Properties

Label 2240.2.g.o.449.5
Level $2240$
Weight $2$
Character 2240.449
Analytic conductor $17.886$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(17.8864900528\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Defining polynomial: \(x^{10} + 13 x^{8} + 56 x^{6} + 97 x^{4} + 61 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.5
Root \(-1.23118i\) of defining polynomial
Character \(\chi\) \(=\) 2240.449
Dual form 2240.2.g.o.449.6

$q$-expansion

\(f(q)\) \(=\) \(q-0.746976i q^{3} +(0.782984 - 2.09450i) q^{5} +1.00000i q^{7} +2.44203 q^{9} +O(q^{10})\) \(q-0.746976i q^{3} +(0.782984 - 2.09450i) q^{5} +1.00000i q^{7} +2.44203 q^{9} -5.90438 q^{11} +3.20933i q^{13} +(-1.56454 - 0.584870i) q^{15} -2.14941i q^{17} -3.56597 q^{19} +0.746976 q^{21} +3.75497i q^{23} +(-3.77387 - 3.27992i) q^{25} -4.06506i q^{27} -6.61177 q^{29} -5.79278 q^{31} +4.41043i q^{33} +(2.09450 + 0.782984i) q^{35} -0.623035i q^{37} +2.39729 q^{39} -5.43076 q^{41} -12.6768i q^{43} +(1.91207 - 5.11483i) q^{45} +4.31294i q^{47} -1.00000 q^{49} -1.60556 q^{51} +2.11699i q^{53} +(-4.62304 + 12.3667i) q^{55} +2.66369i q^{57} -7.01926 q^{59} -1.86479 q^{61} +2.44203i q^{63} +(6.72195 + 2.51285i) q^{65} -6.88405i q^{67} +2.80487 q^{69} -1.81816 q^{71} -6.11699i q^{73} +(-2.45002 + 2.81899i) q^{75} -5.90438i q^{77} +4.35664 q^{79} +4.28958 q^{81} +13.1675i q^{83} +(-4.50195 - 1.68295i) q^{85} +4.93883i q^{87} -12.1708 q^{89} -3.20933 q^{91} +4.32706i q^{93} +(-2.79209 + 7.46892i) q^{95} -9.65935i q^{97} -14.4187 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 2q^{5} - 14q^{9} + O(q^{10}) \) \( 10q + 2q^{5} - 14q^{9} + 8q^{11} - 4q^{15} - 24q^{19} + 4q^{21} + 6q^{25} - 24q^{29} - 24q^{31} + 64q^{39} - 4q^{41} - 10q^{45} - 10q^{49} + 24q^{51} - 16q^{55} - 32q^{59} + 20q^{61} - 8q^{65} + 8q^{69} - 8q^{71} + 64q^{75} + 64q^{79} + 2q^{81} + 12q^{85} - 4q^{89} - 60q^{95} - 80q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times\).

\(n\) \(897\) \(1471\) \(1541\) \(1921\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.746976i 0.431267i −0.976474 0.215633i \(-0.930818\pi\)
0.976474 0.215633i \(-0.0691816\pi\)
\(4\) 0 0
\(5\) 0.782984 2.09450i 0.350161 0.936690i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 2.44203 0.814009
\(10\) 0 0
\(11\) −5.90438 −1.78024 −0.890119 0.455728i \(-0.849379\pi\)
−0.890119 + 0.455728i \(0.849379\pi\)
\(12\) 0 0
\(13\) 3.20933i 0.890108i 0.895504 + 0.445054i \(0.146816\pi\)
−0.895504 + 0.445054i \(0.853184\pi\)
\(14\) 0 0
\(15\) −1.56454 0.584870i −0.403963 0.151013i
\(16\) 0 0
\(17\) 2.14941i 0.521309i −0.965432 0.260654i \(-0.916062\pi\)
0.965432 0.260654i \(-0.0839383\pi\)
\(18\) 0 0
\(19\) −3.56597 −0.818089 −0.409045 0.912514i \(-0.634138\pi\)
−0.409045 + 0.912514i \(0.634138\pi\)
\(20\) 0 0
\(21\) 0.746976 0.163003
\(22\) 0 0
\(23\) 3.75497i 0.782965i 0.920185 + 0.391483i \(0.128038\pi\)
−0.920185 + 0.391483i \(0.871962\pi\)
\(24\) 0 0
\(25\) −3.77387 3.27992i −0.754775 0.655984i
\(26\) 0 0
\(27\) 4.06506i 0.782322i
\(28\) 0 0
\(29\) −6.61177 −1.22777 −0.613887 0.789394i \(-0.710395\pi\)
−0.613887 + 0.789394i \(0.710395\pi\)
\(30\) 0 0
\(31\) −5.79278 −1.04041 −0.520207 0.854040i \(-0.674145\pi\)
−0.520207 + 0.854040i \(0.674145\pi\)
\(32\) 0 0
\(33\) 4.41043i 0.767757i
\(34\) 0 0
\(35\) 2.09450 + 0.782984i 0.354035 + 0.132348i
\(36\) 0 0
\(37\) 0.623035i 0.102426i −0.998688 0.0512132i \(-0.983691\pi\)
0.998688 0.0512132i \(-0.0163088\pi\)
\(38\) 0 0
\(39\) 2.39729 0.383874
\(40\) 0 0
\(41\) −5.43076 −0.848142 −0.424071 0.905629i \(-0.639399\pi\)
−0.424071 + 0.905629i \(0.639399\pi\)
\(42\) 0 0
\(43\) 12.6768i 1.93320i −0.256293 0.966599i \(-0.582501\pi\)
