Defining parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(225, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 8 | 34 |
Cusp forms | 18 | 6 | 12 |
Eisenstein series | 24 | 2 | 22 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(225, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
225.2.b.a | $2$ | $1.797$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2 i q^{2}-2 q^{4}+3 i q^{7}-2 q^{11}+\cdots\) |
225.2.b.b | $2$ | $1.797$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{2}+q^{4}+3 i q^{8}+4 q^{11}+2 i q^{13}+\cdots\) |
225.2.b.c | $2$ | $1.797$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2 q^{4}+\beta q^{7}-\beta q^{13}+4 q^{16}+q^{19}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(225, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)