Properties

Label 2240.2.g.o.449.10
Level $2240$
Weight $2$
Character 2240.449
Analytic conductor $17.886$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(17.8864900528\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Defining polynomial: \(x^{10} + 13 x^{8} + 56 x^{6} + 97 x^{4} + 61 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.10
Root \(1.84576i\) of defining polynomial
Character \(\chi\) \(=\) 2240.449
Dual form 2240.2.g.o.449.1

$q$-expansion

\(f(q)\) \(=\) \(q+3.25260i q^{3} +(1.49436 - 1.66340i) q^{5} -1.00000i q^{7} -7.57939 q^{9} +O(q^{10})\) \(q+3.25260i q^{3} +(1.49436 - 1.66340i) q^{5} -1.00000i q^{7} -7.57939 q^{9} +2.88786 q^{11} -6.94412i q^{13} +(5.41035 + 4.86056i) q^{15} -0.549797i q^{17} -4.98872 q^{19} +3.25260 q^{21} +2.33807i q^{23} +(-0.533766 - 4.97143i) q^{25} -14.8949i q^{27} -5.14173 q^{29} -5.40560 q^{31} +9.39306i q^{33} +(-1.66340 - 1.49436i) q^{35} -8.31551i q^{37} +22.5864 q^{39} -2.87785 q^{41} -7.75318i q^{43} +(-11.3263 + 12.6075i) q^{45} -8.24132i q^{47} -1.00000 q^{49} +1.78827 q^{51} +1.81032i q^{53} +(4.31551 - 4.80366i) q^{55} -16.2263i q^{57} +9.04790 q^{59} +2.11087 q^{61} +7.57939i q^{63} +(-11.5508 - 10.3770i) q^{65} -13.1588i q^{67} -7.60479 q^{69} -3.28928 q^{71} +2.18968i q^{73} +(16.1701 - 1.73613i) q^{75} -2.88786i q^{77} +2.04460 q^{79} +25.7089 q^{81} +3.38141i q^{83} +(-0.914530 - 0.821596i) q^{85} -16.7240i q^{87} +3.24798 q^{89} -6.94412 q^{91} -17.5822i q^{93} +(-7.45496 + 8.29822i) q^{95} -5.22593i q^{97} -21.8882 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 2q^{5} - 14q^{9} + O(q^{10}) \) \( 10q + 2q^{5} - 14q^{9} + 8q^{11} - 4q^{15} - 24q^{19} + 4q^{21} + 6q^{25} - 24q^{29} - 24q^{31} + 64q^{39} - 4q^{41} - 10q^{45} - 10q^{49} + 24q^{51} - 16q^{55} - 32q^{59} + 20q^{61} - 8q^{65} + 8q^{69} - 8q^{71} + 64q^{75} + 64q^{79} + 2q^{81} + 12q^{85} - 4q^{89} - 60q^{95} - 80q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times\).

\(n\) \(897\) \(1471\) \(1541\) \(1921\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.25260i 1.87789i 0.344070 + 0.938944i \(0.388194\pi\)
−0.344070 + 0.938944i \(0.611806\pi\)
\(4\) 0 0
\(5\) 1.49436 1.66340i 0.668299 0.743893i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −7.57939 −2.52646
\(10\) 0 0
\(11\) 2.88786 0.870724 0.435362 0.900256i \(-0.356620\pi\)
0.435362 + 0.900256i \(0.356620\pi\)
\(12\) 0 0
\(13\) 6.94412i 1.92595i −0.269587 0.962976i \(-0.586887\pi\)
0.269587 0.962976i \(-0.413113\pi\)
\(14\) 0 0
\(15\) 5.41035 + 4.86056i 1.39695 + 1.25499i
\(16\) 0 0
\(17\) 0.549797i 0.133345i −0.997775 0.0666727i \(-0.978762\pi\)
0.997775 0.0666727i \(-0.0212383\pi\)
\(18\) 0 0
\(19\) −4.98872 −1.14449 −0.572246 0.820082i \(-0.693928\pi\)
−0.572246 + 0.820082i \(0.693928\pi\)
\(20\) 0 0
\(21\) 3.25260 0.709775
\(22\) 0 0
\(23\) 2.33807i 0.487521i 0.969836 + 0.243760i \(0.0783810\pi\)
−0.969836 + 0.243760i \(0.921619\pi\)
\(24\) 0 0
\(25\) −0.533766 4.97143i −0.106753 0.994286i
\(26\) 0 0
\(27\) 14.8949i 2.86652i
\(28\) 0 0
\(29\) −5.14173 −0.954794 −0.477397 0.878688i \(-0.658420\pi\)
−0.477397 + 0.878688i \(0.658420\pi\)
\(30\) 0 0
\(31\) −5.40560 −0.970874 −0.485437 0.874272i \(-0.661340\pi\)
−0.485437 + 0.874272i \(0.661340\pi\)
\(32\) 0 0
\(33\) 9.39306i 1.63512i
\(34\) 0 0
\(35\) −1.66340 1.49436i −0.281165 0.252593i
\(36\) 0 0
