Properties

Label 2240.2.q
Level $2240$
Weight $2$
Character orbit 2240.q
Rep. character $\chi_{2240}(641,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $128$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2240, [\chi])\).

Total New Old
Modular forms 816 128 688
Cusp forms 720 128 592
Eisenstein series 96 0 96

Trace form

\( 128q - 64q^{9} + O(q^{10}) \) \( 128q - 64q^{9} - 32q^{13} + 32q^{21} - 64q^{25} - 32q^{29} + 32q^{37} + 16q^{53} - 32q^{61} - 80q^{81} - 16q^{89} + 16q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2240, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1120, [\chi])\)\(^{\oplus 2}\)