Properties

Label 2240.4.a.bv.1.1
Level $2240$
Weight $4$
Character 2240.1
Self dual yes
Analytic conductor $132.164$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,4,Mod(1,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.14360.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.62456\) of defining polynomial
Character \(\chi\) \(=\) 2240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.38660 q^{3} -5.00000 q^{5} -7.00000 q^{7} +43.3350 q^{9} -30.1117 q^{11} -88.9295 q^{13} +41.9330 q^{15} -4.73699 q^{17} +124.818 q^{19} +58.7062 q^{21} -20.2680 q^{23} +25.0000 q^{25} -136.995 q^{27} -134.088 q^{29} +2.03767 q^{31} +252.534 q^{33} +35.0000 q^{35} +141.137 q^{37} +745.816 q^{39} +95.2784 q^{41} -298.646 q^{43} -216.675 q^{45} +129.054 q^{47} +49.0000 q^{49} +39.7272 q^{51} -388.429 q^{53} +150.558 q^{55} -1046.80 q^{57} +838.501 q^{59} -389.422 q^{61} -303.345 q^{63} +444.647 q^{65} +697.794 q^{67} +169.979 q^{69} +523.450 q^{71} +66.4684 q^{73} -209.665 q^{75} +210.782 q^{77} +526.982 q^{79} -21.1236 q^{81} +70.0265 q^{83} +23.6850 q^{85} +1124.54 q^{87} -9.27925 q^{89} +622.506 q^{91} -17.0891 q^{93} -624.089 q^{95} -4.19493 q^{97} -1304.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} - 15 q^{5} - 21 q^{7} + 81 q^{9} - 74 q^{11} - 44 q^{13} - 10 q^{15} - 52 q^{17} + 168 q^{19} - 14 q^{21} + 124 q^{23} + 75 q^{25} + 170 q^{27} - 332 q^{29} - 320 q^{31} - 106 q^{33} + 105 q^{35}+ \cdots - 3488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.38660 −1.61400 −0.807001 0.590551i \(-0.798911\pi\)
−0.807001 + 0.590551i \(0.798911\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 43.3350 1.60500
\(10\) 0 0
\(11\) −30.1117 −0.825364 −0.412682 0.910875i \(-0.635408\pi\)
−0.412682 + 0.910875i \(0.635408\pi\)
\(12\) 0 0
\(13\) −88.9295 −1.89728 −0.948639 0.316362i \(-0.897539\pi\)
−0.948639 + 0.316362i \(0.897539\pi\)
\(14\) 0 0
\(15\) 41.9330 0.721803
\(16\) 0 0
\(17\) −4.73699 −0.0675817 −0.0337909 0.999429i \(-0.510758\pi\)
−0.0337909 + 0.999429i \(0.510758\pi\)
\(18\) 0 0
\(19\) 124.818 1.50711 0.753557 0.657382i \(-0.228336\pi\)
0.753557 + 0.657382i \(0.228336\pi\)
\(20\) 0 0
\(21\) 58.7062 0.610035
\(22\) 0 0
\(23\) −20.2680 −0.183746 −0.0918731 0.995771i \(-0.529285\pi\)
−0.0918731 + 0.995771i \(0.529285\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −136.995 −0.976470
\(28\) 0 0
\(29\) −134.088 −0.858603 −0.429301 0.903161i \(-0.641240\pi\)
−0.429301 + 0.903161i \(0.641240\pi\)
\(30\) 0 0
\(31\) 2.03767 0.0118057 0.00590284 0.999983i \(-0.498121\pi\)
0.00590284 + 0.999983i \(0.498121\pi\)
\(32\) 0 0
\(33\) 252.534 1.33214
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) 141.137 0.627104 0.313552 0.949571i \(-0.398481\pi\)
0.313552 + 0.949571i \(0.398481\pi\)
\(38\) 0 0
\(39\) 745.816 3.06221
\(40\) 0 0
\(41\) 95.2784 0.362927 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(42\) 0 0
\(43\) −298.646 −1.05914 −0.529571 0.848266i \(-0.677647\pi\)
−0.529571 + 0.848266i \(0.677647\pi\)
\(44\) 0 0
\(45\) −216.675 −0.717778
\(46\) 0 0
\(47\) 129.054 0.400519 0.200260 0.979743i \(-0.435821\pi\)
0.200260 + 0.979743i \(0.435821\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 39.7272 0.109077
\(52\) 0 0
\(53\) −388.429 −1.00669 −0.503347 0.864084i \(-0.667898\pi\)
−0.503347 + 0.864084i \(0.667898\pi\)
\(54\) 0 0
\(55\) 150.558 0.369114
\(56\) 0 0
\(57\) −1046.80 −2.43248
\(58\) 0 0
\(59\) 838.501 1.85023 0.925114 0.379688i \(-0.123969\pi\)
0.925114 + 0.379688i \(0.123969\pi\)
\(60\) 0 0
\(61\) −389.422 −0.817384 −0.408692 0.912672i \(-0.634015\pi\)
−0.408692 + 0.912672i \(0.634015\pi\)
\(62\) 0 0
\(63\) −303.345 −0.606633
\(64\) 0 0
\(65\) 444.647 0.848488
\(66\) 0 0
\(67\) 697.794 1.27237 0.636187 0.771534i \(-0.280510\pi\)
0.636187 + 0.771534i \(0.280510\pi\)
\(68\) 0 0
\(69\) 169.979 0.296567
\(70\) 0 0
\(71\) 523.450 0.874959 0.437479 0.899228i \(-0.355871\pi\)
0.437479 + 0.899228i \(0.355871\pi\)
\(72\) 0 0
\(73\) 66.4684 0.106569 0.0532845 0.998579i \(-0.483031\pi\)
0.0532845 + 0.998579i \(0.483031\pi\)
\(74\) 0 0
\(75\) −209.665 −0.322800
\(76\) 0 0
\(77\) 210.782 0.311958
\(78\) 0 0
\(79\) 526.982 0.750508 0.375254 0.926922i \(-0.377556\pi\)
0.375254 + 0.926922i \(0.377556\pi\)
