Properties

Label 2240.2.k.a.1791.1
Level $2240$
Weight $2$
Character 2240.1791
Analytic conductor $17.886$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,2,Mod(1791,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1791");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.8864900528\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1791.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2240.1791
Dual form 2240.2.k.a.1791.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} -1.00000i q^{5} +(1.73205 + 2.00000i) q^{7} +O(q^{10})\) \(q-1.73205 q^{3} -1.00000i q^{5} +(1.73205 + 2.00000i) q^{7} -3.73205i q^{11} +6.46410i q^{13} +1.73205i q^{15} -0.464102i q^{17} -6.00000 q^{19} +(-3.00000 - 3.46410i) q^{21} -5.46410i q^{23} -1.00000 q^{25} +5.19615 q^{27} +5.92820 q^{29} -6.00000 q^{31} +6.46410i q^{33} +(2.00000 - 1.73205i) q^{35} +2.53590 q^{37} -11.1962i q^{39} -3.46410i q^{41} -2.00000i q^{43} -1.73205 q^{47} +(-1.00000 + 6.92820i) q^{49} +0.803848i q^{51} -2.00000 q^{53} -3.73205 q^{55} +10.3923 q^{57} -3.46410 q^{59} +2.53590i q^{61} +6.46410 q^{65} -3.46410i q^{67} +9.46410i q^{69} +0.535898i q^{71} +0.928203i q^{73} +1.73205 q^{75} +(7.46410 - 6.46410i) q^{77} -2.66025i q^{79} -9.00000 q^{81} -8.53590 q^{83} -0.464102 q^{85} -10.2679 q^{87} -9.46410i q^{89} +(-12.9282 + 11.1962i) q^{91} +10.3923 q^{93} +6.00000i q^{95} -7.39230i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 24 q^{19} - 12 q^{21} - 4 q^{25} - 4 q^{29} - 24 q^{31} + 8 q^{35} + 24 q^{37} - 4 q^{49} - 8 q^{53} - 8 q^{55} + 12 q^{65} + 16 q^{77} - 36 q^{81} - 48 q^{83} + 12 q^{85} - 48 q^{87} - 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times\).

\(n\) \(897\) \(1471\) \(1541\) \(1921\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.73205 + 2.00000i 0.654654 + 0.755929i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.73205i 1.12526i −0.826710 0.562628i \(-0.809790\pi\)
0.826710 0.562628i \(-0.190210\pi\)
\(12\) 0 0
\(13\) 6.46410i 1.79282i 0.443227 + 0.896410i \(0.353834\pi\)
−0.443227 + 0.896410i \(0.646166\pi\)
\(14\) 0 0
\(15\) 1.73205i 0.447214i
\(16\) 0 0
\(17\) 0.464102i 0.112561i −0.998415 0.0562806i \(-0.982076\pi\)
0.998415 0.0562806i \(-0.0179241\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) −3.00000 3.46410i −0.654654 0.755929i
\(22\) 0 0
\(23\) 5.46410i 1.13934i −0.821872 0.569672i \(-0.807070\pi\)
0.821872 0.569672i \(-0.192930\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 5.19615 1.00000
\(28\) 0 0
\(29\) 5.92820 1.10084 0.550420 0.834888i \(-0.314468\pi\)
0.550420 + 0.834888i \(0.314468\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 6.46410i 1.12526i
\(34\) 0 0
\(35\) 2.00000 1.73205i 0.338062 0.292770i
\(36\) 0 0
\(37\) 2.53590 0.416899 0.208450 0.978033i \(-0.433158\pi\)
0.208450 + 0.978033i \(0.433158\pi\)
\(38\) 0 0
\(39\) 11.1962i 1.79282i
\(40\) 0 0
\(41\) 3.46410i 0.541002i −0.962720 0.270501i \(-0.912811\pi\)
0.962720 0.270501i \(-0.0871893\pi\)
\(42\) 0 0
\(43\) 2.00000i 0.304997i −0.988304 0.152499i \(-0.951268\pi\)
0.988304 0.152499i \(-0.0487319\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.73205 −0.252646 −0.126323 0.991989i \(-0.540318\pi\)
−0.126323 + 0.991989i \(0.540318\pi\)
\(48\) 0 0
\(49\) −1.00000 + 6.92820i −0.142857 + 0.989743i
\(50\) 0 0
\(51\) 0.803848i 0.112561i
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) −3.73205 −0.503230
\(56\) 0 0
\(57\) 10.3923 1.37649
