Defining parameters
| Level: | \( N \) | \(=\) | \( 2240 = 2^{6} \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2240.k (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(768\) | ||
| Trace bound: | \(19\) | ||
| Distinguishing \(T_p\): | \(3\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2240, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 408 | 64 | 344 |
| Cusp forms | 360 | 64 | 296 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2240, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2240, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1120, [\chi])\)\(^{\oplus 2}\)