\(80\) 0 0
\(81\) −21.1236 −0.0289762
\(82\) 0 0
\(83\) 70.0265 0.0926074 0.0463037 0.998927i \(-0.485256\pi\)
0.0463037 + 0.998927i \(0.485256\pi\)
\(84\) 0 0
\(85\) 23.6850 0.0302235
\(86\) 0 0
\(87\) 1124.54 1.38579
\(88\) 0 0
\(89\) −9.27925 −0.0110517 −0.00552584 0.999985i \(-0.501759\pi\)
−0.00552584 + 0.999985i \(0.501759\pi\)
\(90\) 0 0
\(91\) 622.506 0.717103
\(92\) 0 0
\(93\) −17.0891 −0.0190544
\(94\) 0 0
\(95\) −624.089 −0.674002
\(96\) 0 0
\(97\) −4.19493 −0.00439104 −0.00219552 0.999998i \(-0.500699\pi\)
−0.00219552 + 0.999998i \(0.500699\pi\)
\(98\) 0 0
\(99\) −1304.89 −1.32471
\(100\) 0 0
\(101\) 865.844 0.853016 0.426508 0.904484i \(-0.359744\pi\)
0.426508 + 0.904484i \(0.359744\pi\)
\(102\) 0 0
\(103\) 1166.12 1.11554 0.557771 0.829995i \(-0.311657\pi\)
0.557771 + 0.829995i \(0.311657\pi\)
\(104\) 0 0
\(105\) −293.531 −0.272816
\(106\) 0 0
\(107\) 56.9652 0.0514676 0.0257338 0.999669i \(-0.491808\pi\)
0.0257338 + 0.999669i \(0.491808\pi\)
\(108\) 0 0
\(109\) 1358.89 1.19411 0.597055 0.802200i \(-0.296337\pi\)
0.597055 + 0.802200i \(0.296337\pi\)
\(110\) 0 0
\(111\) −1183.66 −1.01215
\(112\) 0 0
\(113\) 436.038 0.363000 0.181500 0.983391i \(-0.441905\pi\)
0.181500 + 0.983391i \(0.441905\pi\)
\(114\) 0 0
\(115\) 101.340 0.0821738
\(116\) 0 0
\(117\) −3853.76 −3.04513
\(118\) 0 0
\(119\) 33.1590 0.0255435
\(120\) 0 0
\(121\) −424.288 −0.318774
\(122\) 0 0
\(123\) −799.062 −0.585764
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1186.69 −0.829144 −0.414572 0.910017i \(-0.636069\pi\)
−0.414572 + 0.910017i \(0.636069\pi\)
\(128\) 0 0
\(129\) 2504.62 1.70946
\(130\) 0 0
\(131\) 1034.56 0.689997 0.344999 0.938603i \(-0.387879\pi\)
0.344999 + 0.938603i \(0.387879\pi\)
\(132\) 0 0
\(133\) −873.725 −0.569636
\(134\) 0 0
\(135\) 684.975 0.436691
\(136\) 0 0
\(137\) 646.219 0.402994 0.201497 0.979489i \(-0.435419\pi\)
0.201497 + 0.979489i \(0.435419\pi\)
\(138\) 0 0
\(139\) 506.484 0.309061 0.154530 0.987988i \(-0.450614\pi\)
0.154530 + 0.987988i \(0.450614\pi\)
\(140\) 0 0
\(141\) −1082.32 −0.646439
\(142\) 0 0
\(143\) 2677.81 1.56594
\(144\) 0 0
\(145\) 670.439 0.383979
\(146\) 0 0
\(147\) −410.943 −0.230572
\(148\) 0 0
\(149\) 1828.12 1.00513 0.502567 0.864538i \(-0.332389\pi\)
0.502567 + 0.864538i \(0.332389\pi\)
\(150\) 0 0
\(151\) −2975.17 −1.60342 −0.801708 0.597716i \(-0.796075\pi\)
−0.801708 + 0.597716i \(0.796075\pi\)
\(152\) 0 0
\(153\) −205.278 −0.108469
\(154\) 0 0
\(155\) −10.1883 −0.00527966
\(156\) 0 0
\(157\) 2131.74 1.08364 0.541820 0.840495i \(-0.317736\pi\)
0.541820 + 0.840495i \(0.317736\pi\)
\(158\) 0 0
\(159\) 3257.59 1.62481
\(160\) 0 0
\(161\) 141.876 0.0694495
\(162\) 0 0
\(163\) −593.939 −0.285404 −0.142702 0.989766i \(-0.545579\pi\)
−0.142702 + 0.989766i \(0.545579\pi\)
\(164\) 0 0
\(165\) −1262.67 −0.595751
\(166\) 0 0
\(167\) 2936.30 1.36059 0.680293 0.732941i \(-0.261853\pi\)
0.680293 + 0.732941i \(0.261853\pi\)
\(168\) 0 0
\(169\) 5711.45 2.59966
\(170\) 0 0
\(171\) 5408.98 2.41892
\(172\) 0 0
\(173\) −2347.31 −1.03158 −0.515788 0.856716i \(-0.672501\pi\)
−0.515788 + 0.856716i \(0.672501\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) −7032.17 −2.98627
\(178\) 0 0
\(179\) 3036.56 1.26795 0.633975 0.773354i \(-0.281422\pi\)
0.633975 + 0.773354i \(0.281422\pi\)
\(180\) 0 0
\(181\) 899.776 0.369502 0.184751 0.982785i \(-0.440852\pi\)
0.184751 + 0.982785i \(0.440852\pi\)
\(182\) 0 0
\(183\) 3265.93 1.31926
\(184\) 0 0
\(185\) −705.687 −0.280449
\(186\) 0 0
\(187\) 142.639 0.0557796
\(188\) 0 0
\(189\) 958.964 0.369071
\(190\) 0 0
\(191\) −416.168 −0.157659 −0.0788294 0.996888i \(-0.525118\pi\)
−0.0788294 + 0.996888i \(0.525118\pi\)
\(192\) 0 0
\(193\) −5181.05 −1.93233 −0.966166 0.257922i \(-0.916962\pi\)
−0.966166 + 0.257922i \(0.916962\pi\)
\(194\) 0 0
\(195\) −3729.08 −1.36946
\(196\) 0 0
\(197\) −1452.34 −0.525255 −0.262627 0.964897i \(-0.584589\pi\)
−0.262627 + 0.964897i \(0.584589\pi\)
\(198\) 0 0
\(199\) 1277.23 0.454978 0.227489 0.973781i \(-0.426948\pi\)
0.227489 + 0.973781i \(0.426948\pi\)
\(200\) 0 0
\(201\) −5852.12 −2.05361
\(202\) 0 0
\(203\) 938.615 0.324521
\(204\) 0 0
\(205\) −476.392 −0.162306
\(206\) 0 0
\(207\) −878.312 −0.294913