0.256293 0.966599i \(-0.417499\pi\)
\(44\) 0 0
\(45\) 1.91207 5.11483i 0.285034 0.762474i
\(46\) 0 0
\(47\) 4.31294i 0.629107i 0.949240 + 0.314554i \(0.101855\pi\)
−0.949240 + 0.314554i \(0.898145\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −1.60556 −0.224823
\(52\) 0 0
\(53\) 2.11699i 0.290791i 0.989374 + 0.145395i \(0.0464454\pi\)
−0.989374 + 0.145395i \(0.953555\pi\)
\(54\) 0 0
\(55\) −4.62304 + 12.3667i −0.623370 + 1.66753i
\(56\) 0 0
\(57\) 2.66369i 0.352815i
\(58\) 0 0
\(59\) −7.01926 −0.913830 −0.456915 0.889510i \(-0.651046\pi\)
−0.456915 + 0.889510i \(0.651046\pi\)
\(60\) 0 0
\(61\) −1.86479 −0.238762 −0.119381 0.992849i \(-0.538091\pi\)
−0.119381 + 0.992849i \(0.538091\pi\)
\(62\) 0 0
\(63\) 2.44203i 0.307667i
\(64\) 0 0
\(65\) 6.72195 + 2.51285i 0.833755 + 0.311681i
\(66\) 0 0
\(67\) 6.88405i 0.841021i −0.907288 0.420511i \(-0.861851\pi\)
0.907288 0.420511i \(-0.138149\pi\)
\(68\) 0 0
\(69\) 2.80487 0.337667
\(70\) 0 0
\(71\) −1.81816 −0.215776 −0.107888 0.994163i \(-0.534409\pi\)
−0.107888 + 0.994163i \(0.534409\pi\)
\(72\) 0 0
\(73\) 6.11699i 0.715939i −0.933733 0.357970i \(-0.883469\pi\)
0.933733 0.357970i \(-0.116531\pi\)
\(74\) 0 0
\(75\) −2.45002 + 2.81899i −0.282904 + 0.325509i
\(76\) 0 0
\(77\) 5.90438i 0.672867i
\(78\) 0 0
\(79\) 4.35664 0.490160 0.245080 0.969503i \(-0.421186\pi\)
0.245080 + 0.969503i \(0.421186\pi\)
\(80\) 0 0
\(81\) 4.28958 0.476620
\(82\) 0 0
\(83\) 13.1675i 1.44532i 0.691203 + 0.722661i \(0.257081\pi\)
−0.691203 + 0.722661i \(0.742919\pi\)
\(84\) 0 0
\(85\) −4.50195 1.68295i −0.488305 0.182542i
\(86\) 0 0
\(87\) 4.93883i 0.529498i
\(88\) 0 0
\(89\) −12.1708 −1.29010 −0.645050 0.764140i \(-0.723164\pi\)
−0.645050 + 0.764140i \(0.723164\pi\)
\(90\) 0 0
\(91\) −3.20933 −0.336429
\(92\) 0 0
\(93\) 4.32706i 0.448696i
\(94\) 0 0
\(95\) −2.79209 + 7.46892i −0.286463 + 0.766295i
\(96\) 0 0
\(97\) 9.65935i 0.980759i −0.871509 0.490379i \(-0.836858\pi\)
0.871509 0.490379i \(-0.163142\pi\)
\(98\) 0 0
\(99\) −14.4187 −1.44913
\(100\) 0 0
\(101\) 13.2307 1.31650 0.658252 0.752798i \(-0.271296\pi\)
0.658252 + 0.752798i \(0.271296\pi\)
\(102\) 0 0
\(103\) 3.19700i 0.315010i 0.987518 + 0.157505i \(0.0503450\pi\)
−0.987518 + 0.157505i \(0.949655\pi\)
\(104\) 0 0
\(105\) 0.584870 1.56454i 0.0570775 0.152684i
\(106\) 0 0
\(107\) 12.5220i 1.21055i 0.796016 + 0.605276i \(0.206937\pi\)
−0.796016 + 0.605276i \(0.793063\pi\)
\(108\) 0 0
\(109\) 14.1217 1.35261 0.676307 0.736620i \(-0.263579\pi\)
0.676307 + 0.736620i \(0.263579\pi\)
\(110\) 0 0
\(111\) −0.465392 −0.0441731
\(112\) 0 0
\(113\) 1.63513i 0.153820i 0.997038 + 0.0769102i \(0.0245055\pi\)
−0.997038 + 0.0769102i \(0.975495\pi\)
\(114\) 0 0
\(115\) 7.86479 + 2.94008i 0.733396 + 0.274164i
\(116\) 0 0
\(117\) 7.83727i 0.724556i
\(118\) 0 0
\(119\) 2.14941 0.197036
\(120\) 0 0
\(121\) 23.8617 2.16925
\(122\) 0 0
\(123\) 4.05665i 0.365775i
\(124\) 0 0
\(125\) −9.82468 + 5.33626i −0.878746 + 0.477289i
\(126\) 0 0
\(127\) 1.79563i 0.159336i −0.996821 0.0796680i \(-0.974614\pi\)
0.996821 0.0796680i \(-0.0253860\pi\)
\(128\) 0 0
\(129\) −9.46928 −0.833724
\(130\) 0 0
\(131\) 12.3868 1.08224 0.541121 0.840945i \(-0.318000\pi\)
0.541121 + 0.840945i \(0.318000\pi\)
\(132\) 0 0
\(133\) 3.56597i 0.309209i
\(134\) 0 0
\(135\) −8.51428 3.18288i −0.732793 0.273939i
\(136\) 0 0
\(137\) 14.3940i 1.22976i 0.788620 + 0.614881i \(0.210796\pi\)
−0.788620 + 0.614881i \(0.789204\pi\)
\(138\) 0 0
\(139\) −22.7488 −1.92953 −0.964766 0.263110i \(-0.915252\pi\)
−0.964766 + 0.263110i \(0.915252\pi\)
\(140\) 0 0
\(141\) 3.22166 0.271313
\(142\) 0 0
\(143\) 18.9491i 1.58460i
\(144\) 0 0
