Properties

Label 225.2.e
Level $225$
Weight $2$
Character orbit 225.e
Rep. character $\chi_{225}(76,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $32$
Newform subspaces $5$
Sturm bound $60$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(60\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(225, [\chi])\).

Total New Old
Modular forms 72 44 28
Cusp forms 48 32 16
Eisenstein series 24 12 12

Trace form

\( 32 q + 2 q^{2} + 2 q^{3} - 12 q^{4} + 2 q^{7} + 6 q^{9} - 6 q^{11} - 14 q^{12} + 2 q^{13} + 6 q^{14} - 8 q^{16} - 4 q^{17} + 20 q^{18} + 8 q^{19} - 18 q^{21} - 6 q^{22} + 6 q^{23} - 54 q^{24} - 24 q^{26}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(225, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
225.2.e.a 225.e 9.c $2$ $1.797$ \(\Q(\sqrt{-3}) \) None 45.2.e.a \(1\) \(3\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(2-\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
225.2.e.b 225.e 9.c $6$ $1.797$ 6.0.954288.1 None 45.2.e.b \(1\) \(-1\) \(0\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{2}+\beta _{4}+\beta _{5})q^{2}-\beta _{4}q^{3}+\cdots\)
225.2.e.c 225.e 9.c $8$ $1.797$ 8.0.1223810289.2 None 225.2.e.c \(-2\) \(1\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-\beta _{4}+\beta _{7})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\)
225.2.e.d 225.e 9.c $8$ $1.797$ \(\Q(\zeta_{24})\) None 45.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{7} q^{2}+(-\beta_{7}+\beta_{6})q^{3}-\beta_{2} q^{4}+\cdots\)
225.2.e.e 225.e 9.c $8$ $1.797$ 8.0.1223810289.2 None 225.2.e.c \(2\) \(-1\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(\beta _{4}-\beta _{7})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(225, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)