\(58\) 0 0
\(59\) −3.46410 −0.450988 −0.225494 0.974245i \(-0.572400\pi\)
−0.225494 + 0.974245i \(0.572400\pi\)
\(60\) 0 0
\(61\) 2.53590i 0.324689i 0.986734 + 0.162344i \(0.0519055\pi\)
−0.986734 + 0.162344i \(0.948094\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.46410 0.801773
\(66\) 0 0
\(67\) 3.46410i 0.423207i −0.977356 0.211604i \(-0.932131\pi\)
0.977356 0.211604i \(-0.0678686\pi\)
\(68\) 0 0
\(69\) 9.46410i 1.13934i
\(70\) 0 0
\(71\) 0.535898i 0.0635994i 0.999494 + 0.0317997i \(0.0101239\pi\)
−0.999494 + 0.0317997i \(0.989876\pi\)
\(72\) 0 0
\(73\) 0.928203i 0.108638i 0.998524 + 0.0543190i \(0.0172988\pi\)
−0.998524 + 0.0543190i \(0.982701\pi\)
\(74\) 0 0
\(75\) 1.73205 0.200000
\(76\) 0 0
\(77\) 7.46410 6.46410i 0.850613 0.736653i
\(78\) 0 0
\(79\) 2.66025i 0.299302i −0.988739 0.149651i \(-0.952185\pi\)
0.988739 0.149651i \(-0.0478150\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) −8.53590 −0.936937 −0.468468 0.883480i \(-0.655194\pi\)
−0.468468 + 0.883480i \(0.655194\pi\)
\(84\) 0 0
\(85\) −0.464102 −0.0503389
\(86\) 0 0
\(87\) −10.2679 −1.10084
\(88\) 0 0
\(89\) 9.46410i 1.00319i −0.865102 0.501596i \(-0.832746\pi\)
0.865102 0.501596i \(-0.167254\pi\)
\(90\) 0 0
\(91\) −12.9282 + 11.1962i −1.35524 + 1.17368i
\(92\) 0 0
\(93\) 10.3923 1.07763
\(94\) 0 0
\(95\) 6.00000i 0.615587i
\(96\) 0 0
\(97\) 7.39230i 0.750575i −0.926908 0.375287i \(-0.877544\pi\)
0.926908 0.375287i \(-0.122456\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.53590i 0.849354i −0.905345 0.424677i \(-0.860388\pi\)
0.905345 0.424677i \(-0.139612\pi\)
\(102\) 0 0
\(103\) −17.1962 −1.69439 −0.847194 0.531284i \(-0.821710\pi\)
−0.847194 + 0.531284i \(0.821710\pi\)
\(104\) 0 0
\(105\) −3.46410 + 3.00000i −0.338062 + 0.292770i
\(106\) 0 0
\(107\) 18.3923i 1.77805i −0.457857 0.889026i \(-0.651383\pi\)
0.457857 0.889026i \(-0.348617\pi\)
\(108\) 0 0
\(109\) −15.9282 −1.52565 −0.762823 0.646608i \(-0.776187\pi\)
−0.762823 + 0.646608i \(0.776187\pi\)
\(110\) 0 0
\(111\) −4.39230 −0.416899
\(112\) 0 0
\(113\) −1.46410 −0.137731 −0.0688655 0.997626i \(-0.521938\pi\)
−0.0688655 + 0.997626i \(0.521938\pi\)
\(114\) 0 0
\(115\) −5.46410 −0.509530
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.928203 0.803848i 0.0850883 0.0736886i
\(120\) 0 0
\(121\) −2.92820 −0.266200
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 8.53590i 0.757438i −0.925512 0.378719i \(-0.876365\pi\)
0.925512 0.378719i \(-0.123635\pi\)
\(128\) 0 0
\(129\) 3.46410i 0.304997i
\(130\) 0 0
\(131\) −9.46410 −0.826882 −0.413441 0.910531i \(-0.635673\pi\)
−0.413441 + 0.910531i \(0.635673\pi\)
\(132\) 0 0
\(133\) −10.3923 12.0000i −0.901127 1.04053i
\(134\) 0 0
\(135\) 5.19615i 0.447214i
\(136\) 0 0
\(137\) −0.392305 −0.0335169 −0.0167584 0.999860i \(-0.505335\pi\)
−0.0167584 + 0.999860i \(0.505335\pi\)
\(138\) 0 0
\(139\) 6.92820 0.587643 0.293821 0.955860i \(-0.405073\pi\)
0.293821 + 0.955860i \(0.405073\pi\)
\(140\) 0 0
\(141\) 3.00000 0.252646
\(142\) 0 0
\(143\) 24.1244 2.01738
\(144\) 0 0
\(145\) 5.92820i 0.492310i
\(146\) 0 0
\(147\) 1.73205 12.0000i 0.142857 0.989743i
\(148\) 0 0
\(149\) −16.9282 −1.38681 −0.693406 0.720547i \(-0.743891\pi\)
−0.693406 + 0.720547i \(0.743891\pi\)
\(150\) 0 0
\(151\) 4.80385i 0.390932i 0.980711 + 0.195466i \(0.0626219\pi\)
−0.980711 + 0.195466i \(0.937378\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.00000i 0.481932i
\(156\) 0 0