\(37\) 8.31551i 1.36706i −0.729921 0.683531i \(-0.760443\pi\)
0.729921 0.683531i \(-0.239557\pi\)
\(38\) 0 0
\(39\) 22.5864 3.61672
\(40\) 0 0
\(41\) −2.87785 −0.449445 −0.224722 0.974423i \(-0.572148\pi\)
−0.224722 + 0.974423i \(0.572148\pi\)
\(42\) 0 0
\(43\) 7.75318i 1.18235i −0.806544 0.591174i \(-0.798665\pi\)
0.806544 0.591174i \(-0.201335\pi\)
\(44\) 0 0
\(45\) −11.3263 + 12.6075i −1.68843 + 1.87942i
\(46\) 0 0
\(47\) 8.24132i 1.20212i −0.799204 0.601060i \(-0.794745\pi\)
0.799204 0.601060i \(-0.205255\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 1.78827 0.250408
\(52\) 0 0
\(53\) 1.81032i 0.248667i 0.992241 + 0.124333i \(0.0396792\pi\)
−0.992241 + 0.124333i \(0.960321\pi\)
\(54\) 0 0
\(55\) 4.31551 4.80366i 0.581904 0.647725i
\(56\) 0 0
\(57\) 16.2263i 2.14923i
\(58\) 0 0
\(59\) 9.04790 1.17794 0.588968 0.808156i \(-0.299534\pi\)
0.588968 + 0.808156i \(0.299534\pi\)
\(60\) 0 0
\(61\) 2.11087 0.270269 0.135135 0.990827i \(-0.456853\pi\)
0.135135 + 0.990827i \(0.456853\pi\)
\(62\) 0 0
\(63\) 7.57939i 0.954913i
\(64\) 0 0
\(65\) −11.5508 10.3770i −1.43270 1.28711i
\(66\) 0 0
\(67\) 13.1588i 1.60760i −0.594900 0.803800i \(-0.702808\pi\)
0.594900 0.803800i \(-0.297192\pi\)
\(68\) 0 0
\(69\) −7.60479 −0.915509
\(70\) 0 0
\(71\) −3.28928 −0.390365 −0.195183 0.980767i \(-0.562530\pi\)
−0.195183 + 0.980767i \(0.562530\pi\)
\(72\) 0 0
\(73\) 2.18968i 0.256283i 0.991756 + 0.128141i \(0.0409011\pi\)
−0.991756 + 0.128141i \(0.959099\pi\)
\(74\) 0 0
\(75\) 16.1701 1.73613i 1.86716 0.200471i
\(76\) 0 0
\(77\) 2.88786i 0.329103i
\(78\) 0 0
\(79\) 2.04460 0.230036 0.115018 0.993363i \(-0.463307\pi\)
0.115018 + 0.993363i \(0.463307\pi\)
\(80\) 0 0
\(81\) 25.7089 2.85655
\(82\) 0 0
\(83\) 3.38141i 0.371157i 0.982629 + 0.185579i \(0.0594160\pi\)
−0.982629 + 0.185579i \(0.940584\pi\)
\(84\) 0 0
\(85\) −0.914530 0.821596i −0.0991947 0.0891146i
\(86\) 0 0
\(87\) 16.7240i 1.79300i
\(88\) 0 0
\(89\) 3.24798 0.344285 0.172143 0.985072i \(-0.444931\pi\)
0.172143 + 0.985072i \(0.444931\pi\)
\(90\) 0 0
\(91\) −6.94412 −0.727942
\(92\) 0 0
\(93\) 17.5822i 1.82319i
\(94\) 0 0
\(95\) −7.45496 + 8.29822i −0.764862 + 0.851379i
\(96\) 0 0
\(97\) 5.22593i 0.530613i −0.964164 0.265306i \(-0.914527\pi\)
0.964164 0.265306i \(-0.0854731\pi\)
\(98\) 0 0
\(99\) −21.8882 −2.19985
\(100\) 0 0
\(101\) 4.24594 0.422486 0.211243 0.977434i \(-0.432249\pi\)
0.211243 + 0.977434i \(0.432249\pi\)
\(102\) 0 0
\(103\) 12.9175i 1.27279i 0.771361 + 0.636397i \(0.219576\pi\)
−0.771361 + 0.636397i \(0.780424\pi\)
\(104\) 0 0
\(105\) 4.86056 5.41035i 0.474342 0.527996i
\(106\) 0 0
\(107\) 9.68652i 0.936431i 0.883614 + 0.468216i \(0.155103\pi\)
−0.883614 + 0.468216i \(0.844897\pi\)
\(108\) 0 0
\(109\) 0.465592 0.0445956 0.0222978 0.999751i \(-0.492902\pi\)
0.0222978 + 0.999751i \(0.492902\pi\)
\(110\) 0 0
\(111\) 27.0470 2.56719
\(112\) 0 0
\(113\) 17.3259i 1.62988i 0.579543 + 0.814942i \(0.303231\pi\)
−0.579543 + 0.814942i \(0.696769\pi\)
\(114\) 0 0
\(115\) 3.88913 + 3.49392i 0.362663 + 0.325809i
\(116\) 0 0
\(117\) 52.6322i 4.86585i
\(118\) 0 0
\(119\) −0.549797 −0.0503998
\(120\) 0 0
\(121\) −2.66024 −0.241840
\(122\) 0 0
\(123\) 9.36049i 0.844007i
\(124\) 0 0
\(125\) −9.06709 6.54125i −0.810985 0.585067i
\(126\) 0 0
\(127\) 18.2038i 1.61532i 0.589647 + 0.807661i \(0.299267\pi\)
−0.589647 + 0.807661i \(0.700733\pi\)
\(128\) 0 0
\(129\) 25.2180 2.22032