\(208\) 0 0
\(209\) −3758.47 −1.24392
\(210\) 0 0
\(211\) −3259.09 −1.06334 −0.531670 0.846951i \(-0.678436\pi\)
−0.531670 + 0.846951i \(0.678436\pi\)
\(212\) 0 0
\(213\) −4389.96 −1.41218
\(214\) 0 0
\(215\) 1493.23 0.473663
\(216\) 0 0
\(217\) −14.2637 −0.00446213
\(218\) 0 0
\(219\) −557.444 −0.172002
\(220\) 0 0
\(221\) 421.258 0.128221
\(222\) 0 0
\(223\) −4373.35 −1.31328 −0.656639 0.754205i \(-0.728023\pi\)
−0.656639 + 0.754205i \(0.728023\pi\)
\(224\) 0 0
\(225\) 1083.37 0.321000
\(226\) 0 0
\(227\) −61.1145 −0.0178692 −0.00893461 0.999960i \(-0.502844\pi\)
−0.00893461 + 0.999960i \(0.502844\pi\)
\(228\) 0 0
\(229\) −3019.41 −0.871302 −0.435651 0.900116i \(-0.643482\pi\)
−0.435651 + 0.900116i \(0.643482\pi\)
\(230\) 0 0
\(231\) −1767.74 −0.503501
\(232\) 0 0
\(233\) −3531.17 −0.992851 −0.496426 0.868079i \(-0.665354\pi\)
−0.496426 + 0.868079i \(0.665354\pi\)
\(234\) 0 0
\(235\) −645.268 −0.179118
\(236\) 0 0
\(237\) −4419.58 −1.21132
\(238\) 0 0
\(239\) −2282.62 −0.617785 −0.308893 0.951097i \(-0.599958\pi\)
−0.308893 + 0.951097i \(0.599958\pi\)
\(240\) 0 0
\(241\) −2215.68 −0.592217 −0.296109 0.955154i \(-0.595689\pi\)
−0.296109 + 0.955154i \(0.595689\pi\)
\(242\) 0 0
\(243\) 3876.02 1.02324
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) −11100.0 −2.85941
\(248\) 0 0
\(249\) −587.284 −0.149468
\(250\) 0 0
\(251\) −3082.55 −0.775174 −0.387587 0.921833i \(-0.626691\pi\)
−0.387587 + 0.921833i \(0.626691\pi\)
\(252\) 0 0
\(253\) 610.302 0.151658
\(254\) 0 0
\(255\) −198.636 −0.0487807
\(256\) 0 0
\(257\) −6032.40 −1.46417 −0.732083 0.681215i \(-0.761452\pi\)
−0.732083 + 0.681215i \(0.761452\pi\)
\(258\) 0 0
\(259\) −987.962 −0.237023
\(260\) 0 0
\(261\) −5810.69 −1.37806
\(262\) 0 0
\(263\) −5923.81 −1.38889 −0.694445 0.719546i \(-0.744350\pi\)
−0.694445 + 0.719546i \(0.744350\pi\)
\(264\) 0 0
\(265\) 1942.14 0.450207
\(266\) 0 0
\(267\) 77.8213 0.0178374
\(268\) 0 0
\(269\) −3252.80 −0.737273 −0.368637 0.929574i \(-0.620175\pi\)
−0.368637 + 0.929574i \(0.620175\pi\)
\(270\) 0 0
\(271\) 6246.26 1.40012 0.700061 0.714083i \(-0.253156\pi\)
0.700061 + 0.714083i \(0.253156\pi\)
\(272\) 0 0
\(273\) −5220.71 −1.15741
\(274\) 0 0
\(275\) −752.792 −0.165073
\(276\) 0 0
\(277\) 1572.17 0.341020 0.170510 0.985356i \(-0.445459\pi\)
0.170510 + 0.985356i \(0.445459\pi\)
\(278\) 0 0
\(279\) 88.3024 0.0189481
\(280\) 0 0
\(281\) −7846.03 −1.66567 −0.832837 0.553518i \(-0.813285\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(282\) 0 0
\(283\) 6265.58 1.31608 0.658039 0.752984i \(-0.271386\pi\)
0.658039 + 0.752984i \(0.271386\pi\)
\(284\) 0 0
\(285\) 5233.98 1.08784
\(286\) 0 0
\(287\) −666.949 −0.137173
\(288\) 0 0
\(289\) −4890.56 −0.995433
\(290\) 0 0
\(291\) 35.1812 0.00708714
\(292\) 0 0
\(293\) 7264.99 1.44855 0.724276 0.689511i \(-0.242174\pi\)
0.724276 + 0.689511i \(0.242174\pi\)
\(294\) 0 0
\(295\) −4192.50 −0.827448
\(296\) 0 0
\(297\) 4125.14 0.805943
\(298\) 0 0
\(299\) 1802.42 0.348617
\(300\) 0 0
\(301\) 2090.52 0.400318
\(302\) 0 0
\(303\) −7261.48 −1.37677
\(304\) 0 0
\(305\) 1947.11 0.365545
\(306\) 0 0
\(307\) 1328.32 0.246943 0.123471 0.992348i \(-0.460597\pi\)
0.123471 + 0.992348i \(0.460597\pi\)
\(308\) 0 0
\(309\) −9779.75 −1.80049
\(310\) 0 0
\(311\) −4868.68 −0.887709 −0.443855 0.896099i \(-0.646389\pi\)
−0.443855 + 0.896099i \(0.646389\pi\)
\(312\) 0 0
\(313\) 7733.39 1.39654 0.698270 0.715835i \(-0.253954\pi\)
0.698270 + 0.715835i \(0.253954\pi\)
\(314\) 0 0
\(315\) 1516.72 0.271294
\(316\) 0 0
\(317\) 8175.03 1.44844 0.724220 0.689569i \(-0.242200\pi\)
0.724220 + 0.689569i \(0.242200\pi\)
\(318\) 0 0
\(319\) 4037.61 0.708660
\(320\) 0 0
\(321\) −477.744 −0.0830688
\(322\) 0 0
\(323\) −591.261 −0.101853
\(324\) 0 0
\(325\) −2223.24 −0.379455
\(326\) 0 0
\(327\) −11396.5 −1.92729
\(328\) 0 0
\(329\) −903.375 −0.151382
\(330\) 0 0
\(331\) −2040.76 −0.338884 −0.169442 0.985540i \(-0.554197\pi\)
−0.169442 + 0.985540i \(0.554197\pi\)
\(332\) 0 0
\(333\) 6116.19 1.00650
\(334\) 0 0
\(335\) −3488.97 −0.569023
\(336\) 0 0
\(337\) 7349.73 1.18803 0.594013 0.804455i \(-0.297543\pi\)
0.594013 + 0.804455i \(0.297543\pi\)
\(338\) 0 0
\(339\) −3656.87 −0.585882
\(340\) 0 0
\(341\) −61.3576 −0.00974399