\(157\) 19.8564i 1.58471i −0.610058 0.792357i \(-0.708854\pi\)
0.610058 0.792357i \(-0.291146\pi\)
\(158\) 0 0
\(159\) 3.46410 0.274721
\(160\) 0 0
\(161\) 10.9282 9.46410i 0.861263 0.745876i
\(162\) 0 0
\(163\) 20.7846i 1.62798i −0.580881 0.813988i \(-0.697292\pi\)
0.580881 0.813988i \(-0.302708\pi\)
\(164\) 0 0
\(165\) 6.46410 0.503230
\(166\) 0 0
\(167\) 5.19615 0.402090 0.201045 0.979582i \(-0.435566\pi\)
0.201045 + 0.979582i \(0.435566\pi\)
\(168\) 0 0
\(169\) −28.7846 −2.21420
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 20.3205i 1.54494i 0.635051 + 0.772470i \(0.280979\pi\)
−0.635051 + 0.772470i \(0.719021\pi\)
\(174\) 0 0
\(175\) −1.73205 2.00000i −0.130931 0.151186i
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) 14.3923i 1.07573i −0.843031 0.537866i \(-0.819231\pi\)
0.843031 0.537866i \(-0.180769\pi\)
\(180\) 0 0
\(181\) 12.9282i 0.960946i 0.877010 + 0.480473i \(0.159535\pi\)
−0.877010 + 0.480473i \(0.840465\pi\)
\(182\) 0 0
\(183\) 4.39230i 0.324689i
\(184\) 0 0
\(185\) 2.53590i 0.186443i
\(186\) 0 0
\(187\) −1.73205 −0.126660
\(188\) 0 0
\(189\) 9.00000 + 10.3923i 0.654654 + 0.755929i
\(190\) 0 0
\(191\) 3.19615i 0.231265i −0.993292 0.115633i \(-0.963110\pi\)
0.993292 0.115633i \(-0.0368896\pi\)
\(192\) 0 0
\(193\) −2.53590 −0.182538 −0.0912690 0.995826i \(-0.529092\pi\)
−0.0912690 + 0.995826i \(0.529092\pi\)
\(194\) 0 0
\(195\) −11.1962 −0.801773
\(196\) 0 0
\(197\) −21.3205 −1.51902 −0.759512 0.650494i \(-0.774562\pi\)
−0.759512 + 0.650494i \(0.774562\pi\)
\(198\) 0 0
\(199\) −3.46410 −0.245564 −0.122782 0.992434i \(-0.539182\pi\)
−0.122782 + 0.992434i \(0.539182\pi\)
\(200\) 0 0
\(201\) 6.00000i 0.423207i
\(202\) 0 0
\(203\) 10.2679 + 11.8564i 0.720669 + 0.832157i
\(204\) 0 0
\(205\) −3.46410 −0.241943
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 22.3923i 1.54891i
\(210\) 0 0
\(211\) 7.19615i 0.495404i 0.968836 + 0.247702i \(0.0796753\pi\)
−0.968836 + 0.247702i \(0.920325\pi\)
\(212\) 0 0
\(213\) 0.928203i 0.0635994i
\(214\) 0 0
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) −10.3923 12.0000i −0.705476 0.814613i
\(218\) 0 0
\(219\) 1.60770i 0.108638i
\(220\) 0 0
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) −10.2679 −0.687593 −0.343796 0.939044i \(-0.611713\pi\)
−0.343796 + 0.939044i \(0.611713\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.33975 −0.221667 −0.110833 0.993839i \(-0.535352\pi\)
−0.110833 + 0.993839i \(0.535352\pi\)
\(228\) 0 0
\(229\) 15.4641i 1.02190i −0.859611 0.510948i \(-0.829294\pi\)
0.859611 0.510948i \(-0.170706\pi\)
\(230\) 0 0
\(231\) −12.9282 + 11.1962i −0.850613 + 0.736653i
\(232\) 0 0
\(233\) −22.9282 −1.50208 −0.751038 0.660259i \(-0.770447\pi\)
−0.751038 + 0.660259i \(0.770447\pi\)
\(234\) 0 0
\(235\) 1.73205i 0.112987i
\(236\) 0 0
\(237\) 4.60770i 0.299302i
\(238\) 0 0
\(239\) 27.9808i 1.80993i 0.425491 + 0.904963i \(0.360101\pi\)
−0.425491 + 0.904963i \(0.639899\pi\)
\(240\) 0 0
\(241\) 4.39230i 0.282933i 0.989943 + 0.141467i \(0.0451818\pi\)
−0.989943 + 0.141467i \(0.954818\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.92820 + 1.00000i 0.442627 + 0.0638877i
\(246\) 0 0
\(247\) 38.7846i 2.46781i
\(248\) 0 0
\(249\) 14.7846 0.936937
\(250\) 0 0
\(251\) −1.85641 −0.117175 −0.0585877 0.998282i \(-0.518660\pi\)
−0.0585877 + 0.998282i \(0.518660\pi\)
\(252\) 0 0
\(253\) −20.3923 −1.28205
\(254\) 0 0
\(255\) 0.803848 0.0503389
\(256\) 0 0