\(145\) −5.17691 + 13.8484i −0.429919 + 1.15004i
\(146\) 0 0
\(147\) 0.746976i 0.0616095i
\(148\) 0 0
\(149\) −18.7560 −1.53655 −0.768276 0.640119i \(-0.778885\pi\)
−0.768276 + 0.640119i \(0.778885\pi\)
\(150\) 0 0
\(151\) −22.2824 −1.81332 −0.906658 0.421867i \(-0.861375\pi\)
−0.906658 + 0.421867i \(0.861375\pi\)
\(152\) 0 0
\(153\) 5.24892i 0.424350i
\(154\) 0 0
\(155\) −4.53565 + 12.1330i −0.364312 + 0.974544i
\(156\) 0 0
\(157\) 16.7110i 1.33369i −0.745198 0.666843i \(-0.767645\pi\)
0.745198 0.666843i \(-0.232355\pi\)
\(158\) 0 0
\(159\) 1.58134 0.125408
\(160\) 0 0
\(161\) −3.75497 −0.295933
\(162\) 0 0
\(163\) 16.3555i 1.28106i −0.767933 0.640530i \(-0.778715\pi\)
0.767933 0.640530i \(-0.221285\pi\)
\(164\) 0 0
\(165\) 9.23765 + 3.45330i 0.719150 + 0.268839i
\(166\) 0 0
\(167\) 3.66452i 0.283569i 0.989898 + 0.141785i \(0.0452840\pi\)
−0.989898 + 0.141785i \(0.954716\pi\)
\(168\) 0 0
\(169\) 2.70019 0.207707
\(170\) 0 0
\(171\) −8.70819 −0.665932
\(172\) 0 0
\(173\) 8.37622i 0.636832i 0.947951 + 0.318416i \(0.103151\pi\)
−0.947951 + 0.318416i \(0.896849\pi\)
\(174\) 0 0
\(175\) 3.27992 3.77387i 0.247939 0.285278i
\(176\) 0 0
\(177\) 5.24322i 0.394105i
\(178\) 0 0
\(179\) −1.73613 −0.129764 −0.0648822 0.997893i \(-0.520667\pi\)
−0.0648822 + 0.997893i \(0.520667\pi\)
\(180\) 0 0
\(181\) −13.4621 −1.00063 −0.500316 0.865843i \(-0.666783\pi\)
−0.500316 + 0.865843i \(0.666783\pi\)
\(182\) 0 0
\(183\) 1.39295i 0.102970i
\(184\) 0 0
\(185\) −1.30495 0.487827i −0.0959417 0.0358657i
\(186\) 0 0
\(187\) 12.6909i 0.928054i
\(188\) 0 0
\(189\) 4.06506 0.295690
\(190\) 0 0
\(191\) −6.91933 −0.500665 −0.250333 0.968160i \(-0.580540\pi\)
−0.250333 + 0.968160i \(0.580540\pi\)
\(192\) 0 0
\(193\) 8.32421i 0.599190i 0.954066 + 0.299595i \(0.0968515\pi\)
−0.954066 + 0.299595i \(0.903148\pi\)
\(194\) 0 0
\(195\) 1.87704 5.02113i 0.134418 0.359571i
\(196\) 0 0
\(197\) 17.6044i 1.25426i 0.778914 + 0.627130i \(0.215771\pi\)
−0.778914 + 0.627130i \(0.784229\pi\)
\(198\) 0 0
\(199\) 4.56924 0.323905 0.161952 0.986799i \(-0.448221\pi\)
0.161952 + 0.986799i \(0.448221\pi\)
\(200\) 0 0
\(201\) −5.14222 −0.362704
\(202\) 0 0
\(203\) 6.61177i 0.464055i
\(204\) 0 0
\(205\) −4.25220 + 11.3747i −0.296986 + 0.794446i
\(206\) 0 0
\(207\) 9.16974i 0.637341i
\(208\) 0 0
\(209\) 21.0548 1.45639
\(210\) 0 0
\(211\) 28.2582 1.94537 0.972687 0.232120i \(-0.0745662\pi\)
0.972687 + 0.232120i \(0.0745662\pi\)
\(212\) 0 0
\(213\) 1.35812i 0.0930571i
\(214\) 0 0
\(215\) −26.5516 9.92575i −1.81081 0.676931i
\(216\) 0 0
\(217\) 5.79278i 0.393239i
\(218\) 0 0
\(219\) −4.56924 −0.308761
\(220\) 0 0
\(221\) 6.89817 0.464021
\(222\) 0 0
\(223\) 25.2130i 1.68839i −0.536039 0.844193i \(-0.680080\pi\)
0.536039 0.844193i \(-0.319920\pi\)
\(224\) 0 0
\(225\) −9.21590 8.00966i −0.614393 0.533977i
\(226\) 0 0
\(227\) 17.5030i 1.16171i 0.814006 + 0.580857i \(0.197282\pi\)
−0.814006 + 0.580857i \(0.802718\pi\)
\(228\) 0 0
\(229\) −0.226808 −0.0149879 −0.00749394 0.999972i \(-0.502385\pi\)
−0.00749394 + 0.999972i \(0.502385\pi\)
\(230\) 0 0
\(231\) −4.41043 −0.290185
\(232\) 0 0
\(233\) 27.3836i 1.79396i −0.442075 0.896978i \(-0.645757\pi\)
0.442075 0.896978i \(-0.354243\pi\)
\(234\) 0 0
\(235\) 9.03347 + 3.37696i 0.589278 + 0.220289i
\(236\) 0 0
\(237\) 3.25430i 0.211390i
\(238\) 0 0
\(239\) 10.2504 0.663044 0.331522 0.943448i \(-0.392438\pi\)
0.331522 + 0.943448i \(0.392438\pi\)
\(240\) 0 0
\(241\) −20.9407 −1.34891 −0.674455 0.738316i \(-0.735621\pi\)
−0.674455 + 0.738316i \(0.735621\pi\)
\(242\) 0 0
\(243\) 15.3994i 0.987872i
\(244\) 0 0
\(245\) −0.782984 + 2.09450i −0.0500230 + 0.133813i
\(246\) 0 0
\(247\) 11.4444i 0.728188i