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −849.896 −0.132629
\(346\) 0 0
\(347\) −12069.9 −1.86728 −0.933642 0.358207i \(-0.883388\pi\)
−0.933642 + 0.358207i \(0.883388\pi\)
\(348\) 0 0
\(349\) 4484.96 0.687892 0.343946 0.938989i \(-0.388236\pi\)
0.343946 + 0.938989i \(0.388236\pi\)
\(350\) 0 0
\(351\) 12182.9 1.85263
\(352\) 0 0
\(353\) −12762.5 −1.92430 −0.962151 0.272517i \(-0.912144\pi\)
−0.962151 + 0.272517i \(0.912144\pi\)
\(354\) 0 0
\(355\) −2617.25 −0.391293
\(356\) 0 0
\(357\) −278.091 −0.0412272
\(358\) 0 0
\(359\) 2419.42 0.355689 0.177844 0.984059i \(-0.443088\pi\)
0.177844 + 0.984059i \(0.443088\pi\)
\(360\) 0 0
\(361\) 8720.49 1.27139
\(362\) 0 0
\(363\) 3558.33 0.514501
\(364\) 0 0
\(365\) −332.342 −0.0476591
\(366\) 0 0
\(367\) 7129.74 1.01409 0.507043 0.861921i \(-0.330739\pi\)
0.507043 + 0.861921i \(0.330739\pi\)
\(368\) 0 0
\(369\) 4128.89 0.582497
\(370\) 0 0
\(371\) 2719.00 0.380495
\(372\) 0 0
\(373\) −11596.9 −1.60983 −0.804914 0.593391i \(-0.797789\pi\)
−0.804914 + 0.593391i \(0.797789\pi\)
\(374\) 0 0
\(375\) 1048.32 0.144361
\(376\) 0 0
\(377\) 11924.4 1.62901
\(378\) 0 0
\(379\) −12770.8 −1.73085 −0.865424 0.501040i \(-0.832951\pi\)
−0.865424 + 0.501040i \(0.832951\pi\)
\(380\) 0 0
\(381\) 9952.25 1.33824
\(382\) 0 0
\(383\) −7470.10 −0.996617 −0.498308 0.867000i \(-0.666045\pi\)
−0.498308 + 0.867000i \(0.666045\pi\)
\(384\) 0 0
\(385\) −1053.91 −0.139512
\(386\) 0 0
\(387\) −12941.8 −1.69992
\(388\) 0 0
\(389\) −8749.77 −1.14044 −0.570220 0.821492i \(-0.693142\pi\)
−0.570220 + 0.821492i \(0.693142\pi\)
\(390\) 0 0
\(391\) 96.0092 0.0124179
\(392\) 0 0
\(393\) −8676.41 −1.11366
\(394\) 0 0
\(395\) −2634.91 −0.335637
\(396\) 0 0
\(397\) −5375.25 −0.679537 −0.339769 0.940509i \(-0.610349\pi\)
−0.339769 + 0.940509i \(0.610349\pi\)
\(398\) 0 0
\(399\) 7327.58 0.919393
\(400\) 0 0
\(401\) 7361.33 0.916727 0.458363 0.888765i \(-0.348436\pi\)
0.458363 + 0.888765i \(0.348436\pi\)
\(402\) 0 0
\(403\) −181.209 −0.0223987
\(404\) 0 0
\(405\) 105.618 0.0129585
\(406\) 0 0
\(407\) −4249.88 −0.517589
\(408\) 0 0
\(409\) −2612.45 −0.315837 −0.157919 0.987452i \(-0.550478\pi\)
−0.157919 + 0.987452i \(0.550478\pi\)
\(410\) 0 0
\(411\) −5419.57 −0.650433
\(412\) 0 0
\(413\) −5869.51 −0.699321
\(414\) 0 0
\(415\) −350.133 −0.0414153
\(416\) 0 0
\(417\) −4247.68 −0.498824
\(418\) 0 0
\(419\) 4398.21 0.512808 0.256404 0.966570i \(-0.417462\pi\)
0.256404 + 0.966570i \(0.417462\pi\)
\(420\) 0 0
\(421\) −9723.32 −1.12562 −0.562810 0.826587i \(-0.690280\pi\)
−0.562810 + 0.826587i \(0.690280\pi\)
\(422\) 0 0
\(423\) 5592.54 0.642833
\(424\) 0 0
\(425\) −118.425 −0.0135163
\(426\) 0 0
\(427\) 2725.96 0.308942
\(428\) 0 0
\(429\) −22457.7 −2.52744
\(430\) 0 0
\(431\) 14314.5 1.59978 0.799892 0.600144i \(-0.204890\pi\)
0.799892 + 0.600144i \(0.204890\pi\)
\(432\) 0 0
\(433\) −2373.62 −0.263438 −0.131719 0.991287i \(-0.542050\pi\)
−0.131719 + 0.991287i \(0.542050\pi\)
\(434\) 0 0
\(435\) −5622.70 −0.619742
\(436\) 0 0
\(437\) −2529.80 −0.276927
\(438\) 0 0
\(439\) 9533.46 1.03646 0.518231 0.855240i \(-0.326591\pi\)
0.518231 + 0.855240i \(0.326591\pi\)
\(440\) 0 0
\(441\) 2123.41 0.229286
\(442\) 0 0
\(443\) 6647.94 0.712987 0.356493 0.934298i \(-0.383972\pi\)
0.356493 + 0.934298i \(0.383972\pi\)
\(444\) 0 0
\(445\) 46.3963 0.00494246
\(446\) 0 0
\(447\) −15331.7 −1.62229
\(448\) 0 0
\(449\) −768.256 −0.0807489 −0.0403744 0.999185i \(-0.512855\pi\)
−0.0403744 + 0.999185i \(0.512855\pi\)
\(450\) 0 0
\(451\) −2868.99 −0.299547
\(452\) 0 0
\(453\) 24951.5 2.58791
\(454\) 0 0
\(455\) −3112.53 −0.320698
\(456\) 0 0
\(457\) −3323.50 −0.340190 −0.170095 0.985428i \(-0.554407\pi\)
−0.170095 + 0.985428i \(0.554407\pi\)
\(458\) 0 0
\(459\) 648.944 0.0659915
\(460\) 0 0
\(461\) 18840.7 1.90347 0.951733 0.306926i \(-0.0993004\pi\)
0.951733 + 0.306926i \(0.0993004\pi\)
\(462\) 0 0
\(463\) 10759.1 1.07995 0.539977 0.841679i \(-0.318433\pi\)
0.539977 + 0.841679i \(0.318433\pi\)
\(464\) 0 0
\(465\) 85.4456 0.00852138
\(466\) 0 0
\(467\) 7441.70 0.737390 0.368695 0.929550i \(-0.379805\pi\)
0.368695 + 0.929550i \(0.379805\pi\)
\(468\) 0 0
\(469\) −4884.56 −0.480913
\(470\) 0 0
\(471\) −17878.0 −1.74899