\(257\) 6.00000i 0.374270i −0.982334 0.187135i \(-0.940080\pi\)
0.982334 0.187135i \(-0.0599201\pi\)
\(258\) 0 0
\(259\) 4.39230 + 5.07180i 0.272925 + 0.315146i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.53590i 0.279695i −0.990173 0.139848i \(-0.955339\pi\)
0.990173 0.139848i \(-0.0446613\pi\)
\(264\) 0 0
\(265\) 2.00000i 0.122859i
\(266\) 0 0
\(267\) 16.3923i 1.00319i
\(268\) 0 0
\(269\) 12.0000i 0.731653i −0.930683 0.365826i \(-0.880786\pi\)
0.930683 0.365826i \(-0.119214\pi\)
\(270\) 0 0
\(271\) 2.53590 0.154045 0.0770224 0.997029i \(-0.475459\pi\)
0.0770224 + 0.997029i \(0.475459\pi\)
\(272\) 0 0
\(273\) 22.3923 19.3923i 1.35524 1.17368i
\(274\) 0 0
\(275\) 3.73205i 0.225051i
\(276\) 0 0
\(277\) 24.7846 1.48916 0.744581 0.667532i \(-0.232649\pi\)
0.744581 + 0.667532i \(0.232649\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.92820 0.353647 0.176823 0.984243i \(-0.443418\pi\)
0.176823 + 0.984243i \(0.443418\pi\)
\(282\) 0 0
\(283\) 12.1244 0.720718 0.360359 0.932814i \(-0.382654\pi\)
0.360359 + 0.932814i \(0.382654\pi\)
\(284\) 0 0
\(285\) 10.3923i 0.615587i
\(286\) 0 0
\(287\) 6.92820 6.00000i 0.408959 0.354169i
\(288\) 0 0
\(289\) 16.7846 0.987330
\(290\) 0 0
\(291\) 12.8038i 0.750575i
\(292\) 0 0
\(293\) 14.3205i 0.836613i −0.908306 0.418307i \(-0.862624\pi\)
0.908306 0.418307i \(-0.137376\pi\)
\(294\) 0 0
\(295\) 3.46410i 0.201688i
\(296\) 0 0
\(297\) 19.3923i 1.12526i
\(298\) 0 0
\(299\) 35.3205 2.04264
\(300\) 0 0
\(301\) 4.00000 3.46410i 0.230556 0.199667i
\(302\) 0 0
\(303\) 14.7846i 0.849354i
\(304\) 0 0
\(305\) 2.53590 0.145205
\(306\) 0 0
\(307\) 1.73205 0.0988534 0.0494267 0.998778i \(-0.484261\pi\)
0.0494267 + 0.998778i \(0.484261\pi\)
\(308\) 0 0
\(309\) 29.7846 1.69439
\(310\) 0 0
\(311\) −19.8564 −1.12595 −0.562977 0.826473i \(-0.690344\pi\)
−0.562977 + 0.826473i \(0.690344\pi\)
\(312\) 0 0
\(313\) 24.4641i 1.38279i 0.722476 + 0.691396i \(0.243004\pi\)
−0.722476 + 0.691396i \(0.756996\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.9282 0.950783 0.475391 0.879774i \(-0.342306\pi\)
0.475391 + 0.879774i \(0.342306\pi\)
\(318\) 0 0
\(319\) 22.1244i 1.23873i
\(320\) 0 0
\(321\) 31.8564i 1.77805i
\(322\) 0 0
\(323\) 2.78461i 0.154940i
\(324\) 0 0
\(325\) 6.46410i 0.358564i
\(326\) 0 0
\(327\) 27.5885 1.52565
\(328\) 0 0
\(329\) −3.00000 3.46410i −0.165395 0.190982i
\(330\) 0 0
\(331\) 5.60770i 0.308227i 0.988053 + 0.154113i \(0.0492521\pi\)
−0.988053 + 0.154113i \(0.950748\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.46410 −0.189264
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 2.53590 0.137731
\(340\) 0 0
\(341\) 22.3923i 1.21261i
\(342\) 0 0
\(343\) −15.5885 + 10.0000i −0.841698 + 0.539949i
\(344\) 0 0
\(345\) 9.46410 0.509530
\(346\) 0 0
\(347\) 14.2487i 0.764911i 0.923974 + 0.382455i \(0.124921\pi\)
−0.923974 + 0.382455i \(0.875079\pi\)
\(348\) 0 0
\(349\) 29.3205i 1.56949i 0.619818 + 0.784745i \(0.287206\pi\)
−0.619818 + 0.784745i \(0.712794\pi\)
\(350\) 0 0
\(351\) 33.5885i 1.79282i
\(352\) 0 0
\(353\) 13.3923i 0.712800i −0.934333 0.356400i \(-0.884004\pi\)
0.934333 0.356400i \(-0.115996\pi\)
\(354\) 0 0
\(355\) 0.535898 0.0284425
\(356\) 0 0
\(357\) −1.60770 + 1.39230i −0.0850883 + 0.0736886i
\(358\) 0 0
\(359\) 9.32051i 0.491918i −0.969280 0.245959i \(-0.920897\pi\)
0.969280 0.245959i \(-0.0791028\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 5.07180 0.266200
\(364\) 0 0