\(130\) 0 0
\(131\) −13.7974 −1.20548 −0.602742 0.797936i \(-0.705925\pi\)
−0.602742 + 0.797936i \(0.705925\pi\)
\(132\) 0 0
\(133\) 4.98872i 0.432577i
\(134\) 0 0
\(135\) −24.7761 22.2584i −2.13239 1.91570i
\(136\) 0 0
\(137\) 17.8349i 1.52374i 0.647731 + 0.761869i \(0.275718\pi\)
−0.647731 + 0.761869i \(0.724282\pi\)
\(138\) 0 0
\(139\) 1.26965 0.107690 0.0538450 0.998549i \(-0.482852\pi\)
0.0538450 + 0.998549i \(0.482852\pi\)
\(140\) 0 0
\(141\) 26.8057 2.25745
\(142\) 0 0
\(143\) 20.0537i 1.67697i
\(144\) 0 0
\(145\) −7.68360 + 8.55272i −0.638088 + 0.710265i
\(146\) 0 0
\(147\) 3.25260i 0.268270i
\(148\) 0 0
\(149\) 11.3072 0.926319 0.463159 0.886275i \(-0.346716\pi\)
0.463159 + 0.886275i \(0.346716\pi\)
\(150\) 0 0
\(151\) 1.54144 0.125441 0.0627205 0.998031i \(-0.480022\pi\)
0.0627205 + 0.998031i \(0.480022\pi\)
\(152\) 0 0
\(153\) 4.16713i 0.336892i
\(154\) 0 0
\(155\) −8.07792 + 8.99165i −0.648834 + 0.722226i
\(156\) 0 0
\(157\) 13.0133i 1.03858i −0.854600 0.519288i \(-0.826197\pi\)
0.854600 0.519288i \(-0.173803\pi\)
\(158\) 0 0
\(159\) −5.88824 −0.466968
\(160\) 0 0
\(161\) 2.33807 0.184265
\(162\) 0 0
\(163\) 16.2609i 1.27365i 0.771008 + 0.636826i \(0.219753\pi\)
−0.771008 + 0.636826i \(0.780247\pi\)
\(164\) 0 0
\(165\) 15.6244 + 14.0366i 1.21636 + 1.09275i
\(166\) 0 0
\(167\) 14.6732i 1.13544i −0.823221 0.567722i \(-0.807825\pi\)
0.823221 0.567722i \(-0.192175\pi\)
\(168\) 0 0
\(169\) −35.2208 −2.70929
\(170\) 0 0
\(171\) 37.8115 2.89152
\(172\) 0 0
\(173\) 3.86708i 0.294009i −0.989136 0.147004i \(-0.953037\pi\)
0.989136 0.147004i \(-0.0469631\pi\)
\(174\) 0 0
\(175\) −4.97143 + 0.533766i −0.375805 + 0.0403489i
\(176\) 0 0
\(177\) 29.4292i 2.21203i
\(178\) 0 0
\(179\) 3.95489 0.295603 0.147801 0.989017i \(-0.452780\pi\)
0.147801 + 0.989017i \(0.452780\pi\)
\(180\) 0 0
\(181\) 15.1804 1.12835 0.564177 0.825654i \(-0.309194\pi\)
0.564177 + 0.825654i \(0.309194\pi\)
\(182\) 0 0
\(183\) 6.86581i 0.507536i
\(184\) 0 0
\(185\) −13.8320 12.4264i −1.01695 0.913606i
\(186\) 0 0
\(187\) 1.58774i 0.116107i
\(188\) 0 0
\(189\) −14.8949 −1.08344
\(190\) 0 0
\(191\) −4.89990 −0.354544 −0.177272 0.984162i \(-0.556727\pi\)
−0.177272 + 0.984162i \(0.556727\pi\)
\(192\) 0 0
\(193\) 4.78408i 0.344366i −0.985065 0.172183i \(-0.944918\pi\)
0.985065 0.172183i \(-0.0550820\pi\)
\(194\) 0 0
\(195\) 33.7523 37.5701i 2.41705 2.69045i
\(196\) 0 0
\(197\) 16.4280i 1.17045i −0.810872 0.585224i \(-0.801007\pi\)
0.810872 0.585224i \(-0.198993\pi\)
\(198\) 0 0
\(199\) 7.12215 0.504876 0.252438 0.967613i \(-0.418768\pi\)
0.252438 + 0.967613i \(0.418768\pi\)
\(200\) 0 0
\(201\) 42.8002 3.01889
\(202\) 0 0
\(203\) 5.14173i 0.360878i
\(204\) 0 0
\(205\) −4.30055 + 4.78700i −0.300364 + 0.334339i
\(206\) 0 0
\(207\) 17.7211i 1.23170i
\(208\) 0 0
\(209\) −14.4068 −0.996536
\(210\) 0 0
\(211\) 24.4793 1.68523 0.842613 0.538519i \(-0.181016\pi\)
0.842613 + 0.538519i \(0.181016\pi\)
\(212\) 0 0
\(213\) 10.6987i 0.733062i
\(214\) 0 0
\(215\) −12.8966 11.5860i −0.879540 0.790162i
\(216\) 0 0
\(217\) 5.40560i 0.366956i
\(218\) 0 0
\(219\) −7.12215 −0.481270
\(220\) 0 0
\(221\) −3.81786 −0.256817
\(222\) 0 0
\(223\) 8.09878i 0.542335i −0.962532 0.271167i \(-0.912590\pi\)
0.962532 0.271167i \(-0.0874096\pi\)
\(224\) 0 0
\(225\) 4.04562 + 37.6804i 0.269708 + 2.51203i
\(226\) 0 0
\(227\) 10.0546i 0.667345i 0.942689 + 0.333672i \(0.108288\pi\)