\(472\) 0 0
\(473\) 8992.73 0.874178
\(474\) 0 0
\(475\) 3120.45 0.301423
\(476\) 0 0
\(477\) −16832.6 −1.61574
\(478\) 0 0
\(479\) −5691.97 −0.542949 −0.271475 0.962446i \(-0.587511\pi\)
−0.271475 + 0.962446i \(0.587511\pi\)
\(480\) 0 0
\(481\) −12551.3 −1.18979
\(482\) 0 0
\(483\) −1189.85 −0.112092
\(484\) 0 0
\(485\) 20.9746 0.00196373
\(486\) 0 0
\(487\) 2020.25 0.187980 0.0939899 0.995573i \(-0.470038\pi\)
0.0939899 + 0.995573i \(0.470038\pi\)
\(488\) 0 0
\(489\) 4981.12 0.460642
\(490\) 0 0
\(491\) 7636.02 0.701851 0.350925 0.936403i \(-0.385867\pi\)
0.350925 + 0.936403i \(0.385867\pi\)
\(492\) 0 0
\(493\) 635.173 0.0580259
\(494\) 0 0
\(495\) 6524.44 0.592428
\(496\) 0 0
\(497\) −3664.15 −0.330703
\(498\) 0 0
\(499\) 6284.56 0.563799 0.281900 0.959444i \(-0.409036\pi\)
0.281900 + 0.959444i \(0.409036\pi\)
\(500\) 0 0
\(501\) −24625.6 −2.19599
\(502\) 0 0
\(503\) −11310.9 −1.00264 −0.501319 0.865262i \(-0.667152\pi\)
−0.501319 + 0.865262i \(0.667152\pi\)
\(504\) 0 0
\(505\) −4329.22 −0.381481
\(506\) 0 0
\(507\) −47899.7 −4.19586
\(508\) 0 0
\(509\) −10712.7 −0.932876 −0.466438 0.884554i \(-0.654463\pi\)
−0.466438 + 0.884554i \(0.654463\pi\)
\(510\) 0 0
\(511\) −465.279 −0.0402793
\(512\) 0 0
\(513\) −17099.4 −1.47165
\(514\) 0 0
\(515\) −5830.58 −0.498886
\(516\) 0 0
\(517\) −3886.02 −0.330574
\(518\) 0 0
\(519\) 19685.9 1.66496
\(520\) 0 0
\(521\) 17721.9 1.49023 0.745116 0.666935i \(-0.232394\pi\)
0.745116 + 0.666935i \(0.232394\pi\)
\(522\) 0 0
\(523\) 237.193 0.0198312 0.00991562 0.999951i \(-0.496844\pi\)
0.00991562 + 0.999951i \(0.496844\pi\)
\(524\) 0 0
\(525\) 1467.65 0.122007
\(526\) 0 0
\(527\) −9.65243 −0.000797849 0
\(528\) 0 0
\(529\) −11756.2 −0.966237
\(530\) 0 0
\(531\) 36336.4 2.96962
\(532\) 0 0
\(533\) −8473.06 −0.688572
\(534\) 0 0
\(535\) −284.826 −0.0230170
\(536\) 0 0
\(537\) −25466.4 −2.04647
\(538\) 0 0
\(539\) −1475.47 −0.117909
\(540\) 0 0
\(541\) 5352.94 0.425399 0.212699 0.977118i \(-0.431774\pi\)
0.212699 + 0.977118i \(0.431774\pi\)
\(542\) 0 0
\(543\) −7546.06 −0.596376
\(544\) 0 0
\(545\) −6794.45 −0.534022
\(546\) 0 0
\(547\) −192.162 −0.0150206 −0.00751030 0.999972i \(-0.502391\pi\)
−0.00751030 + 0.999972i \(0.502391\pi\)
\(548\) 0 0
\(549\) −16875.6 −1.31190
\(550\) 0 0
\(551\) −16736.5 −1.29401
\(552\) 0 0
\(553\) −3688.87 −0.283665
\(554\) 0 0
\(555\) 5918.31 0.452646
\(556\) 0 0
\(557\) 4850.62 0.368990 0.184495 0.982833i \(-0.440935\pi\)
0.184495 + 0.982833i \(0.440935\pi\)
\(558\) 0 0
\(559\) 26558.4 2.00949
\(560\) 0 0
\(561\) −1196.25 −0.0900283
\(562\) 0 0
\(563\) 9699.11 0.726055 0.363027 0.931778i \(-0.381743\pi\)
0.363027 + 0.931778i \(0.381743\pi\)
\(564\) 0 0
\(565\) −2180.19 −0.162338
\(566\) 0 0
\(567\) 147.865 0.0109520
\(568\) 0 0
\(569\) 3109.53 0.229100 0.114550 0.993417i \(-0.463457\pi\)
0.114550 + 0.993417i \(0.463457\pi\)
\(570\) 0 0
\(571\) −14476.2 −1.06097 −0.530483 0.847695i \(-0.677990\pi\)
−0.530483 + 0.847695i \(0.677990\pi\)
\(572\) 0 0
\(573\) 3490.23 0.254461
\(574\) 0 0
\(575\) −506.699 −0.0367492
\(576\) 0 0
\(577\) −2208.23 −0.159323 −0.0796617 0.996822i \(-0.525384\pi\)
−0.0796617 + 0.996822i \(0.525384\pi\)
\(578\) 0 0
\(579\) 43451.4 3.11879
\(580\) 0 0
\(581\) −490.186 −0.0350023
\(582\) 0 0
\(583\) 11696.2 0.830889
\(584\) 0 0
\(585\) 19268.8 1.36182
\(586\) 0 0
\(587\) −23988.7 −1.68675 −0.843374 0.537327i \(-0.819434\pi\)
−0.843374 + 0.537327i \(0.819434\pi\)
\(588\) 0 0
\(589\) 254.338 0.0177925
\(590\) 0 0
\(591\) 12180.2 0.847762
\(592\) 0 0
\(593\) −15869.4 −1.09895 −0.549474 0.835511i \(-0.685172\pi\)
−0.549474 + 0.835511i \(0.685172\pi\)
\(594\) 0 0
\(595\) −165.795 −0.0114234
\(596\) 0 0
\(597\) −10711.6 −0.734335
\(598\) 0 0
\(599\) 15236.6 1.03932 0.519660 0.854373i \(-0.326059\pi\)
0.519660 + 0.854373i \(0.326059\pi\)
\(600\) 0 0
\(601\) 12258.8 0.832026 0.416013 0.909359i \(-0.363427\pi\)
0.416013 + 0.909359i \(0.363427\pi\)
\(602\) 0 0
\(603\) 30238.9 2.04216
\(604\) 0 0
\(605\) 2121.44 0.142560
\(606\) 0 0
\(607\) −23487.2 −1.57054 −0.785269 0.619155i \(-0.787475\pi\)
−0.785269 + 0.619155i \(0.787475\pi\)
\(608\) 0 0
\(609\) −7871.78 −0.523778
\(610\) 0 0
\(611\) −11476.7 −0.759896
\(612\) 0 0