\(365\) 0.928203 0.0485844
\(366\) 0 0
\(367\) 36.1244 1.88568 0.942838 0.333251i \(-0.108146\pi\)
0.942838 + 0.333251i \(0.108146\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.46410 4.00000i −0.179847 0.207670i
\(372\) 0 0
\(373\) 24.3923 1.26299 0.631493 0.775382i \(-0.282443\pi\)
0.631493 + 0.775382i \(0.282443\pi\)
\(374\) 0 0
\(375\) 1.73205i 0.0894427i
\(376\) 0 0
\(377\) 38.3205i 1.97361i
\(378\) 0 0
\(379\) 26.3923i 1.35568i −0.735209 0.677841i \(-0.762916\pi\)
0.735209 0.677841i \(-0.237084\pi\)
\(380\) 0 0
\(381\) 14.7846i 0.757438i
\(382\) 0 0
\(383\) 20.5359 1.04934 0.524668 0.851307i \(-0.324190\pi\)
0.524668 + 0.851307i \(0.324190\pi\)
\(384\) 0 0
\(385\) −6.46410 7.46410i −0.329441 0.380406i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.85641 −0.347634 −0.173817 0.984778i \(-0.555610\pi\)
−0.173817 + 0.984778i \(0.555610\pi\)
\(390\) 0 0
\(391\) −2.53590 −0.128246
\(392\) 0 0
\(393\) 16.3923 0.826882
\(394\) 0 0
\(395\) −2.66025 −0.133852
\(396\) 0 0
\(397\) 5.53590i 0.277839i 0.990304 + 0.138919i \(0.0443629\pi\)
−0.990304 + 0.138919i \(0.955637\pi\)
\(398\) 0 0
\(399\) 18.0000 + 20.7846i 0.901127 + 1.04053i
\(400\) 0 0
\(401\) −23.9282 −1.19492 −0.597459 0.801900i \(-0.703823\pi\)
−0.597459 + 0.801900i \(0.703823\pi\)
\(402\) 0 0
\(403\) 38.7846i 1.93200i
\(404\) 0 0
\(405\) 9.00000i 0.447214i
\(406\) 0 0
\(407\) 9.46410i 0.469118i
\(408\) 0 0
\(409\) 31.8564i 1.57520i −0.616188 0.787599i \(-0.711324\pi\)
0.616188 0.787599i \(-0.288676\pi\)
\(410\) 0 0
\(411\) 0.679492 0.0335169
\(412\) 0 0
\(413\) −6.00000 6.92820i −0.295241 0.340915i
\(414\) 0 0
\(415\) 8.53590i 0.419011i
\(416\) 0 0
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) −24.2487 −1.18463 −0.592314 0.805708i \(-0.701785\pi\)
−0.592314 + 0.805708i \(0.701785\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.464102i 0.0225122i
\(426\) 0 0
\(427\) −5.07180 + 4.39230i −0.245441 + 0.212559i
\(428\) 0 0
\(429\) −41.7846 −2.01738
\(430\) 0 0
\(431\) 17.5885i 0.847206i 0.905848 + 0.423603i \(0.139235\pi\)
−0.905848 + 0.423603i \(0.860765\pi\)
\(432\) 0 0
\(433\) 4.14359i 0.199128i 0.995031 + 0.0995642i \(0.0317449\pi\)
−0.995031 + 0.0995642i \(0.968255\pi\)
\(434\) 0 0
\(435\) 10.2679i 0.492310i
\(436\) 0 0
\(437\) 32.7846i 1.56830i
\(438\) 0 0
\(439\) 15.7128 0.749932 0.374966 0.927039i \(-0.377654\pi\)
0.374966 + 0.927039i \(0.377654\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 26.0000i 1.23530i 0.786454 + 0.617649i \(0.211915\pi\)
−0.786454 + 0.617649i \(0.788085\pi\)
\(444\) 0 0
\(445\) −9.46410 −0.448641
\(446\) 0 0
\(447\) 29.3205 1.38681
\(448\) 0 0
\(449\) −1.92820 −0.0909975 −0.0454988 0.998964i \(-0.514488\pi\)
−0.0454988 + 0.998964i \(0.514488\pi\)
\(450\) 0 0
\(451\) −12.9282 −0.608765
\(452\) 0 0
\(453\) 8.32051i 0.390932i
\(454\) 0 0
\(455\) 11.1962 + 12.9282i 0.524884 + 0.606084i
\(456\) 0 0
\(457\) 27.4641 1.28472 0.642358 0.766405i \(-0.277956\pi\)
0.642358 + 0.766405i \(0.277956\pi\)
\(458\) 0 0
\(459\) 2.41154i 0.112561i
\(460\) 0 0
\(461\) 27.7128i 1.29071i −0.763881 0.645357i \(-0.776709\pi\)
0.763881 0.645357i \(-0.223291\pi\)
\(462\) 0 0
\(463\) 4.39230i 0.204128i 0.994778 + 0.102064i \(0.0325446\pi\)
−0.994778 + 0.102064i \(0.967455\pi\)
\(464\) 0 0
\(465\) 10.3923i 0.481932i
\(466\) 0 0
\(467\) 22.5167 1.04195 0.520973 0.853573i \(-0.325569\pi\)
0.520973 + 0.853573i \(0.325569\pi\)
\(468\) 0 0
\(469\) 6.92820 6.00000i 0.319915 0.277054i