−0.942689 + 0.333672i \(0.891712\pi\)
\(228\) 0 0
\(229\) 1.58312 0.104616 0.0523079 0.998631i \(-0.483342\pi\)
0.0523079 + 0.998631i \(0.483342\pi\)
\(230\) 0 0
\(231\) 9.39306 0.618018
\(232\) 0 0
\(233\) 0.0691827i 0.00453231i 0.999997 + 0.00226615i \(0.000721340\pi\)
−0.999997 + 0.00226615i \(0.999279\pi\)
\(234\) 0 0
\(235\) −13.7086 12.3155i −0.894249 0.803376i
\(236\) 0 0
\(237\) 6.65027i 0.431982i
\(238\) 0 0
\(239\) 20.8212 1.34681 0.673406 0.739273i \(-0.264831\pi\)
0.673406 + 0.739273i \(0.264831\pi\)
\(240\) 0 0
\(241\) −6.20172 −0.399488 −0.199744 0.979848i \(-0.564011\pi\)
−0.199744 + 0.979848i \(0.564011\pi\)
\(242\) 0 0
\(243\) 38.9361i 2.49775i
\(244\) 0 0
\(245\) −1.49436 + 1.66340i −0.0954713 + 0.106270i
\(246\) 0 0
\(247\) 34.6423i 2.20424i
\(248\) 0 0
\(249\) −10.9983 −0.696992
\(250\) 0 0
\(251\) 15.9924 1.00943 0.504716 0.863285i \(-0.331597\pi\)
0.504716 + 0.863285i \(0.331597\pi\)
\(252\) 0 0
\(253\) 6.75202i 0.424496i
\(254\) 0 0
\(255\) 2.67232 2.97460i 0.167347 0.186277i
\(256\) 0 0
\(257\) 22.4413i 1.39985i −0.714215 0.699926i \(-0.753216\pi\)
0.714215 0.699926i \(-0.246784\pi\)
\(258\) 0 0
\(259\) −8.31551 −0.516701
\(260\) 0 0
\(261\) 38.9711 2.41225
\(262\) 0 0
\(263\) 5.30716i 0.327254i −0.986522 0.163627i \(-0.947681\pi\)
0.986522 0.163627i \(-0.0523193\pi\)
\(264\) 0 0
\(265\) 3.01128 + 2.70527i 0.184981 + 0.166184i
\(266\) 0 0
\(267\) 10.5644i 0.646529i
\(268\) 0 0
\(269\) 25.2030 1.53665 0.768327 0.640058i \(-0.221090\pi\)
0.768327 + 0.640058i \(0.221090\pi\)
\(270\) 0 0
\(271\) −6.68945 −0.406355 −0.203178 0.979142i \(-0.565127\pi\)
−0.203178 + 0.979142i \(0.565127\pi\)
\(272\) 0 0
\(273\) 22.5864i 1.36699i
\(274\) 0 0
\(275\) −1.54144 14.3568i −0.0929526 0.865748i
\(276\) 0 0
\(277\) 19.2001i 1.15362i −0.816878 0.576810i \(-0.804297\pi\)
0.816878 0.576810i \(-0.195703\pi\)
\(278\) 0 0
\(279\) 40.9711 2.45288
\(280\) 0 0
\(281\) 9.89122 0.590060 0.295030 0.955488i \(-0.404670\pi\)
0.295030 + 0.955488i \(0.404670\pi\)
\(282\) 0 0
\(283\) 4.96915i 0.295385i 0.989033 + 0.147693i \(0.0471846\pi\)
−0.989033 + 0.147693i \(0.952815\pi\)
\(284\) 0 0
\(285\) −26.9908 24.2480i −1.59879 1.43633i
\(286\) 0 0
\(287\) 2.87785i 0.169874i
\(288\) 0 0
\(289\) 16.6977 0.982219
\(290\) 0 0
\(291\) 16.9978 0.996431
\(292\) 0 0
\(293\) 2.47071i 0.144340i 0.997392 + 0.0721702i \(0.0229925\pi\)
−0.997392 + 0.0721702i \(0.977008\pi\)
\(294\) 0 0
\(295\) 13.5208 15.0502i 0.787214 0.876259i
\(296\) 0 0
\(297\) 43.0144i 2.49595i
\(298\) 0 0
\(299\) 16.2358 0.938941
\(300\) 0 0
\(301\) −7.75318 −0.446886
\(302\) 0 0
\(303\) 13.8103i 0.793382i
\(304\) 0 0
\(305\) 3.15441 3.51121i 0.180621 0.201051i
\(306\) 0 0
\(307\) 15.4292i 0.880593i 0.897852 + 0.440296i \(0.145127\pi\)
−0.897852 + 0.440296i \(0.854873\pi\)
\(308\) 0 0
\(309\) −42.0153 −2.39017
\(310\) 0 0
\(311\) −24.8169 −1.40724 −0.703619 0.710578i \(-0.748434\pi\)
−0.703619 + 0.710578i \(0.748434\pi\)
\(312\) 0 0
\(313\) 2.00873i 0.113540i −0.998387 0.0567700i \(-0.981920\pi\)
0.998387 0.0567700i \(-0.0180802\pi\)
\(314\) 0 0
\(315\) 12.6075 + 11.3263i 0.710353 + 0.638167i
\(316\) 0 0
\(317\) 11.2442i 0.631535i −0.948837 0.315768i \(-0.897738\pi\)
0.948837 0.315768i \(-0.102262\pi\)
\(318\) 0 0
\(319\) −14.8486 −0.831362
\(320\) 0 0
\(321\) −31.5064 −1.75851
\(322\) 0 0
\(323\) 2.74279i 0.152613i