\(613\) 22305.3 1.46966 0.734830 0.678251i \(-0.237262\pi\)
0.734830 + 0.678251i \(0.237262\pi\)
\(614\) 0 0
\(615\) 3995.31 0.261962
\(616\) 0 0
\(617\) 3285.91 0.214402 0.107201 0.994237i \(-0.465811\pi\)
0.107201 + 0.994237i \(0.465811\pi\)
\(618\) 0 0
\(619\) −11613.1 −0.754069 −0.377035 0.926199i \(-0.623056\pi\)
−0.377035 + 0.926199i \(0.623056\pi\)
\(620\) 0 0
\(621\) 2776.61 0.179423
\(622\) 0 0
\(623\) 64.9548 0.00417714
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 31520.8 2.00769
\(628\) 0 0
\(629\) −668.567 −0.0423808
\(630\) 0 0
\(631\) −6890.91 −0.434743 −0.217372 0.976089i \(-0.569748\pi\)
−0.217372 + 0.976089i \(0.569748\pi\)
\(632\) 0 0
\(633\) 27332.7 1.71623
\(634\) 0 0
\(635\) 5933.43 0.370804
\(636\) 0 0
\(637\) −4357.55 −0.271040
\(638\) 0 0
\(639\) 22683.7 1.40431
\(640\) 0 0
\(641\) 18769.3 1.15654 0.578269 0.815846i \(-0.303728\pi\)
0.578269 + 0.815846i \(0.303728\pi\)
\(642\) 0 0
\(643\) −3142.30 −0.192722 −0.0963609 0.995346i \(-0.530720\pi\)
−0.0963609 + 0.995346i \(0.530720\pi\)
\(644\) 0 0
\(645\) −12523.1 −0.764492
\(646\) 0 0
\(647\) −19038.1 −1.15683 −0.578413 0.815744i \(-0.696328\pi\)
−0.578413 + 0.815744i \(0.696328\pi\)
\(648\) 0 0
\(649\) −25248.7 −1.52711
\(650\) 0 0
\(651\) 119.624 0.00720188
\(652\) 0 0
\(653\) 20538.6 1.23084 0.615420 0.788199i \(-0.288986\pi\)
0.615420 + 0.788199i \(0.288986\pi\)
\(654\) 0 0
\(655\) −5172.78 −0.308576
\(656\) 0 0
\(657\) 2880.41 0.171043
\(658\) 0 0
\(659\) −937.046 −0.0553902 −0.0276951 0.999616i \(-0.508817\pi\)
−0.0276951 + 0.999616i \(0.508817\pi\)
\(660\) 0 0
\(661\) −21116.5 −1.24257 −0.621283 0.783586i \(-0.713388\pi\)
−0.621283 + 0.783586i \(0.713388\pi\)
\(662\) 0 0
\(663\) −3532.92 −0.206949
\(664\) 0 0
\(665\) 4368.62 0.254749
\(666\) 0 0
\(667\) 2717.69 0.157765
\(668\) 0 0
\(669\) 36677.5 2.11963
\(670\) 0 0
\(671\) 11726.2 0.674640
\(672\) 0 0
\(673\) 13825.9 0.791903 0.395952 0.918271i \(-0.370415\pi\)
0.395952 + 0.918271i \(0.370415\pi\)
\(674\) 0 0
\(675\) −3424.87 −0.195294
\(676\) 0 0
\(677\) 16928.4 0.961021 0.480510 0.876989i \(-0.340451\pi\)
0.480510 + 0.876989i \(0.340451\pi\)
\(678\) 0 0
\(679\) 29.3645 0.00165966
\(680\) 0 0
\(681\) 512.543 0.0288409
\(682\) 0 0
\(683\) −13817.3 −0.774091 −0.387045 0.922061i \(-0.626504\pi\)
−0.387045 + 0.922061i \(0.626504\pi\)
\(684\) 0 0
\(685\) −3231.09 −0.180224
\(686\) 0 0
\(687\) 25322.6 1.40628
\(688\) 0 0
\(689\) 34542.8 1.90998
\(690\) 0 0
\(691\) −23671.6 −1.30320 −0.651600 0.758563i \(-0.725902\pi\)
−0.651600 + 0.758563i \(0.725902\pi\)
\(692\) 0 0
\(693\) 9134.22 0.500693
\(694\) 0 0
\(695\) −2532.42 −0.138216
\(696\) 0 0
\(697\) −451.333 −0.0245272
\(698\) 0 0
\(699\) 29614.5 1.60246
\(700\) 0 0
\(701\) 17009.7 0.916472 0.458236 0.888831i \(-0.348481\pi\)
0.458236 + 0.888831i \(0.348481\pi\)
\(702\) 0 0
\(703\) 17616.5 0.945117
\(704\) 0 0
\(705\) 5411.60 0.289096
\(706\) 0 0
\(707\) −6060.91 −0.322410
\(708\) 0 0
\(709\) −22038.9 −1.16740 −0.583701 0.811969i \(-0.698396\pi\)
−0.583701 + 0.811969i \(0.698396\pi\)
\(710\) 0 0
\(711\) 22836.8 1.20456
\(712\) 0 0
\(713\) −41.2994 −0.00216925
\(714\) 0 0
\(715\) −13389.1 −0.700312
\(716\) 0 0
\(717\) 19143.4 0.997106
\(718\) 0 0
\(719\) −7287.44 −0.377991 −0.188996 0.981978i \(-0.560523\pi\)
−0.188996 + 0.981978i \(0.560523\pi\)
\(720\) 0 0
\(721\) −8162.82 −0.421636
\(722\) 0 0
\(723\) 18582.0 0.955839
\(724\) 0 0
\(725\) −3352.20 −0.171721
\(726\) 0 0
\(727\) 29676.7 1.51396 0.756980 0.653438i \(-0.226674\pi\)
0.756980 + 0.653438i \(0.226674\pi\)
\(728\) 0 0
\(729\) −31936.3 −1.62253
\(730\) 0 0
\(731\) 1414.68 0.0715786
\(732\) 0 0
\(733\) −23111.8 −1.16460 −0.582300 0.812974i \(-0.697847\pi\)
−0.582300 + 0.812974i \(0.697847\pi\)
\(734\) 0 0
\(735\) 2054.72 0.103115
\(736\) 0 0
\(737\) −21011.7 −1.05017
\(738\) 0 0
\(739\) −31171.4 −1.55164 −0.775818 0.630957i \(-0.782662\pi\)
−0.775818 + 0.630957i \(0.782662\pi\)
\(740\) 0 0
\(741\) 93091.1 4.61510
\(742\) 0 0
\(743\) 31324.4 1.54668 0.773338 0.633993i \(-0.218585\pi\)
0.773338 + 0.633993i \(0.218585\pi\)
\(744\) 0 0
\(745\) −9140.58 −0.449510
\(746\) 0 0
\(747\) 3034.60 0.148635
\(748\) 0 0
\(749\) −398.756 −0.0194529
\(750\) 0 0
\(751\) −4032.20 −0.195922 −0.0979608 0.995190i \(-0.531232\pi\)