\(470\) 0 0
\(471\) 34.3923i 1.58471i
\(472\) 0 0
\(473\) −7.46410 −0.343200
\(474\) 0 0
\(475\) 6.00000 0.275299
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −37.1769 −1.69866 −0.849328 0.527865i \(-0.822993\pi\)
−0.849328 + 0.527865i \(0.822993\pi\)
\(480\) 0 0
\(481\) 16.3923i 0.747425i
\(482\) 0 0
\(483\) −18.9282 + 16.3923i −0.861263 + 0.745876i
\(484\) 0 0
\(485\) −7.39230 −0.335667
\(486\) 0 0
\(487\) 28.7846i 1.30436i 0.758066 + 0.652178i \(0.226144\pi\)
−0.758066 + 0.652178i \(0.773856\pi\)
\(488\) 0 0
\(489\) 36.0000i 1.62798i
\(490\) 0 0
\(491\) 34.1244i 1.54001i 0.638037 + 0.770005i \(0.279746\pi\)
−0.638037 + 0.770005i \(0.720254\pi\)
\(492\) 0 0
\(493\) 2.75129i 0.123912i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.07180 + 0.928203i −0.0480767 + 0.0416356i
\(498\) 0 0
\(499\) 5.58846i 0.250174i 0.992146 + 0.125087i \(0.0399210\pi\)
−0.992146 + 0.125087i \(0.960079\pi\)
\(500\) 0 0
\(501\) −9.00000 −0.402090
\(502\) 0 0
\(503\) 15.5885 0.695055 0.347527 0.937670i \(-0.387021\pi\)
0.347527 + 0.937670i \(0.387021\pi\)
\(504\) 0 0
\(505\) −8.53590 −0.379842
\(506\) 0 0
\(507\) 49.8564 2.21420
\(508\) 0 0
\(509\) 1.85641i 0.0822838i −0.999153 0.0411419i \(-0.986900\pi\)
0.999153 0.0411419i \(-0.0130996\pi\)
\(510\) 0 0
\(511\) −1.85641 + 1.60770i −0.0821226 + 0.0711202i
\(512\) 0 0
\(513\) −31.1769 −1.37649
\(514\) 0 0
\(515\) 17.1962i 0.757753i
\(516\) 0 0
\(517\) 6.46410i 0.284291i
\(518\) 0 0
\(519\) 35.1962i 1.54494i
\(520\) 0 0
\(521\) 34.3923i 1.50675i −0.657589 0.753377i \(-0.728424\pi\)
0.657589 0.753377i \(-0.271576\pi\)
\(522\) 0 0
\(523\) −24.2487 −1.06032 −0.530161 0.847897i \(-0.677869\pi\)
−0.530161 + 0.847897i \(0.677869\pi\)
\(524\) 0 0
\(525\) 3.00000 + 3.46410i 0.130931 + 0.151186i
\(526\) 0 0
\(527\) 2.78461i 0.121300i
\(528\) 0 0
\(529\) −6.85641 −0.298105
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 22.3923 0.969918
\(534\) 0 0
\(535\) −18.3923 −0.795169
\(536\) 0 0
\(537\) 24.9282i 1.07573i
\(538\) 0 0
\(539\) 25.8564 + 3.73205i 1.11371 + 0.160751i
\(540\) 0 0
\(541\) 33.7846 1.45251 0.726257 0.687423i \(-0.241258\pi\)
0.726257 + 0.687423i \(0.241258\pi\)
\(542\) 0 0
\(543\) 22.3923i 0.960946i
\(544\) 0 0
\(545\) 15.9282i 0.682289i
\(546\) 0 0
\(547\) 14.5359i 0.621510i −0.950490 0.310755i \(-0.899418\pi\)
0.950490 0.310755i \(-0.100582\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −35.5692 −1.51530
\(552\) 0 0
\(553\) 5.32051 4.60770i 0.226251 0.195939i
\(554\) 0 0
\(555\) 4.39230i 0.186443i
\(556\) 0 0
\(557\) −5.85641 −0.248144 −0.124072 0.992273i \(-0.539595\pi\)
−0.124072 + 0.992273i \(0.539595\pi\)
\(558\) 0 0
\(559\) 12.9282 0.546805
\(560\) 0 0
\(561\) 3.00000 0.126660
\(562\) 0 0
\(563\) 43.1769 1.81969 0.909845 0.414948i \(-0.136200\pi\)
0.909845 + 0.414948i \(0.136200\pi\)
\(564\) 0 0
\(565\) 1.46410i 0.0615952i
\(566\) 0 0
\(567\) −15.5885 18.0000i −0.654654 0.755929i
\(568\) 0 0
\(569\) 20.9282 0.877356 0.438678 0.898644i \(-0.355447\pi\)
0.438678 + 0.898644i \(0.355447\pi\)
\(570\) 0 0
\(571\) 41.3205i 1.72921i 0.502453 + 0.864605i \(0.332431\pi\)
−0.502453 + 0.864605i \(0.667569\pi\)
\(572\) 0 0
\(573\) 5.53590i 0.231265i
\(574\) 0 0
\(575\) 5.46410i 0.227869i
\(576\) 0 0
\(577\) 1.39230i 0.0579624i 0.999580 + 0.0289812i \(0.00922630\pi\)
−0.999580 + 0.0289812i \(0.990774\pi\)
\(578\) 0 0
\(579\) 4.39230 0.182538
\(580\) 0 0