\(324\) 0 0
\(325\) −34.5222 + 3.70654i −1.91495 + 0.205602i
\(326\) 0 0
\(327\) 1.51438i 0.0837456i
\(328\) 0 0
\(329\) −8.24132 −0.454359
\(330\) 0 0
\(331\) −17.7990 −0.978323 −0.489162 0.872193i \(-0.662697\pi\)
−0.489162 + 0.872193i \(0.662697\pi\)
\(332\) 0 0
\(333\) 63.0265i 3.45383i
\(334\) 0 0
\(335\) −21.8882 19.6640i −1.19588 1.07436i
\(336\) 0 0
\(337\) 9.47429i 0.516097i −0.966132 0.258049i \(-0.916921\pi\)
0.966132 0.258049i \(-0.0830795\pi\)
\(338\) 0 0
\(339\) −56.3542 −3.06074
\(340\) 0 0
\(341\) −15.6106 −0.845363
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −11.3643 + 12.6498i −0.611834 + 0.681041i
\(346\) 0 0
\(347\) 0.0984387i 0.00528447i −0.999997 0.00264223i \(-0.999159\pi\)
0.999997 0.00264223i \(-0.000841050\pi\)
\(348\) 0 0
\(349\) 3.00875 0.161055 0.0805273 0.996752i \(-0.474340\pi\)
0.0805273 + 0.996752i \(0.474340\pi\)
\(350\) 0 0
\(351\) −103.432 −5.52079
\(352\) 0 0
\(353\) 24.7556i 1.31761i −0.752315 0.658803i \(-0.771063\pi\)
0.752315 0.658803i \(-0.228937\pi\)
\(354\) 0 0
\(355\) −4.91537 + 5.47136i −0.260881 + 0.290390i
\(356\) 0 0
\(357\) 1.78827i 0.0946452i
\(358\) 0 0
\(359\) −28.5167 −1.50506 −0.752528 0.658560i \(-0.771166\pi\)
−0.752528 + 0.658560i \(0.771166\pi\)
\(360\) 0 0
\(361\) 5.88736 0.309861
\(362\) 0 0
\(363\) 8.65269i 0.454149i
\(364\) 0 0
\(365\) 3.64230 + 3.27217i 0.190647 + 0.171273i
\(366\) 0 0
\(367\) 0.444045i 0.0231790i −0.999933 0.0115895i \(-0.996311\pi\)
0.999933 0.0115895i \(-0.00368913\pi\)
\(368\) 0 0
\(369\) 21.8124 1.13551
\(370\) 0 0
\(371\) 1.81032 0.0939871
\(372\) 0 0
\(373\) 5.16929i 0.267656i 0.991005 + 0.133828i \(0.0427269\pi\)
−0.991005 + 0.133828i \(0.957273\pi\)
\(374\) 0 0
\(375\) 21.2760 29.4916i 1.09869 1.52294i
\(376\) 0 0
\(377\) 35.7048i 1.83889i
\(378\) 0 0
\(379\) −29.8632 −1.53397 −0.766984 0.641667i \(-0.778243\pi\)
−0.766984 + 0.641667i \(0.778243\pi\)
\(380\) 0 0
\(381\) −59.2095 −3.03339
\(382\) 0 0
\(383\) 26.3117i 1.34447i 0.740340 + 0.672233i \(0.234664\pi\)
−0.740340 + 0.672233i \(0.765336\pi\)
\(384\) 0 0
\(385\) −4.80366 4.31551i −0.244817 0.219939i
\(386\) 0 0
\(387\) 58.7643i 2.98716i
\(388\) 0 0
\(389\) −28.6632 −1.45328 −0.726640 0.687019i \(-0.758919\pi\)
−0.726640 + 0.687019i \(0.758919\pi\)
\(390\) 0 0
\(391\) 1.28546 0.0650087
\(392\) 0 0
\(393\) 44.8774i 2.26376i
\(394\) 0 0
\(395\) 3.05538 3.40098i 0.153733 0.171122i
\(396\) 0 0
\(397\) 5.18842i 0.260399i −0.991488 0.130200i \(-0.958438\pi\)
0.991488 0.130200i \(-0.0415618\pi\)
\(398\) 0 0
\(399\) −16.2263 −0.812331
\(400\) 0 0
\(401\) 4.94367 0.246875 0.123438 0.992352i \(-0.460608\pi\)
0.123438 + 0.992352i \(0.460608\pi\)
\(402\) 0 0
\(403\) 37.5371i 1.86986i
\(404\) 0 0
\(405\) 38.4185 42.7641i 1.90903 2.12497i
\(406\) 0 0
\(407\) 24.0141i 1.19033i
\(408\) 0 0
\(409\) 24.3534 1.20420 0.602100 0.798421i \(-0.294331\pi\)
0.602100 + 0.798421i \(0.294331\pi\)
\(410\) 0 0
\(411\) −58.0098 −2.86141
\(412\) 0 0
\(413\) 9.04790i 0.445218i
\(414\) 0 0
\(415\) 5.62461 + 5.05304i 0.276101 + 0.248044i
\(416\) 0 0
\(417\) 4.12965i 0.202230i
\(418\) 0 0
\(419\) 23.5172 1.14889 0.574446 0.818543i \(-0.305218\pi\)
0.574446 + 0.818543i \(0.305218\pi\)
\(420\) 0 0
\(421\) −25.8853 −1.26157 −0.630785 0.775957i \(-0.717267\pi\)
−0.630785 + 0.775957i \(0.717267\pi\)
\(422\) 0 0
\(423\) 62.4642i 3.03711i
\(424\) 0 0
