Defining parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(225))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 10 | 32 |
Cusp forms | 19 | 7 | 12 |
Eisenstein series | 23 | 3 | 20 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(225))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
225.2.a.a | $1$ | $1.797$ | \(\Q\) | None | \(-2\) | \(0\) | \(0\) | \(-3\) | $-$ | $-$ | \(q-2q^{2}+2q^{4}-3q^{7}-2q^{11}+q^{13}+\cdots\) | |
225.2.a.b | $1$ | $1.797$ | \(\Q\) | None | \(-1\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | \(q-q^{2}-q^{4}+3q^{8}+4q^{11}+2q^{13}+\cdots\) | |
225.2.a.c | $1$ | $1.797$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-5\) | $+$ | $+$ | \(q-2q^{4}-5q^{7}-5q^{13}+4q^{16}-q^{19}+\cdots\) | |
225.2.a.d | $1$ | $1.797$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(5\) | $+$ | $-$ | \(q-2q^{4}+5q^{7}+5q^{13}+4q^{16}-q^{19}+\cdots\) | |
225.2.a.e | $1$ | $1.797$ | \(\Q\) | None | \(2\) | \(0\) | \(0\) | \(3\) | $-$ | $+$ | \(q+2q^{2}+2q^{4}+3q^{7}-2q^{11}-q^{13}+\cdots\) | |
225.2.a.f | $2$ | $1.797$ | \(\Q(\sqrt{5}) \) | \(\Q(\sqrt{-15}) \) | \(0\) | \(0\) | \(0\) | \(0\) | $+$ | $-$ | \(q-\beta q^{2}+3q^{4}-\beta q^{8}-q^{16}+2\beta q^{17}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(225))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(225)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)