−0.0979608 + 0.995190i \(0.531232\pi\)
\(752\) 0 0
\(753\) 25852.1 1.25113
\(754\) 0 0
\(755\) 14875.8 0.717069
\(756\) 0 0
\(757\) −34263.7 −1.64509 −0.822546 0.568699i \(-0.807447\pi\)
−0.822546 + 0.568699i \(0.807447\pi\)
\(758\) 0 0
\(759\) −5118.36 −0.244775
\(760\) 0 0
\(761\) 7265.88 0.346108 0.173054 0.984912i \(-0.444637\pi\)
0.173054 + 0.984912i \(0.444637\pi\)
\(762\) 0 0
\(763\) −9512.22 −0.451331
\(764\) 0 0
\(765\) 1026.39 0.0485087
\(766\) 0 0
\(767\) −74567.5 −3.51040
\(768\) 0 0
\(769\) 38116.2 1.78739 0.893695 0.448674i \(-0.148104\pi\)
0.893695 + 0.448674i \(0.148104\pi\)
\(770\) 0 0
\(771\) 50591.3 2.36317
\(772\) 0 0
\(773\) −16158.2 −0.751838 −0.375919 0.926652i \(-0.622673\pi\)
−0.375919 + 0.926652i \(0.622673\pi\)
\(774\) 0 0
\(775\) 50.9417 0.00236114
\(776\) 0 0
\(777\) 8285.64 0.382555
\(778\) 0 0
\(779\) 11892.4 0.546972
\(780\) 0 0
\(781\) −15761.9 −0.722160
\(782\) 0 0
\(783\) 18369.3 0.838400
\(784\) 0 0
\(785\) −10658.7 −0.484618
\(786\) 0 0
\(787\) 5092.49 0.230658 0.115329 0.993327i \(-0.463208\pi\)
0.115329 + 0.993327i \(0.463208\pi\)
\(788\) 0 0
\(789\) 49680.6 2.24167
\(790\) 0 0
\(791\) −3052.26 −0.137201
\(792\) 0 0
\(793\) 34631.1 1.55080
\(794\) 0 0
\(795\) −16288.0 −0.726635
\(796\) 0 0
\(797\) 34666.2 1.54070 0.770350 0.637621i \(-0.220081\pi\)
0.770350 + 0.637621i \(0.220081\pi\)
\(798\) 0 0
\(799\) −611.326 −0.0270678
\(800\) 0 0
\(801\) −402.116 −0.0177379
\(802\) 0 0
\(803\) −2001.47 −0.0879582
\(804\) 0 0
\(805\) −709.379 −0.0310588
\(806\) 0 0
\(807\) 27279.9 1.18996
\(808\) 0 0
\(809\) 15126.2 0.657365 0.328683 0.944440i \(-0.393395\pi\)
0.328683 + 0.944440i \(0.393395\pi\)
\(810\) 0 0
\(811\) 29416.5 1.27368 0.636840 0.770996i \(-0.280241\pi\)
0.636840 + 0.770996i \(0.280241\pi\)
\(812\) 0 0
\(813\) −52384.9 −2.25980
\(814\) 0 0
\(815\) 2969.69 0.127637
\(816\) 0 0
\(817\) −37276.3 −1.59625
\(818\) 0 0
\(819\) 26976.3 1.15095
\(820\) 0 0
\(821\) 15334.4 0.651856 0.325928 0.945395i \(-0.394323\pi\)
0.325928 + 0.945395i \(0.394323\pi\)
\(822\) 0 0
\(823\) 11003.7 0.466056 0.233028 0.972470i \(-0.425137\pi\)
0.233028 + 0.972470i \(0.425137\pi\)
\(824\) 0 0
\(825\) 6313.36 0.266428
\(826\) 0 0
\(827\) −3261.59 −0.137142 −0.0685711 0.997646i \(-0.521844\pi\)
−0.0685711 + 0.997646i \(0.521844\pi\)
\(828\) 0 0
\(829\) −5163.30 −0.216319 −0.108160 0.994134i \(-0.534496\pi\)
−0.108160 + 0.994134i \(0.534496\pi\)
\(830\) 0 0
\(831\) −13185.1 −0.550406
\(832\) 0 0
\(833\) −232.113 −0.00965453
\(834\) 0 0
\(835\) −14681.5 −0.608472
\(836\) 0 0
\(837\) −279.150 −0.0115279
\(838\) 0 0
\(839\) 5641.70 0.232149 0.116075 0.993241i \(-0.462969\pi\)
0.116075 + 0.993241i \(0.462969\pi\)
\(840\) 0 0
\(841\) −6409.46 −0.262801
\(842\) 0 0
\(843\) 65801.4 2.68840
\(844\) 0 0
\(845\) −28557.3 −1.16260
\(846\) 0 0
\(847\) 2970.01 0.120485
\(848\) 0 0
\(849\) −52546.8 −2.12415
\(850\) 0 0
\(851\) −2860.57 −0.115228
\(852\) 0 0
\(853\) 7799.52 0.313072 0.156536 0.987672i \(-0.449967\pi\)
0.156536 + 0.987672i \(0.449967\pi\)
\(854\) 0 0
\(855\) −27044.9 −1.08177
\(856\) 0 0
\(857\) −21540.0 −0.858568 −0.429284 0.903170i \(-0.641234\pi\)
−0.429284 + 0.903170i \(0.641234\pi\)
\(858\) 0 0
\(859\) 4447.97 0.176674 0.0883370 0.996091i \(-0.471845\pi\)
0.0883370 + 0.996091i \(0.471845\pi\)
\(860\) 0 0
\(861\) 5593.43 0.221398
\(862\) 0 0
\(863\) 9425.21 0.371770 0.185885 0.982571i \(-0.440485\pi\)
0.185885 + 0.982571i \(0.440485\pi\)
\(864\) 0 0
\(865\) 11736.5 0.461335
\(866\) 0 0
\(867\) 41015.2 1.60663
\(868\) 0 0
\(869\) −15868.3 −0.619442
\(870\) 0 0
\(871\) −62054.5 −2.41405
\(872\) 0 0
\(873\) −181.787 −0.00704761
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −22346.1 −0.860403 −0.430201 0.902733i \(-0.641557\pi\)
−0.430201 + 0.902733i \(0.641557\pi\)
\(878\) 0 0
\(879\) −60928.6 −2.33796
\(880\) 0 0
\(881\) 12074.9 0.461762 0.230881 0.972982i \(-0.425839\pi\)
0.230881 + 0.972982i \(0.425839\pi\)
\(882\) 0 0
\(883\) −30499.6 −1.16239 −0.581196 0.813764i \(-0.697415\pi\)
−0.581196 + 0.813764i \(0.697415\pi\)
\(884\) 0 0
\(885\) 35160.8 1.33550
\(886\) 0 0
\(887\) −23344.2 −0.883675 −0.441838 0.897095i \(-0.645673\pi\)
−0.441838 + 0.897095i \(0.645673\pi\)