\(425\) −2.73328 + 0.293463i −0.132583 + 0.0142351i
\(426\) 0 0
\(427\) 2.11087i 0.102152i
\(428\) 0 0
\(429\) 65.2265 3.14917
\(430\) 0 0
\(431\) −3.00038 −0.144523 −0.0722615 0.997386i \(-0.523022\pi\)
−0.0722615 + 0.997386i \(0.523022\pi\)
\(432\) 0 0
\(433\) 34.8640i 1.67546i −0.546086 0.837729i \(-0.683883\pi\)
0.546086 0.837729i \(-0.316117\pi\)
\(434\) 0 0
\(435\) −27.8186 24.9916i −1.33380 1.19826i
\(436\) 0 0
\(437\) 11.6640i 0.557963i
\(438\) 0 0
\(439\) 23.5314 1.12309 0.561547 0.827445i \(-0.310206\pi\)
0.561547 + 0.827445i \(0.310206\pi\)
\(440\) 0 0
\(441\) 7.57939 0.360923
\(442\) 0 0
\(443\) 20.8761i 0.991852i −0.868365 0.495926i \(-0.834829\pi\)
0.868365 0.495926i \(-0.165171\pi\)
\(444\) 0 0
\(445\) 4.85366 5.40268i 0.230085 0.256111i
\(446\) 0 0
\(447\) 36.7776i 1.73952i
\(448\) 0 0
\(449\) 13.6977 0.646436 0.323218 0.946325i \(-0.395235\pi\)
0.323218 + 0.946325i \(0.395235\pi\)
\(450\) 0 0
\(451\) −8.31085 −0.391342
\(452\) 0 0
\(453\) 5.01370i 0.235564i
\(454\) 0 0
\(455\) −10.3770 + 11.5508i −0.486483 + 0.541511i
\(456\) 0 0
\(457\) 35.4159i 1.65668i 0.560223 + 0.828342i \(0.310716\pi\)
−0.560223 + 0.828342i \(0.689284\pi\)
\(458\) 0 0
\(459\) −8.18918 −0.382238
\(460\) 0 0
\(461\) −6.01582 −0.280185 −0.140092 0.990138i \(-0.544740\pi\)
−0.140092 + 0.990138i \(0.544740\pi\)
\(462\) 0 0
\(463\) 22.4759i 1.04455i 0.852779 + 0.522273i \(0.174916\pi\)
−0.852779 + 0.522273i \(0.825084\pi\)
\(464\) 0 0
\(465\) −29.2462 26.2742i −1.35626 1.21844i
\(466\) 0 0
\(467\) 34.3196i 1.58812i −0.607837 0.794062i \(-0.707963\pi\)
0.607837 0.794062i \(-0.292037\pi\)
\(468\) 0 0
\(469\) −13.1588 −0.607616
\(470\) 0 0
\(471\) 42.3271 1.95033
\(472\) 0 0
\(473\) 22.3901i 1.02950i
\(474\) 0 0
\(475\) 2.66281 + 24.8011i 0.122178 + 1.13795i
\(476\) 0 0
\(477\) 13.7211i 0.628247i
\(478\) 0 0
\(479\) 28.5059 1.30247 0.651235 0.758876i \(-0.274251\pi\)
0.651235 + 0.758876i \(0.274251\pi\)
\(480\) 0 0
\(481\) −57.7439 −2.63290
\(482\) 0 0
\(483\) 7.60479i 0.346030i
\(484\) 0 0
\(485\) −8.69279 7.80943i −0.394719 0.354608i
\(486\) 0 0
\(487\) 2.04791i 0.0927998i 0.998923 + 0.0463999i \(0.0147748\pi\)
−0.998923 + 0.0463999i \(0.985225\pi\)
\(488\) 0 0
\(489\) −52.8901 −2.39178
\(490\) 0 0
\(491\) 26.1659 1.18085 0.590424 0.807093i \(-0.298960\pi\)
0.590424 + 0.807093i \(0.298960\pi\)
\(492\) 0 0
\(493\) 2.82691i 0.127318i
\(494\) 0 0
\(495\) −32.7089 + 36.4088i −1.47016 + 1.63645i
\(496\) 0 0
\(497\) 3.28928i 0.147544i
\(498\) 0 0
\(499\) −27.9282 −1.25024 −0.625118 0.780530i \(-0.714949\pi\)
−0.625118 + 0.780530i \(0.714949\pi\)
\(500\) 0 0
\(501\) 47.7259 2.13223
\(502\) 0 0
\(503\) 29.9952i 1.33742i −0.743522 0.668711i \(-0.766846\pi\)
0.743522 0.668711i \(-0.233154\pi\)
\(504\) 0 0
\(505\) 6.34496 7.06267i 0.282347 0.314285i
\(506\) 0 0
\(507\) 114.559i 5.08775i
\(508\) 0 0
\(509\) −1.67818 −0.0743839 −0.0371920 0.999308i \(-0.511841\pi\)
−0.0371920 + 0.999308i \(0.511841\pi\)
\(510\) 0 0
\(511\) 2.18968 0.0968658
\(512\) 0 0
\(513\) 74.3065i 3.28071i
\(514\) 0 0
\(515\) 21.4868 + 19.3033i 0.946823 + 0.850607i
\(516\) 0 0
\(517\) 23.7998i 1.04671i
\(518\) 0 0
\(519\) 12.5780 0.552115
\(520\) 0 0
\(521\) −20.4801 −0.897250 −0.448625 0.893720i \(-0.648086\pi\)
−0.448625 + 0.893720i \(0.648086\pi\)
\(522\) 0 0
\(523\) 26.2659i 1.14853i −0.818671 0.574263i \(-0.805289\pi\)
0.818671 0.574263i \(-0.194711\pi\)