\(248\) 0 0
\(249\) 9.83581 0.623319
\(250\) 0 0
\(251\) 4.25670 0.268681 0.134340 0.990935i \(-0.457108\pi\)
0.134340 + 0.990935i \(0.457108\pi\)
\(252\) 0 0
\(253\) 22.1708i 1.39387i
\(254\) 0 0
\(255\) −1.25713 + 3.36284i −0.0787243 + 0.210590i
\(256\) 0 0
\(257\) 0.636942i 0.0397314i 0.999803 + 0.0198657i \(0.00632386\pi\)
−0.999803 + 0.0198657i \(0.993676\pi\)
\(258\) 0 0
\(259\) 0.623035 0.0387135
\(260\) 0 0
\(261\) −16.1461 −0.999419
\(262\) 0 0
\(263\) 24.7560i 1.52652i −0.646091 0.763261i \(-0.723597\pi\)
0.646091 0.763261i \(-0.276403\pi\)
\(264\) 0 0
\(265\) 4.43403 + 1.65757i 0.272380 + 0.101823i
\(266\) 0 0
\(267\) 9.09128i 0.556377i
\(268\) 0 0
\(269\) −0.594054 −0.0362201 −0.0181100 0.999836i \(-0.505765\pi\)
−0.0181100 + 0.999836i \(0.505765\pi\)
\(270\) 0 0
\(271\) 28.4774 1.72988 0.864939 0.501877i \(-0.167357\pi\)
0.864939 + 0.501877i \(0.167357\pi\)
\(272\) 0 0
\(273\) 2.39729i 0.145091i
\(274\) 0 0
\(275\) 22.2824 + 19.3659i 1.34368 + 1.16781i
\(276\) 0 0
\(277\) 13.1049i 0.787397i 0.919240 + 0.393698i \(0.128805\pi\)
−0.919240 + 0.393698i \(0.871195\pi\)
\(278\) 0 0
\(279\) −14.1461 −0.846906
\(280\) 0 0
\(281\) 1.24420 0.0742228 0.0371114 0.999311i \(-0.488184\pi\)
0.0371114 + 0.999311i \(0.488184\pi\)
\(282\) 0 0
\(283\) 0.476558i 0.0283284i 0.999900 + 0.0141642i \(0.00450876\pi\)
−0.999900 + 0.0141642i \(0.995491\pi\)
\(284\) 0 0
\(285\) 5.57911 + 2.08563i 0.330478 + 0.123542i
\(286\) 0 0
\(287\) 5.43076i 0.320568i
\(288\) 0 0
\(289\) 12.3800 0.728237
\(290\) 0 0
\(291\) −7.21530 −0.422969
\(292\) 0 0
\(293\) 32.4190i 1.89394i −0.321328 0.946968i \(-0.604129\pi\)
0.321328 0.946968i \(-0.395871\pi\)
\(294\) 0 0
\(295\) −5.49597 + 14.7019i −0.319988 + 0.855975i
\(296\) 0 0
\(297\) 24.0017i 1.39272i
\(298\) 0 0
\(299\) −12.0509 −0.696924
\(300\) 0 0
\(301\) 12.6768 0.730680
\(302\) 0 0
\(303\) 9.88301i 0.567764i
\(304\) 0 0
\(305\) −1.46010 + 3.90581i −0.0836052 + 0.223646i
\(306\) 0 0
\(307\) 0.718737i 0.0410205i 0.999790 + 0.0205102i \(0.00652907\pi\)
−0.999790 + 0.0205102i \(0.993471\pi\)
\(308\) 0 0
\(309\) 2.38808 0.135853
\(310\) 0 0
\(311\) −19.1237 −1.08441 −0.542204 0.840247i \(-0.682410\pi\)
−0.542204 + 0.840247i \(0.682410\pi\)
\(312\) 0 0
\(313\) 24.4560i 1.38234i 0.722694 + 0.691168i \(0.242904\pi\)
−0.722694 + 0.691168i \(0.757096\pi\)
\(314\) 0 0
\(315\) 5.11483 + 1.91207i 0.288188 + 0.107733i
\(316\) 0 0
\(317\) 4.08203i 0.229270i 0.993408 + 0.114635i \(0.0365698\pi\)
−0.993408 + 0.114635i \(0.963430\pi\)
\(318\) 0 0
\(319\) 39.0384 2.18573
\(320\) 0 0
\(321\) 9.35366 0.522070
\(322\) 0 0
\(323\) 7.66473i 0.426477i
\(324\) 0 0
\(325\) 10.5264 12.1116i 0.583897 0.671831i
\(326\) 0 0
\(327\) 10.5486i 0.583337i
\(328\) 0 0
\(329\) −4.31294 −0.237780
\(330\) 0 0
\(331\) −5.70539 −0.313597 −0.156798 0.987631i \(-0.550117\pi\)
−0.156798 + 0.987631i \(0.550117\pi\)
\(332\) 0 0
\(333\) 1.52147i 0.0833760i
\(334\) 0 0
\(335\) −14.4187 5.39010i −0.787776 0.294493i
\(336\) 0 0
\(337\) 19.5071i 1.06262i −0.847178 0.531309i \(-0.821700\pi\)
0.847178 0.531309i \(-0.178300\pi\)
\(338\) 0 0
\(339\) 1.22140 0.0663376
\(340\) 0 0
\(341\) 34.2028 1.85218
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 2.19617 5.87481i 0.118238 0.316289i
\(346\) 0 0
\(347\) 30.5488i 1.63994i 0.572403 + 0.819972i \(0.306011\pi\)
−0.572403 + 0.819972i \(0.693989\pi\)
\(348\) 0 0
\(349\) −21.1043 −1.12969 −0.564844 0.825198i \(-0.691064\pi\)
−0.564844 + 0.825198i \(0.691064\pi\)
\(350\) 0 0
\(351\) 13.0461 0.696351
\(352\) 0 0
\(353\) 25.4989i 1.35717i −0.734523 0.678584i \(-0.762594\pi\)
0.734523 0.678584i \(-0.237406\pi\)
\(354\) 0 0
\(355\) −1.42359 + 3.80815i −0.0755564 + 0.202115i