\(581\) −14.7846 17.0718i −0.613369 0.708257i
\(582\) 0 0
\(583\) 7.46410i 0.309132i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27.4641 1.13356 0.566782 0.823868i \(-0.308188\pi\)
0.566782 + 0.823868i \(0.308188\pi\)
\(588\) 0 0
\(589\) 36.0000 1.48335
\(590\) 0 0
\(591\) 36.9282 1.51902
\(592\) 0 0
\(593\) 23.5359i 0.966504i −0.875481 0.483252i \(-0.839456\pi\)
0.875481 0.483252i \(-0.160544\pi\)
\(594\) 0 0
\(595\) −0.803848 0.928203i −0.0329545 0.0380526i
\(596\) 0 0
\(597\) 6.00000 0.245564
\(598\) 0 0
\(599\) 14.1244i 0.577106i 0.957464 + 0.288553i \(0.0931741\pi\)
−0.957464 + 0.288553i \(0.906826\pi\)
\(600\) 0 0
\(601\) 26.7846i 1.09257i −0.837600 0.546284i \(-0.816042\pi\)
0.837600 0.546284i \(-0.183958\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.92820i 0.119048i
\(606\) 0 0
\(607\) −18.8038 −0.763225 −0.381612 0.924322i \(-0.624631\pi\)
−0.381612 + 0.924322i \(0.624631\pi\)
\(608\) 0 0
\(609\) −17.7846 20.5359i −0.720669 0.832157i
\(610\) 0 0
\(611\) 11.1962i 0.452948i
\(612\) 0 0
\(613\) 10.0000 0.403896 0.201948 0.979396i \(-0.435273\pi\)
0.201948 + 0.979396i \(0.435273\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −9.07180 −0.365217 −0.182608 0.983186i \(-0.558454\pi\)
−0.182608 + 0.983186i \(0.558454\pi\)
\(618\) 0 0
\(619\) −35.3205 −1.41965 −0.709826 0.704378i \(-0.751226\pi\)
−0.709826 + 0.704378i \(0.751226\pi\)
\(620\) 0 0
\(621\) 28.3923i 1.13934i
\(622\) 0 0
\(623\) 18.9282 16.3923i 0.758342 0.656744i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 38.7846i 1.54891i
\(628\) 0 0
\(629\) 1.17691i 0.0469267i
\(630\) 0 0
\(631\) 26.9090i 1.07123i −0.844463 0.535614i \(-0.820080\pi\)
0.844463 0.535614i \(-0.179920\pi\)
\(632\) 0 0
\(633\) 12.4641i 0.495404i
\(634\) 0 0
\(635\) −8.53590 −0.338737
\(636\) 0 0
\(637\) −44.7846 6.46410i −1.77443 0.256117i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −4.92820 −0.194652 −0.0973262 0.995253i \(-0.531029\pi\)
−0.0973262 + 0.995253i \(0.531029\pi\)
\(642\) 0 0
\(643\) 31.0526 1.22459 0.612297 0.790628i \(-0.290246\pi\)
0.612297 + 0.790628i \(0.290246\pi\)
\(644\) 0 0
\(645\) 3.46410 0.136399
\(646\) 0 0
\(647\) 10.3923 0.408564 0.204282 0.978912i \(-0.434514\pi\)
0.204282 + 0.978912i \(0.434514\pi\)
\(648\) 0 0
\(649\) 12.9282i 0.507476i
\(650\) 0 0
\(651\) 18.0000 + 20.7846i 0.705476 + 0.814613i
\(652\) 0 0
\(653\) −38.3923 −1.50241 −0.751203 0.660071i \(-0.770526\pi\)
−0.751203 + 0.660071i \(0.770526\pi\)
\(654\) 0 0
\(655\) 9.46410i 0.369793i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.8038i 0.810403i 0.914227 + 0.405201i \(0.132799\pi\)
−0.914227 + 0.405201i \(0.867201\pi\)
\(660\) 0 0
\(661\) 15.7128i 0.611158i −0.952167 0.305579i \(-0.901150\pi\)
0.952167 0.305579i \(-0.0988499\pi\)
\(662\) 0 0
\(663\) −5.19615 −0.201802
\(664\) 0 0
\(665\) −12.0000 + 10.3923i −0.465340 + 0.402996i
\(666\) 0 0
\(667\) 32.3923i 1.25424i
\(668\) 0 0
\(669\) 17.7846 0.687593
\(670\) 0 0
\(671\) 9.46410 0.365358
\(672\) 0 0
\(673\) 49.1769 1.89563 0.947815 0.318820i \(-0.103286\pi\)
0.947815 + 0.318820i \(0.103286\pi\)
\(674\) 0 0
\(675\) −5.19615 −0.200000
\(676\) 0 0
\(677\) 4.60770i 0.177088i −0.996072 0.0885441i \(-0.971779\pi\)
0.996072 0.0885441i \(-0.0282214\pi\)
\(678\) 0 0
\(679\) 14.7846 12.8038i 0.567381 0.491367i
\(680\) 0 0
\(681\) 5.78461 0.221667
\(682\) 0 0
\(683\) 27.3205i 1.04539i 0.852520 + 0.522695i \(0.175073\pi\)
−0.852520 + 0.522695i \(0.824927\pi\)