\(524\) 0 0
\(525\) −1.73613 16.1701i −0.0757708 0.705719i
\(526\) 0 0
\(527\) 2.97198i 0.129462i
\(528\) 0 0
\(529\) 17.5334 0.762324
\(530\) 0 0
\(531\) −68.5776 −2.97601
\(532\) 0 0
\(533\) 19.9841i 0.865610i
\(534\) 0 0
\(535\) 16.1125 + 14.4752i 0.696605 + 0.625816i
\(536\) 0 0
\(537\) 12.8637i 0.555109i
\(538\) 0 0
\(539\) −2.88786 −0.124389
\(540\) 0 0
\(541\) −2.94671 −0.126689 −0.0633445 0.997992i \(-0.520177\pi\)
−0.0633445 + 0.997992i \(0.520177\pi\)
\(542\) 0 0
\(543\) 49.3758i 2.11892i
\(544\) 0 0
\(545\) 0.695763 0.774464i 0.0298032 0.0331744i
\(546\) 0 0
\(547\) 27.4113i 1.17202i 0.810303 + 0.586011i \(0.199303\pi\)
−0.810303 + 0.586011i \(0.800697\pi\)
\(548\) 0 0
\(549\) −15.9991 −0.682825
\(550\) 0 0
\(551\) 25.6506 1.09275
\(552\) 0 0
\(553\) 2.04460i 0.0869454i
\(554\) 0 0
\(555\) 40.4180 44.9899i 1.71565 1.90971i
\(556\) 0 0
\(557\) 24.8481i 1.05285i 0.850222 + 0.526424i \(0.176468\pi\)
−0.850222 + 0.526424i \(0.823532\pi\)
\(558\) 0 0
\(559\) −53.8390 −2.27715
\(560\) 0 0
\(561\) 5.16428 0.218036
\(562\) 0 0
\(563\) 20.3969i 0.859625i 0.902918 + 0.429812i \(0.141420\pi\)
−0.902918 + 0.429812i \(0.858580\pi\)
\(564\) 0 0
\(565\) 28.8198 + 25.8912i 1.21246 + 1.08925i
\(566\) 0 0
\(567\) 25.7089i 1.07967i
\(568\) 0 0
\(569\) −1.13166 −0.0474415 −0.0237208 0.999719i \(-0.507551\pi\)
−0.0237208 + 0.999719i \(0.507551\pi\)
\(570\) 0 0
\(571\) 38.4752 1.61014 0.805068 0.593183i \(-0.202129\pi\)
0.805068 + 0.593183i \(0.202129\pi\)
\(572\) 0 0
\(573\) 15.9374i 0.665795i
\(574\) 0 0
\(575\) 11.6235 1.24798i 0.484735 0.0520444i
\(576\) 0 0
\(577\) 6.91322i 0.287801i −0.989592 0.143901i \(-0.954035\pi\)
0.989592 0.143901i \(-0.0459646\pi\)
\(578\) 0 0
\(579\) 15.5607 0.646680
\(580\) 0 0
\(581\) 3.38141 0.140284
\(582\) 0 0
\(583\) 5.22796i 0.216520i
\(584\) 0 0
\(585\) 87.5481 + 78.6515i 3.61967 + 3.25184i
\(586\) 0 0
\(587\) 18.1908i 0.750816i 0.926860 + 0.375408i \(0.122497\pi\)
−0.926860 + 0.375408i \(0.877503\pi\)
\(588\) 0 0
\(589\) 26.9670 1.11116
\(590\) 0 0
\(591\) 53.4337 2.19797
\(592\) 0 0
\(593\) 22.4130i 0.920390i −0.887818 0.460195i \(-0.847780\pi\)
0.887818 0.460195i \(-0.152220\pi\)
\(594\) 0 0
\(595\) −0.821596 + 0.914530i −0.0336822 + 0.0374921i
\(596\) 0 0
\(597\) 23.1655i 0.948100i
\(598\) 0 0
\(599\) −1.30435 −0.0532941 −0.0266471 0.999645i \(-0.508483\pi\)
−0.0266471 + 0.999645i \(0.508483\pi\)
\(600\) 0 0
\(601\) 12.8453 0.523971 0.261985 0.965072i \(-0.415623\pi\)
0.261985 + 0.965072i \(0.415623\pi\)
\(602\) 0 0
\(603\) 99.7354i 4.06154i
\(604\) 0 0
\(605\) −3.97536 + 4.42503i −0.161621 + 0.179903i
\(606\) 0 0
\(607\) 34.6132i 1.40491i −0.711730 0.702453i \(-0.752088\pi\)
0.711730 0.702453i \(-0.247912\pi\)
\(608\) 0 0
\(609\) −16.7240 −0.677689
\(610\) 0 0
\(611\) −57.2287 −2.31523
\(612\) 0 0
\(613\) 5.53685i 0.223631i −0.993729 0.111816i \(-0.964333\pi\)
0.993729 0.111816i \(-0.0356666\pi\)
\(614\) 0 0
\(615\) −15.5702 13.9880i −0.627851 0.564049i
\(616\) 0 0
\(617\) 1.35593i 0.0545876i 0.999627 + 0.0272938i \(0.00868897\pi\)
−0.999627 + 0.0272938i \(0.991311\pi\)
\(618\) 0 0
\(619\) −0.0467467 −0.00187891 −0.000939455 1.00000i \(-0.500299\pi\)
−0.000939455 1.00000i \(0.500299\pi\)
\(620\) 0 0
\(621\) 34.8253 1.39749
\(622\) 0 0
\(623\) 3.24798i 0.130128i
\(624\) 0 0
\(625\) −24.4302 + 5.30716i −0.977207 + 0.212286i
\(626\) 0 0
\(627\) 46.8594i 1.87138i