\(356\) 0 0
\(357\) 1.60556i 0.0849752i
\(358\) 0 0
\(359\) 22.3658 1.18042 0.590210 0.807250i \(-0.299045\pi\)
0.590210 + 0.807250i \(0.299045\pi\)
\(360\) 0 0
\(361\) −6.28388 −0.330730
\(362\) 0 0
\(363\) 17.8241i 0.935524i
\(364\) 0 0
\(365\) −12.8120 4.78950i −0.670613 0.250694i
\(366\) 0 0
\(367\) 18.0126i 0.940252i 0.882599 + 0.470126i \(0.155791\pi\)
−0.882599 + 0.470126i \(0.844209\pi\)
\(368\) 0 0
\(369\) −13.2621 −0.690395
\(370\) 0 0
\(371\) −2.11699 −0.109908
\(372\) 0 0
\(373\) 22.8397i 1.18259i 0.806454 + 0.591297i \(0.201384\pi\)
−0.806454 + 0.591297i \(0.798616\pi\)
\(374\) 0 0
\(375\) 3.98606 + 7.33880i 0.205839 + 0.378974i
\(376\) 0 0
\(377\) 21.2193i 1.09285i
\(378\) 0 0
\(379\) 5.98775 0.307570 0.153785 0.988104i \(-0.450854\pi\)
0.153785 + 0.988104i \(0.450854\pi\)
\(380\) 0 0
\(381\) −1.34129 −0.0687163
\(382\) 0 0
\(383\) 25.6298i 1.30962i −0.755793 0.654810i \(-0.772749\pi\)
0.755793 0.654810i \(-0.227251\pi\)
\(384\) 0 0
\(385\) −12.3667 4.62304i −0.630267 0.235612i
\(386\) 0 0
\(387\) 30.9572i 1.57364i
\(388\) 0 0
\(389\) 24.3043 1.23228 0.616138 0.787639i \(-0.288697\pi\)
0.616138 + 0.787639i \(0.288697\pi\)
\(390\) 0 0
\(391\) 8.07098 0.408167
\(392\) 0 0
\(393\) 9.25266i 0.466735i
\(394\) 0 0
\(395\) 3.41118 9.12498i 0.171635 0.459128i
\(396\) 0 0
\(397\) 3.65219i 0.183298i −0.995791 0.0916490i \(-0.970786\pi\)
0.995791 0.0916490i \(-0.0292138\pi\)
\(398\) 0 0
\(399\) −2.66369 −0.133351
\(400\) 0 0
\(401\) 16.3543 0.816696 0.408348 0.912826i \(-0.366105\pi\)
0.408348 + 0.912826i \(0.366105\pi\)
\(402\) 0 0
\(403\) 18.5909i 0.926080i
\(404\) 0 0
\(405\) 3.35867 8.98453i 0.166894 0.446445i
\(406\) 0 0
\(407\) 3.67864i 0.182343i
\(408\) 0 0
\(409\) −35.8675 −1.77353 −0.886767 0.462217i \(-0.847054\pi\)
−0.886767 + 0.462217i \(0.847054\pi\)
\(410\) 0 0
\(411\) 10.7520 0.530355
\(412\) 0 0
\(413\) 7.01926i 0.345395i
\(414\) 0 0
\(415\) 27.5794 + 10.3099i 1.35382 + 0.506095i
\(416\) 0 0
\(417\) 16.9928i 0.832143i
\(418\) 0 0
\(419\) 22.5741 1.10282 0.551408 0.834236i \(-0.314091\pi\)
0.551408 + 0.834236i \(0.314091\pi\)
\(420\) 0 0
\(421\) −19.5931 −0.954910 −0.477455 0.878656i \(-0.658441\pi\)
−0.477455 + 0.878656i \(0.658441\pi\)
\(422\) 0 0
\(423\) 10.5323i 0.512099i
\(424\) 0 0
\(425\) −7.04990 + 8.11161i −0.341970 + 0.393471i
\(426\) 0 0
\(427\) 1.86479i 0.0902436i
\(428\) 0 0
\(429\) −14.1545 −0.683387
\(430\) 0 0
\(431\) −4.32304 −0.208234 −0.104117 0.994565i \(-0.533202\pi\)
−0.104117 + 0.994565i \(0.533202\pi\)
\(432\) 0 0
\(433\) 3.71479i 0.178521i 0.996008 + 0.0892606i \(0.0284504\pi\)
−0.996008 + 0.0892606i \(0.971550\pi\)
\(434\) 0 0
\(435\) 10.3444 + 3.86702i 0.495975 + 0.185410i
\(436\) 0 0
\(437\) 13.3901i 0.640535i
\(438\) 0 0
\(439\) 11.0528 0.527519 0.263760 0.964588i \(-0.415037\pi\)
0.263760 + 0.964588i \(0.415037\pi\)
\(440\) 0 0
\(441\) −2.44203 −0.116287
\(442\) 0 0
\(443\) 0.538500i 0.0255849i 0.999918 + 0.0127925i \(0.00407208\pi\)
−0.999918 + 0.0127925i \(0.995928\pi\)
\(444\) 0 0
\(445\) −9.52952 + 25.4917i −0.451743 + 1.20842i
\(446\) 0 0
\(447\) 14.0103i 0.662664i
\(448\) 0 0
\(449\) 9.38003 0.442671 0.221335 0.975198i \(-0.428958\pi\)
0.221335 + 0.975198i \(0.428958\pi\)
\(450\) 0 0
\(451\) 32.0653 1.50989
\(452\) 0 0
\(453\) 16.6444i 0.782022i
\(454\) 0 0
\(455\) −2.51285 + 6.72195i −0.117804 + 0.315130i
\(456\) 0 0
\(457\) 23.7242i 1.10977i −0.831926 0.554886i \(-0.812762\pi\)
0.831926 0.554886i \(-0.187238\pi\)
\(458\) 0 0
\(459\) −8.73749 −0.407831
\(460\) 0 0
\(461\) −36.8198 −1.71487 −0.857435 0.514592i \(-0.827943\pi\)
−0.857435 + 0.514592i \(0.827943\pi\)
\(462\) 0 0