\(684\) 0 0
\(685\) 0.392305i 0.0149892i
\(686\) 0 0
\(687\) 26.7846i 1.02190i
\(688\) 0 0
\(689\) 12.9282i 0.492525i
\(690\) 0 0
\(691\) −46.6410 −1.77431 −0.887154 0.461474i \(-0.847321\pi\)
−0.887154 + 0.461474i \(0.847321\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.92820i 0.262802i
\(696\) 0 0
\(697\) −1.60770 −0.0608958
\(698\) 0 0
\(699\) 39.7128 1.50208
\(700\) 0 0
\(701\) −3.78461 −0.142943 −0.0714714 0.997443i \(-0.522769\pi\)
−0.0714714 + 0.997443i \(0.522769\pi\)
\(702\) 0 0
\(703\) −15.2154 −0.573859
\(704\) 0 0
\(705\) 3.00000i 0.112987i
\(706\) 0 0
\(707\) 17.0718 14.7846i 0.642051 0.556032i
\(708\) 0 0
\(709\) −21.0000 −0.788672 −0.394336 0.918966i \(-0.629025\pi\)
−0.394336 + 0.918966i \(0.629025\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.7846i 1.22779i
\(714\) 0 0
\(715\) 24.1244i 0.902200i
\(716\) 0 0
\(717\) 48.4641i 1.80993i
\(718\) 0 0
\(719\) 45.4641 1.69552 0.847762 0.530376i \(-0.177949\pi\)
0.847762 + 0.530376i \(0.177949\pi\)
\(720\) 0 0
\(721\) −29.7846 34.3923i −1.10924 1.28084i
\(722\) 0 0
\(723\) 7.60770i 0.282933i
\(724\) 0 0
\(725\) −5.92820 −0.220168
\(726\) 0 0
\(727\) −34.3923 −1.27554 −0.637770 0.770227i \(-0.720143\pi\)
−0.637770 + 0.770227i \(0.720143\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) −0.928203 −0.0343308
\(732\) 0 0
\(733\) 18.4641i 0.681987i 0.940066 + 0.340994i \(0.110763\pi\)
−0.940066 + 0.340994i \(0.889237\pi\)
\(734\) 0 0
\(735\) −12.0000 1.73205i −0.442627 0.0638877i
\(736\) 0 0
\(737\) −12.9282 −0.476216
\(738\) 0 0
\(739\) 7.73205i 0.284428i 0.989836 + 0.142214i \(0.0454221\pi\)
−0.989836 + 0.142214i \(0.954578\pi\)
\(740\) 0 0
\(741\) 67.1769i 2.46781i
\(742\) 0 0
\(743\) 9.60770i 0.352472i 0.984348 + 0.176236i \(0.0563922\pi\)
−0.984348 + 0.176236i \(0.943608\pi\)
\(744\) 0 0
\(745\) 16.9282i 0.620201i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 36.7846 31.8564i 1.34408 1.16401i
\(750\) 0 0
\(751\) 5.58846i 0.203926i 0.994788 + 0.101963i \(0.0325123\pi\)
−0.994788 + 0.101963i \(0.967488\pi\)
\(752\) 0 0
\(753\) 3.21539 0.117175
\(754\) 0 0
\(755\) 4.80385 0.174830
\(756\) 0 0
\(757\) −10.1436 −0.368675 −0.184338 0.982863i \(-0.559014\pi\)
−0.184338 + 0.982863i \(0.559014\pi\)
\(758\) 0 0
\(759\) 35.3205 1.28205
\(760\) 0 0
\(761\) 6.24871i 0.226516i −0.993566 0.113258i \(-0.963871\pi\)
0.993566 0.113258i \(-0.0361286\pi\)
\(762\) 0 0
\(763\) −27.5885 31.8564i −0.998769 1.15328i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.3923i 0.808539i
\(768\) 0 0
\(769\) 18.0000i 0.649097i −0.945869 0.324548i \(-0.894788\pi\)
0.945869 0.324548i \(-0.105212\pi\)
\(770\) 0 0
\(771\) 10.3923i 0.374270i
\(772\) 0 0
\(773\) 12.4641i 0.448303i −0.974554 0.224151i \(-0.928039\pi\)
0.974554 0.224151i \(-0.0719610\pi\)
\(774\) 0 0
\(775\) 6.00000 0.215526
\(776\) 0 0
\(777\) −7.60770 8.78461i −0.272925 0.315146i
\(778\) 0 0
\(779\) 20.7846i 0.744686i
\(780\) 0 0
\(781\) 2.00000 0.0715656
\(782\) 0 0
\(783\) 30.8038 1.10084
\(784\) 0 0
\(785\) −19.8564 −0.708706
\(786\) 0 0
\(787\) −15.3397 −0.546803 −0.273401 0.961900i \(-0.588149\pi\)
−0.273401 + 0.961900i \(0.588149\pi\)
\(788\) 0 0
\(789\) 7.85641i 0.279695i
\(790\) 0 0
\(791\) −2.53590 2.92820i −0.0901662 0.104115i
\(792\) 0 0
\(793\) −16.3923 −0.582108
\(794\) 0 0
\(795\) 3.46410i 0.122859i
\(796\) 0 0
\(797\) 40.1769i 1.42314i 0.702616 + 0.711570i \(0.252015\pi\)
−0.702616 + 0.711570i \(0.747985\pi\)