423 0.989074i \(-0.547098\pi\)
0.930274 0.366865i \(-0.119569\pi\)
\(978\) 2.81393 + 8.49036i 0.0899795 + 0.271492i
\(979\) −0.934101 1.61791i −0.0298540 0.0517087i
\(980\) 0 0
\(981\) −35.5426 15.3268i −1.13479 0.489349i
\(982\) −15.3102 −0.488567
\(983\) −18.0545 31.2712i −0.575848 0.997398i −0.995949 0.0899205i \(-0.971339\pi\)
0.420101 0.907477i \(-0.361995\pi\)
\(984\) 17.5089 19.6768i 0.558164 0.627274i
\(985\) 0 0
\(986\) −10.1398 + 17.5627i −0.322918 + 0.559310i
\(987\) 6.36005 7.14754i 0.202443 0.227509i
\(988\) 1.47737 + 2.55888i 0.0470014 + 0.0814088i
\(989\) −78.8896 −2.50854
\(990\) 0 0
\(991\) 32.0054 1.01669 0.508343 0.861155i \(-0.330258\pi\)
0.508343 + 0.861155i \(0.330258\pi\)
\(992\) 1.27578 + 2.20972i 0.0405061 + 0.0701586i
\(993\) 16.1316 + 48.6733i 0.511921 + 1.54460i
\(994\) 23.8680 41.3406i 0.757048 1.31125i
\(995\) 0 0
\(996\) 1.32452 + 0.273414i 0.0419690 + 0.00866345i
\(997\) −25.8840 44.8324i −0.819754 1.41986i −0.905863 0.423570i \(-0.860777\pi\)
0.0861095 0.996286i \(-0.472557\pi\)
\(998\) −5.63624 −0.178412
\(999\) −9.68703 6.78051i −0.306484 0.214526i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.2.e.c.76.2 8
3.2 odd 2 675.2.e.e.226.3 8
5.2 odd 4 225.2.k.c.49.6 16
5.3 odd 4 225.2.k.c.49.3 16
5.4 even 2 225.2.e.e.76.3 yes 8
9.2 odd 6 675.2.e.e.451.3 8
9.4 even 3 2025.2.a.y.1.3 4
9.5 odd 6 2025.2.a.p.1.2 4
9.7 even 3 inner 225.2.e.c.151.2 yes 8
15.2 even 4 675.2.k.c.199.3 16
15.8 even 4 675.2.k.c.199.6 16
15.14 odd 2 675.2.e.c.226.2 8
45.2 even 12 675.2.k.c.424.6 16
45.4 even 6 2025.2.a.q.1.2 4
45.7 odd 12 225.2.k.c.124.3 16
45.13 odd 12 2025.2.b.n.649.3 8
45.14 odd 6 2025.2.a.z.1.3 4
45.22 odd 12 2025.2.b.n.649.6 8
45.23 even 12 2025.2.b.o.649.6 8
45.29 odd 6 675.2.e.c.451.2 8
45.32 even 12 2025.2.b.o.649.3 8
45.34 even 6 225.2.e.e.151.3 yes 8
45.38 even 12 675.2.k.c.424.3 16
45.43 odd 12 225.2.k.c.124.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.e.c.76.2 8 1.1 even 1 trivial
225.2.e.c.151.2 yes 8 9.7 even 3 inner
225.2.e.e.76.3 yes 8 5.4 even 2
225.2.e.e.151.3 yes 8 45.34 even 6
225.2.k.c.49.3 16 5.3 odd 4
225.2.k.c.49.6 16 5.2 odd 4
225.2.k.c.124.3 16 45.7 odd 12
225.2.k.c.124.6 16 45.43 odd 12
675.2.e.c.226.2 8 15.14 odd 2
675.2.e.c.451.2 8 45.29 odd 6
675.2.e.e.226.3 8 3.2 odd 2
675.2.e.e.451.3 8 9.2 odd 6
675.2.k.c.199.3 16 15.2 even 4
675.2.k.c.199.6 16 15.8 even 4
675.2.k.c.424.3 16 45.38 even 12
675.2.k.c.424.6 16 45.2 even 12
2025.2.a.p.1.2 4 9.5 odd 6
2025.2.a.q.1.2 4 45.4 even 6
2025.2.a.y.1.3 4 9.4 even 3
2025.2.a.z.1.3 4 45.14 odd 6
2025.2.b.n.649.3 8 45.13 odd 12
2025.2.b.n.649.6 8 45.22 odd 12
2025.2.b.o.649.3 8 45.32 even 12
2025.2.b.o.649.6 8 45.23 even 12