\(888\) 0 0
\(889\) 8306.80 0.313387
\(890\) 0 0
\(891\) 636.068 0.0239159
\(892\) 0 0
\(893\) 16108.2 0.603628
\(894\) 0 0
\(895\) −15182.8 −0.567044
\(896\) 0 0
\(897\) −15116.2 −0.562669
\(898\) 0 0
\(899\) −273.227 −0.0101364
\(900\) 0 0
\(901\) 1839.98 0.0680341
\(902\) 0 0
\(903\) −17532.4 −0.646113
\(904\) 0 0
\(905\) −4498.88 −0.165246
\(906\) 0 0
\(907\) −15092.5 −0.552523 −0.276262 0.961082i \(-0.589096\pi\)
−0.276262 + 0.961082i \(0.589096\pi\)
\(908\) 0 0
\(909\) 37521.3 1.36909
\(910\) 0 0
\(911\) 15207.8 0.553081 0.276541 0.961002i \(-0.410812\pi\)
0.276541 + 0.961002i \(0.410812\pi\)
\(912\) 0 0
\(913\) −2108.62 −0.0764348
\(914\) 0 0
\(915\) −16329.6 −0.589990
\(916\) 0 0
\(917\) −7241.90 −0.260794
\(918\) 0 0
\(919\) −24818.1 −0.890831 −0.445415 0.895324i \(-0.646944\pi\)
−0.445415 + 0.895324i \(0.646944\pi\)
\(920\) 0 0
\(921\) −11140.1 −0.398566
\(922\) 0 0
\(923\) −46550.1 −1.66004
\(924\) 0 0
\(925\) 3528.44 0.125421
\(926\) 0 0
\(927\) 50533.7 1.79045
\(928\) 0 0
\(929\) 39906.4 1.40935 0.704675 0.709530i \(-0.251093\pi\)
0.704675 + 0.709530i \(0.251093\pi\)
\(930\) 0 0
\(931\) 6116.07 0.215302
\(932\) 0 0
\(933\) 40831.7 1.43276
\(934\) 0 0
\(935\) −713.194 −0.0249454
\(936\) 0 0
\(937\) 16923.0 0.590020 0.295010 0.955494i \(-0.404677\pi\)
0.295010 + 0.955494i \(0.404677\pi\)
\(938\) 0 0
\(939\) −64856.8 −2.25402
\(940\) 0 0
\(941\) 53014.1 1.83657 0.918285 0.395921i \(-0.129574\pi\)
0.918285 + 0.395921i \(0.129574\pi\)
\(942\) 0 0
\(943\) −1931.10 −0.0666864
\(944\) 0 0
\(945\) −4794.82 −0.165054
\(946\) 0 0
\(947\) −25798.9 −0.885271 −0.442636 0.896702i \(-0.645957\pi\)
−0.442636 + 0.896702i \(0.645957\pi\)
\(948\) 0 0
\(949\) −5911.00 −0.202191
\(950\) 0 0
\(951\) −68560.6 −2.33778
\(952\) 0 0
\(953\) −17942.7 −0.609885 −0.304943 0.952371i \(-0.598637\pi\)
−0.304943 + 0.952371i \(0.598637\pi\)
\(954\) 0 0
\(955\) 2080.84 0.0705072
\(956\) 0 0
\(957\) −33861.8 −1.14378
\(958\) 0 0
\(959\) −4523.53 −0.152317
\(960\) 0 0
\(961\) −29786.8 −0.999861
\(962\) 0 0
\(963\) 2468.59 0.0826055
\(964\) 0 0
\(965\) 25905.2 0.864165
\(966\) 0 0
\(967\) −19668.3 −0.654073 −0.327036 0.945012i \(-0.606050\pi\)
−0.327036 + 0.945012i \(0.606050\pi\)
\(968\) 0 0
\(969\) 4958.67 0.164392
\(970\) 0 0
\(971\) 6332.97 0.209304 0.104652 0.994509i \(-0.466627\pi\)
0.104652 + 0.994509i \(0.466627\pi\)
\(972\) 0 0
\(973\) −3545.39 −0.116814
\(974\) 0 0
\(975\) 18645.4 0.612441
\(976\) 0 0
\(977\) −11334.1 −0.371145 −0.185573 0.982631i \(-0.559414\pi\)
−0.185573 + 0.982631i \(0.559414\pi\)
\(978\) 0 0
\(979\) 279.414 0.00912166
\(980\) 0 0
\(981\) 58887.4 1.91655
\(982\) 0 0
\(983\) 37654.3 1.22175 0.610877 0.791725i \(-0.290817\pi\)
0.610877 + 0.791725i \(0.290817\pi\)
\(984\) 0 0
\(985\) 7261.72 0.234901
\(986\) 0 0
\(987\) 7576.24 0.244331
\(988\) 0 0
\(989\) 6052.95 0.194613
\(990\) 0 0
\(991\) 53441.5 1.71304 0.856522 0.516111i \(-0.172621\pi\)
0.856522 + 0.516111i \(0.172621\pi\)
\(992\) 0 0
\(993\) 17115.1 0.546959
\(994\) 0 0
\(995\) −6386.16 −0.203472
\(996\) 0 0
\(997\) −37919.3 −1.20453 −0.602266 0.798296i \(-0.705735\pi\)
−0.602266 + 0.798296i \(0.705735\pi\)
\(998\) 0 0
\(999\) −19335.1 −0.612348
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2240.4.a.bv.1.1 3
4.3 odd 2 2240.4.a.bt.1.3 3
8.3 odd 2 35.4.a.c.1.1 3
8.5 even 2 560.4.a.u.1.3 3
24.11 even 2 315.4.a.p.1.3 3
40.3 even 4 175.4.b.e.99.6 6
40.19 odd 2 175.4.a.f.1.3 3
40.27 even 4 175.4.b.e.99.1 6
56.3 even 6 245.4.e.n.226.3 6
56.11 odd 6 245.4.e.m.226.3 6
56.19 even 6 245.4.e.n.116.3 6
56.27 even 2 245.4.a.l.1.1 3
56.51 odd 6 245.4.e.m.116.3 6
120.59 even 2 1575.4.a.ba.1.1 3
168.83 odd 2 2205.4.a.bm.1.3 3
280.139 even 2 1225.4.a.y.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.1 3 8.3 odd 2
175.4.a.f.1.3 3 40.19 odd 2
175.4.b.e.99.1 6 40.27 even 4
175.4.b.e.99.6 6 40.3 even 4
245.4.a.l.1.1 3 56.27 even 2
245.4.e.m.116.3 6 56.51 odd 6
245.4.e.m.226.3 6 56.11 odd 6
245.4.e.n.116.3 6 56.19 even 6
245.4.e.n.226.3 6 56.3 even 6
315.4.a.p.1.3 3 24.11 even 2
560.4.a.u.1.3 3 8.5 even 2
1225.4.a.y.1.3 3 280.139 even 2
1575.4.a.ba.1.1 3 120.59 even 2
2205.4.a.bm.1.3 3 168.83 odd 2
2240.4.a.bt.1.3 3 4.3 odd 2
2240.4.a.bv.1.1 3 1.1 even 1 trivial