\(463\) 14.3287i 0.665912i −0.942942 0.332956i \(-0.891954\pi\)
0.942942 0.332956i \(-0.108046\pi\)
\(464\) 0 0
\(465\) 9.06304 + 3.38802i 0.420288 + 0.157116i
\(466\) 0 0
\(467\) 18.3887i 0.850927i −0.904975 0.425464i \(-0.860111\pi\)
0.904975 0.425464i \(-0.139889\pi\)
\(468\) 0 0
\(469\) 6.88405 0.317876
\(470\) 0 0
\(471\) −12.4827 −0.575174
\(472\) 0 0
\(473\) 74.8488i 3.44155i
\(474\) 0 0
\(475\) 13.4575 + 11.6961i 0.617473 + 0.536654i
\(476\) 0 0
\(477\) 5.16974i 0.236706i
\(478\) 0 0
\(479\) 26.1400 1.19437 0.597184 0.802104i \(-0.296286\pi\)
0.597184 + 0.802104i \(0.296286\pi\)
\(480\) 0 0
\(481\) 1.99953 0.0911706
\(482\) 0 0
\(483\) 2.80487i 0.127626i
\(484\) 0 0
\(485\) −20.2315 7.56312i −0.918666 0.343423i
\(486\) 0 0
\(487\) 7.27567i 0.329692i 0.986319 + 0.164846i \(0.0527127\pi\)
−0.986319 + 0.164846i \(0.947287\pi\)
\(488\) 0 0
\(489\) −12.2171 −0.552478
\(490\) 0 0
\(491\) 7.73616 0.349128 0.174564 0.984646i \(-0.444148\pi\)
0.174564 + 0.984646i \(0.444148\pi\)
\(492\) 0 0
\(493\) 14.2114i 0.640050i
\(494\) 0 0
\(495\) −11.2896 + 30.1999i −0.507429 + 1.35738i
\(496\) 0 0
\(497\) 1.81816i 0.0815558i
\(498\) 0 0
\(499\) 8.66694 0.387986 0.193993 0.981003i \(-0.437856\pi\)
0.193993 + 0.981003i \(0.437856\pi\)
\(500\) 0 0
\(501\) 2.73731 0.122294
\(502\) 0 0
\(503\) 8.28220i 0.369285i 0.982806 + 0.184643i \(0.0591127\pi\)
−0.982806 + 0.184643i \(0.940887\pi\)
\(504\) 0 0
\(505\) 10.3594 27.7117i 0.460988 1.23316i
\(506\) 0 0
\(507\) 2.01698i 0.0895772i
\(508\) 0 0
\(509\) 34.9114 1.54742 0.773711 0.633539i \(-0.218398\pi\)
0.773711 + 0.633539i \(0.218398\pi\)
\(510\) 0 0
\(511\) 6.11699 0.270600
\(512\) 0 0
\(513\) 14.4959i 0.640009i
\(514\) 0 0
\(515\) 6.69612 + 2.50320i 0.295066 + 0.110304i
\(516\) 0 0
\(517\) 25.4653i 1.11996i
\(518\) 0 0
\(519\) 6.25683 0.274645
\(520\) 0 0
\(521\) 12.9125 0.565705 0.282853 0.959163i \(-0.408719\pi\)
0.282853 + 0.959163i \(0.408719\pi\)
\(522\) 0 0
\(523\) 24.4885i 1.07081i −0.844596 0.535405i \(-0.820159\pi\)
0.844596 0.535405i \(-0.179841\pi\)
\(524\) 0 0
\(525\) −2.81899 2.45002i −0.123031 0.106928i
\(526\) 0 0
\(527\) 12.4511i 0.542377i
\(528\) 0 0
\(529\) 8.90020 0.386965
\(530\) 0 0
\(531\) −17.1412 −0.743866
\(532\) 0 0
\(533\) 17.4291i 0.754938i
\(534\) 0 0
\(535\) 26.2274 + 9.80455i 1.13391 + 0.423888i
\(536\) 0 0
\(537\) 1.29685i 0.0559631i
\(538\) 0 0
\(539\) 5.90438 0.254320
\(540\) 0 0
\(541\) 10.0318 0.431299 0.215650 0.976471i \(-0.430813\pi\)
0.215650 + 0.976471i \(0.430813\pi\)
\(542\) 0 0
\(543\) 10.0559i 0.431539i
\(544\) 0 0
\(545\) 11.0571 29.5779i 0.473633 1.26698i
\(546\) 0 0
\(547\) 21.3310i 0.912046i −0.889968 0.456023i \(-0.849274\pi\)
0.889968 0.456023i \(-0.150726\pi\)
\(548\) 0 0
\(549\) −4.55387 −0.194354
\(550\) 0 0
\(551\) 23.5773 1.00443
\(552\) 0 0
\(553\) 4.35664i 0.185263i
\(554\) 0 0
\(555\) −0.364395 + 0.974765i −0.0154677 + 0.0413765i
\(556\) 0 0
\(557\) 32.4179i 1.37359i 0.726851 + 0.686795i \(0.240983\pi\)
−0.726851 + 0.686795i \(0.759017\pi\)
\(558\) 0 0
\(559\) 40.6841 1.72076
\(560\) 0 0
\(561\) 9.47983 0.400239
\(562\) 0 0
\(563\) 44.8971i 1.89219i −0.323894 0.946093i \(-0.604992\pi\)
0.323894 0.946093i \(-0.395008\pi\)
\(564\) 0 0
\(565\) 3.42479 + 1.28028i 0.144082 + 0.0538619i
\(566\) 0 0
\(567\) 4.28958i 0.180145i
\(568\) 0 0
\(569\) 16.1454 0.676850 0.338425 0.940993i \(-0.390106\pi\)
0.338425 + 0.940993i \(0.390106\pi\)
\(570\) 0 0
\(571\) 14.1954 0.594061 0.297031 0.954868i \(-0.404004\pi\)
0.297031 + 0.954868i \(0.404004\pi\)
\(572\) 0 0
\(573\) 5.16857i 0.215920i
\(574\) 0 0
\(575\) 12.3160 14.1708i 0.513613 0.590962i
\(576\) 0 0
\(577\) 14.0481i 0.584831i −0.956291 0.292415i \(-0.905541\pi\)
