Properties

Label 2240.4.a.bo
Level $2240$
Weight $4$
Character orbit 2240.a
Self dual yes
Analytic conductor $132.164$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{3} + 5 q^{5} + 7 q^{7} + (2 \beta + 6) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta + 1) q^{3} + 5 q^{5} + 7 q^{7} + (2 \beta + 6) q^{9} + (8 \beta - 7) q^{11} + (\beta - 25) q^{13} + (5 \beta + 5) q^{15} + ( - 11 \beta - 25) q^{17} + ( - 11 \beta + 18) q^{19} + (7 \beta + 7) q^{21} + ( - 17 \beta - 122) q^{23} + 25 q^{25} + ( - 19 \beta + 43) q^{27} + (6 \beta + 13) q^{29} + ( - 45 \beta + 60) q^{31} + (\beta + 249) q^{33} + 35 q^{35} + ( - 15 \beta - 282) q^{37} + ( - 24 \beta + 7) q^{39} + ( - 31 \beta - 164) q^{41} + ( - 17 \beta - 130) q^{43} + (10 \beta + 30) q^{45} + ( - 33 \beta + 175) q^{47} + 49 q^{49} + ( - 36 \beta - 377) q^{51} + (32 \beta + 28) q^{53} + (40 \beta - 35) q^{55} + (7 \beta - 334) q^{57} - 616 q^{59} + ( - 27 \beta - 168) q^{61} + (14 \beta + 42) q^{63} + (5 \beta - 125) q^{65} + (16 \beta - 76) q^{67} + ( - 139 \beta - 666) q^{69} + 952 q^{71} + (86 \beta + 338) q^{73} + (25 \beta + 25) q^{75} + (56 \beta - 49) q^{77} + (62 \beta - 507) q^{79} + ( - 30 \beta - 727) q^{81} + ( - 150 \beta - 188) q^{83} + ( - 55 \beta - 125) q^{85} + (19 \beta + 205) q^{87} + ( - 11 \beta - 108) q^{89} + (7 \beta - 175) q^{91} + (15 \beta - 1380) q^{93} + ( - 55 \beta + 90) q^{95} + ( - 55 \beta + 1371) q^{97} + (34 \beta + 470) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 10 q^{5} + 14 q^{7} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + 10 q^{5} + 14 q^{7} + 12 q^{9} - 14 q^{11} - 50 q^{13} + 10 q^{15} - 50 q^{17} + 36 q^{19} + 14 q^{21} - 244 q^{23} + 50 q^{25} + 86 q^{27} + 26 q^{29} + 120 q^{31} + 498 q^{33} + 70 q^{35} - 564 q^{37} + 14 q^{39} - 328 q^{41} - 260 q^{43} + 60 q^{45} + 350 q^{47} + 98 q^{49} - 754 q^{51} + 56 q^{53} - 70 q^{55} - 668 q^{57} - 1232 q^{59} - 336 q^{61} + 84 q^{63} - 250 q^{65} - 152 q^{67} - 1332 q^{69} + 1904 q^{71} + 676 q^{73} + 50 q^{75} - 98 q^{77} - 1014 q^{79} - 1454 q^{81} - 376 q^{83} - 250 q^{85} + 410 q^{87} - 216 q^{89} - 350 q^{91} - 2760 q^{93} + 180 q^{95} + 2742 q^{97} + 940 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −4.65685 0 5.00000 0 7.00000 0 −5.31371 0
1.2 0 6.65685 0 5.00000 0 7.00000 0 17.3137 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.4.a.bo 2
4.b odd 2 1 2240.4.a.bn 2
8.b even 2 1 560.4.a.r 2
8.d odd 2 1 35.4.a.b 2
24.f even 2 1 315.4.a.f 2
40.e odd 2 1 175.4.a.c 2
40.k even 4 2 175.4.b.c 4
56.e even 2 1 245.4.a.k 2
56.k odd 6 2 245.4.e.h 4
56.m even 6 2 245.4.e.i 4
120.m even 2 1 1575.4.a.z 2
168.e odd 2 1 2205.4.a.u 2
280.n even 2 1 1225.4.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.a.b 2 8.d odd 2 1
175.4.a.c 2 40.e odd 2 1
175.4.b.c 4 40.k even 4 2
245.4.a.k 2 56.e even 2 1
245.4.e.h 4 56.k odd 6 2
245.4.e.i 4 56.m even 6 2
315.4.a.f 2 24.f even 2 1
560.4.a.r 2 8.b even 2 1
1225.4.a.m 2 280.n even 2 1
1575.4.a.z 2 120.m even 2 1
2205.4.a.u 2 168.e odd 2 1
2240.4.a.bn 2 4.b odd 2 1
2240.4.a.bo 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2240))\):

\( T_{3}^{2} - 2T_{3} - 31 \) Copy content Toggle raw display
\( T_{11}^{2} + 14T_{11} - 1999 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 31 \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 14T - 1999 \) Copy content Toggle raw display
$13$ \( T^{2} + 50T + 593 \) Copy content Toggle raw display
$17$ \( T^{2} + 50T - 3247 \) Copy content Toggle raw display
$19$ \( T^{2} - 36T - 3548 \) Copy content Toggle raw display
$23$ \( T^{2} + 244T + 5636 \) Copy content Toggle raw display
$29$ \( T^{2} - 26T - 983 \) Copy content Toggle raw display
$31$ \( T^{2} - 120T - 61200 \) Copy content Toggle raw display
$37$ \( T^{2} + 564T + 72324 \) Copy content Toggle raw display
$41$ \( T^{2} + 328T - 3856 \) Copy content Toggle raw display
$43$ \( T^{2} + 260T + 7652 \) Copy content Toggle raw display
$47$ \( T^{2} - 350T - 4223 \) Copy content Toggle raw display
$53$ \( T^{2} - 56T - 31984 \) Copy content Toggle raw display
$59$ \( (T + 616)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 336T + 4896 \) Copy content Toggle raw display
$67$ \( T^{2} + 152T - 2416 \) Copy content Toggle raw display
$71$ \( (T - 952)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 676T - 122428 \) Copy content Toggle raw display
$79$ \( T^{2} + 1014 T + 134041 \) Copy content Toggle raw display
$83$ \( T^{2} + 376T - 684656 \) Copy content Toggle raw display
$89$ \( T^{2} + 216T + 7792 \) Copy content Toggle raw display
$97$ \( T^{2} - 2742 T + 1782841 \) Copy content Toggle raw display
show more
show less