Defining parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(225, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 44 | 28 |
Cusp forms | 48 | 32 | 16 |
Eisenstein series | 24 | 12 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(225, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
225.2.e.a | $2$ | $1.797$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(3\) | \(0\) | \(-3\) | \(q+(1-\zeta_{6})q^{2}+(2-\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\) |
225.2.e.b | $6$ | $1.797$ | 6.0.954288.1 | None | \(1\) | \(-1\) | \(0\) | \(5\) | \(q+(\beta _{1}-\beta _{2}+\beta _{4}+\beta _{5})q^{2}-\beta _{4}q^{3}+\cdots\) |
225.2.e.c | $8$ | $1.797$ | 8.0.1223810289.2 | None | \(-2\) | \(1\) | \(0\) | \(1\) | \(q-\beta _{1}q^{2}+(-\beta _{4}+\beta _{7})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\) |
225.2.e.d | $8$ | $1.797$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_{7} q^{2}+(-\beta_{7}+\beta_{6})q^{3}-\beta_{2} q^{4}+\cdots\) |
225.2.e.e | $8$ | $1.797$ | 8.0.1223810289.2 | None | \(2\) | \(-1\) | \(0\) | \(-1\) | \(q+\beta _{1}q^{2}+(\beta _{4}-\beta _{7})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(225, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)