0.956291 0.292415i \(-0.0944590\pi\)
\(578\) 0 0
\(579\) 6.21798 0.258411
\(580\) 0 0
\(581\) −13.1675 −0.546280
\(582\) 0 0
\(583\) 12.4995i 0.517676i
\(584\) 0 0
\(585\) 16.4152 + 6.13646i 0.678684 + 0.253711i
\(586\) 0 0
\(587\) 20.4742i 0.845061i 0.906349 + 0.422531i \(0.138858\pi\)
−0.906349 + 0.422531i \(0.861142\pi\)
\(588\) 0 0
\(589\) 20.6568 0.851151
\(590\) 0 0
\(591\) 13.1501 0.540921
\(592\) 0 0
\(593\) 16.1372i 0.662674i −0.943513 0.331337i \(-0.892500\pi\)
0.943513 0.331337i \(-0.107500\pi\)
\(594\) 0 0
\(595\) 1.68295 4.50195i 0.0689944 0.184562i
\(596\) 0 0
\(597\) 3.41311i 0.139689i
\(598\) 0 0
\(599\) −39.5597 −1.61637 −0.808183 0.588931i \(-0.799549\pi\)
−0.808183 + 0.588931i \(0.799549\pi\)
\(600\) 0 0
\(601\) −29.4061 −1.19950 −0.599750 0.800188i \(-0.704733\pi\)
−0.599750 + 0.800188i \(0.704733\pi\)
\(602\) 0 0
\(603\) 16.8110i 0.684599i
\(604\) 0 0
\(605\) 18.6833 49.9784i 0.759586 2.03191i
\(606\) 0 0
\(607\) 22.1165i 0.897680i 0.893612 + 0.448840i \(0.148163\pi\)
−0.893612 + 0.448840i \(0.851837\pi\)
\(608\) 0 0
\(609\) −4.93883 −0.200131
\(610\) 0 0
\(611\) −13.8417 −0.559974
\(612\) 0 0
\(613\) 27.1411i 1.09622i 0.836407 + 0.548109i \(0.184652\pi\)
−0.836407 + 0.548109i \(0.815348\pi\)
\(614\) 0 0
\(615\) 8.49665 + 3.17629i 0.342618 + 0.128080i
\(616\) 0 0
\(617\) 1.66337i 0.0669648i −0.999439 0.0334824i \(-0.989340\pi\)
0.999439 0.0334824i \(-0.0106598\pi\)
\(618\) 0 0
\(619\) −19.8283 −0.796969 −0.398484 0.917175i \(-0.630464\pi\)
−0.398484 + 0.917175i \(0.630464\pi\)
\(620\) 0 0
\(621\) 15.2642 0.612531
\(622\) 0 0
\(623\) 12.1708i 0.487612i
\(624\) 0 0
\(625\) 3.48423 + 24.7560i 0.139369 + 0.990240i
\(626\) 0 0
\(627\) 15.7275i 0.628094i
\(628\) 0 0
\(629\) −1.33916 −0.0533958
\(630\) 0 0
\(631\) −20.1113 −0.800619 −0.400309 0.916380i \(-0.631097\pi\)
−0.400309 + 0.916380i \(0.631097\pi\)
\(632\) 0 0
\(633\) 21.1082i 0.838975i
\(634\) 0 0
\(635\) −3.76094 1.40595i −0.149248 0.0557933i
\(636\) 0 0
\(637\) 3.20933i 0.127158i
\(638\) 0 0
\(639\) −4.44000 −0.175644
\(640\) 0 0
\(641\) −38.5135 −1.52119 −0.760597 0.649225i \(-0.775093\pi\)
−0.760597 + 0.649225i \(0.775093\pi\)
\(642\) 0 0
\(643\) 39.3844i 1.55317i −0.630013 0.776584i \(-0.716951\pi\)
0.630013 0.776584i \(-0.283049\pi\)
\(644\) 0 0
\(645\) −7.41430 + 19.8334i −0.291938 + 0.780941i
\(646\) 0 0
\(647\) 22.1010i 0.868882i −0.900700 0.434441i \(-0.856946\pi\)
0.900700 0.434441i \(-0.143054\pi\)
\(648\) 0 0
\(649\) 41.4444 1.62684
\(650\) 0 0
\(651\) −4.32706 −0.169591
\(652\) 0 0
\(653\) 26.5824i 1.04025i 0.854090 + 0.520124i \(0.174114\pi\)
−0.854090 + 0.520124i \(0.825886\pi\)
\(654\) 0 0
\(655\) 9.69869 25.9442i 0.378959 1.01373i
\(656\) 0 0
\(657\) 14.9378i 0.582781i
\(658\) 0 0
\(659\) −12.6953 −0.494541 −0.247270 0.968947i \(-0.579534\pi\)
−0.247270 + 0.968947i \(0.579534\pi\)
\(660\) 0 0
\(661\) −2.67371 −0.103995 −0.0519976 0.998647i \(-0.516559\pi\)
−0.0519976 + 0.998647i \(0.516559\pi\)
\(662\) 0 0
\(663\) 5.15277i 0.200117i
\(664\) 0 0
\(665\) −7.46892 2.79209i −0.289632 0.108273i
\(666\) 0 0
\(667\) 24.8270i 0.961305i
\(668\) 0 0
\(669\) −18.8335 −0.728145
\(670\) 0 0
\(671\) 11.0104 0.425053
\(672\) 0 0
\(673\) 25.2235i 0.972296i 0.873877 + 0.486148i \(0.161598\pi\)
−0.873877 + 0.486148i \(0.838402\pi\)
\(674\) 0 0
\(675\) −13.3331 + 15.3410i −0.513191 + 0.590476i
\(676\) 0 0
\(677\) 8.88750i 0.341574i −0.985308 0.170787i \(-0.945369\pi\)
0.985308 0.170787i \(-0.0546310\pi\)
\(678\) 0 0
\(679\) 9.65935 0.370692
\(680\) 0 0
\(681\) 13.0743 0.501009
\(682\) 0 0
\(683\) 36.7217i 1.40512i −0.711626 0.702558i \(-0.752041\pi\)
0.711626 0.702558i \(-0.247959\pi\)
\(684\) 0 0
\(685\) 30.1482 + 11.2703i 1.15191 + 0.430615i
\(686\) 0 0
\(687\) 0.169420i 0.00646377i
\(688\) 0 0
\(689\) −6.79411 −0.258835
\(690\) 0 0
\(691\) 22.9721 0.873898 0.436949 0.899486i \(-0.356059\pi\)
0.436949 + 0.899486i \(0.356059\pi\)
\(692\) 0 0
\(693\) 14.4187i 0.547720i
\(694\) 0 0
\(695\) −17.8120 + 47.6475i −0.675647 + 1.80737i
\(696\) 0 0
\(697\) 11.6729i 0.442144i
\(698\) 0 0
\(699\) −20.4549 −0.773674
\(700\) 0 0
\(701\) 2.86785 0.108317 0.0541586 0.998532i \(-0.482752\pi\)
0.0541586 + 0.998532i \(0.482752\pi\)
\(702\) 0 0
\(703\) 2.22172i 0.0837939i
\(704\) 0 0
\(705\) 2.52251 6.74778i 0.0950033 0.254136i
\(706\) 0 0
\(707\) 13.2307i 0.497592i
\(708\) 0 0
\(709\) −34.9590 −1.31291 −0.656457 0.754363i \(-0.727946\pi\)
−0.656457 + 0.754363i \(0.727946\pi\)
\(710\) 0 0
\(711\) 10.6390 0.398995
\(712\) 0 0
\(713\) 21.7517i 0.814608i
\(714\) 0 0
\(715\) −39.6890 14.8369i −1.48428 0.554867i
\(716\) 0 0
\(717\) 7.65681i 0.285949i
\(718\) 0 0
\(719\) −35.5609 −1.32620 −0.663099 0.748532i \(-0.730759\pi\)
−0.663099 + 0.748532i \(0.730759\pi\)
\(720\) 0 0
\(721\) −3.19700 −0.119062
\(722\) 0 0
\(723\) 15.6422i 0.581740i
\(724\) 0 0
\(725\) 24.9520 + 21.6861i 0.926693 + 0.805401i
\(726\) 0 0
\(727\) 29.2096i 1.08333i −0.840596 0.541663i \(-0.817795\pi\)
0.840596 0.541663i \(-0.182205\pi\)
\(728\) 0 0
\(729\) 1.36576 0.0505836
\(730\) 0 0
\(731\) −27.2477 −1.00779
\(732\) 0 0
\(733\) 12.5651i 0.464103i −0.972703 0.232052i \(-0.925456\pi\)
0.972703 0.232052i \(-0.0745438\pi\)
\(734\) 0 0
\(735\) 1.56454 + 0.584870i 0.0577090 + 0.0215733i
\(736\) 0 0
\(737\) 40.6461i 1.49722i
\(738\) 0 0
\(739\) 24.5041 0.901398 0.450699 0.892676i \(-0.351175\pi\)
0.450699 + 0.892676i \(0.351175\pi\)
\(740\) 0 0
\(741\) −8.54867 −0.314043
\(742\) 0 0
\(743\) 22.9661i 0.842544i −0.906934 0.421272i \(-0.861584\pi\)
0.906934 0.421272i \(-0.138416\pi\)
\(744\) 0 0
\(745\) −14.6857 + 39.2845i −0.538041 + 1.43927i
\(746\) 0 0
\(747\) 32.1554i 1.17650i
\(748\) 0 0
\(749\) −12.5220 −0.457545
\(750\) 0 0
\(751\) 8.06696 0.294368 0.147184 0.989109i \(-0.452979\pi\)
0.147184 + 0.989109i \(0.452979\pi\)
\(752\) 0 0
\(753\) 3.17965i 0.115873i
\(754\) 0 0
\(755\) −17.4467 + 46.6705i −0.634952 + 1.69851i
\(756\) 0 0
\(757\) 43.5310i 1.58216i −0.611711 0.791081i \(-0.709519\pi\)
0.611711 0.791081i \(-0.290481\pi\)
\(758\) 0 0
\(759\) −16.5610 −0.601128
\(760\) 0 0
\(761\) 14.5242 0.526501 0.263250 0.964728i \(-0.415205\pi\)
0.263250 + 0.964728i \(0.415205\pi\)
\(762\) 0 0
\(763\) 14.1217i 0.511240i
\(764\) 0 0
\(765\) −10.9939 4.10982i −0.397484 0.148591i
\(766\) 0 0
\(767\) 22.5271i 0.813408i
\(768\) 0 0
\(769\) 12.4577 0.449235 0.224617 0.974447i \(-0.427887\pi\)
0.224617 + 0.974447i \(0.427887\pi\)
\(770\) 0 0
\(771\) 0.475780 0.0171348
\(772\) 0 0
\(773\) 18.8821i 0.679142i 0.940580 + 0.339571i \(0.110282\pi\)
−0.940580 + 0.339571i \(0.889718\pi\)
\(774\) 0 0
\(775\) 21.8612 + 18.9998i 0.785277 + 0.682495i
\(776\) 0 0
\(777\) 0.465392i 0.0166959i
\(778\) 0 0
\(779\) 19.3659 0.693856
\(780\) 0 0
\(781\) 10.7351 0.384133
\(782\) 0 0
\(783\) 26.8772i 0.960514i
\(784\) 0 0
\(785\) −35.0013 13.0845i −1.24925 0.467005i
\(786\) 0 0
\(787\) 36.1080i 1.28711i −0.765399 0.643555i \(-0.777459\pi\)
0.765399 0.643555i \(-0.222541\pi\)
\(788\) 0 0
\(789\) −18.4921 −0.658338
\(790\) 0 0
\(791\) −1.63513 −0.0581386
\(792\) 0 0
\(793\) 5.98473i 0.212524i
\(794\) 0 0
\(795\) 1.23816 3.31211i 0.0439131 0.117469i
\(796\) 0 0
\(797\) 26.4489i 0.936866i 0.883499 + 0.468433i \(0.155181\pi\)
−0.883499 + 0.468433i \(0.844819\pi\)
\(798\) 0 0
\(799\) 9.27029 0.327959
\(800\) 0 0
\(801\) −29.7214 −1.05015
\(802\) 0 0