\(628\) 0 0
\(629\) −4.57185 −0.182292
\(630\) 0 0
\(631\) −6.71412 −0.267285 −0.133642 0.991030i \(-0.542667\pi\)
−0.133642 + 0.991030i \(0.542667\pi\)
\(632\) 0 0
\(633\) 79.6214i 3.16467i
\(634\) 0 0
\(635\) 30.2800 + 27.2030i 1.20163 + 1.07952i
\(636\) 0 0
\(637\) 6.94412i 0.275136i
\(638\) 0 0
\(639\) 24.9307 0.986243
\(640\) 0 0
\(641\) −14.1605 −0.559306 −0.279653 0.960101i \(-0.590219\pi\)
−0.279653 + 0.960101i \(0.590219\pi\)
\(642\) 0 0
\(643\) 17.6511i 0.696092i −0.937477 0.348046i \(-0.886845\pi\)
0.937477 0.348046i \(-0.113155\pi\)
\(644\) 0 0
\(645\) 37.6847 41.9474i 1.48384 1.65168i
\(646\) 0 0
\(647\) 3.14217i 0.123532i −0.998091 0.0617658i \(-0.980327\pi\)
0.998091 0.0617658i \(-0.0196732\pi\)
\(648\) 0 0
\(649\) 26.1291 1.02566
\(650\) 0 0
\(651\) −17.5822 −0.689102
\(652\) 0 0
\(653\) 4.85733i 0.190082i 0.995473 + 0.0950411i \(0.0302982\pi\)
−0.995473 + 0.0950411i \(0.969702\pi\)
\(654\) 0 0
\(655\) −20.6183 + 22.9505i −0.805623 + 0.896751i
\(656\) 0 0
\(657\) 16.5964i 0.647489i
\(658\) 0 0
\(659\) 37.2495 1.45104 0.725518 0.688204i \(-0.241600\pi\)
0.725518 + 0.688204i \(0.241600\pi\)
\(660\) 0 0
\(661\) −26.9869 −1.04967 −0.524835 0.851204i \(-0.675873\pi\)
−0.524835 + 0.851204i \(0.675873\pi\)
\(662\) 0 0
\(663\) 12.4180i 0.482273i
\(664\) 0 0
\(665\) 8.29822 + 7.45496i 0.321791 + 0.289091i
\(666\) 0 0
\(667\) 12.0217i 0.465482i
\(668\) 0 0
\(669\) 26.3421 1.01844
\(670\) 0 0
\(671\) 6.09591 0.235330
\(672\) 0 0
\(673\) 22.2835i 0.858964i −0.903075 0.429482i \(-0.858696\pi\)
0.903075 0.429482i \(-0.141304\pi\)
\(674\) 0 0
\(675\) −74.0489 + 7.95039i −2.85014 + 0.306011i
\(676\) 0 0
\(677\) 26.7857i 1.02946i −0.857353 0.514730i \(-0.827892\pi\)
0.857353 0.514730i \(-0.172108\pi\)
\(678\) 0 0
\(679\) −5.22593 −0.200553
\(680\) 0 0
\(681\) −32.7034 −1.25320
\(682\) 0 0
\(683\) 45.4881i 1.74055i 0.492563 + 0.870277i \(0.336060\pi\)
−0.492563 + 0.870277i \(0.663940\pi\)
\(684\) 0 0
\(685\) 29.6665 + 26.6518i 1.13350 + 1.01831i
\(686\) 0 0
\(687\) 5.14927i 0.196457i
\(688\) 0 0
\(689\) 12.5711 0.478920
\(690\) 0 0
\(691\) −17.8566 −0.679296 −0.339648 0.940553i \(-0.610308\pi\)
−0.339648 + 0.940553i \(0.610308\pi\)
\(692\) 0 0
\(693\) 21.8882i 0.831465i
\(694\) 0 0
\(695\) 1.89731 2.11192i 0.0719691 0.0801098i
\(696\) 0 0
\(697\) 1.58224i 0.0599314i
\(698\) 0 0
\(699\) −0.225023 −0.00851117
\(700\) 0 0
\(701\) 21.4385 0.809721 0.404860 0.914378i \(-0.367320\pi\)
0.404860 + 0.914378i \(0.367320\pi\)
\(702\) 0 0
\(703\) 41.4838i 1.56459i
\(704\) 0 0
\(705\) 40.0574 44.5885i 1.50865 1.67930i
\(706\) 0 0
\(707\) 4.24594i 0.159685i
\(708\) 0 0
\(709\) −36.2421 −1.36110 −0.680550 0.732702i \(-0.738259\pi\)
−0.680550 + 0.732702i \(0.738259\pi\)
\(710\) 0 0
\(711\) −15.4968 −0.581177
\(712\) 0 0
\(713\) 12.6387i 0.473321i
\(714\) 0 0
\(715\) −33.3572 29.9674i −1.24749 1.12072i
\(716\) 0 0
\(717\) 67.7230i 2.52916i
\(718\) 0 0
\(719\) 4.91195 0.183185 0.0915924 0.995797i \(-0.470804\pi\)
0.0915924 + 0.995797i \(0.470804\pi\)
\(720\) 0 0
\(721\) 12.9175 0.481071
\(722\) 0 0
\(723\) 20.1717i 0.750193i
\(724\) 0 0
\(725\) 2.74448 + 25.5617i 0.101927 + 0.949338i
\(726\) 0 0
\(727\) 4.47341i 0.165910i −0.996553 0.0829548i \(-0.973564\pi\)
0.996553 0.0829548i \(-0.0264357\pi\)
\(728\) 0 0
\(729\) −49.5167 −1.83395
\(730\) 0 0
\(731\) −4.26268 −0.157661
\(732\) 0 0
\(733\) 30.0754i 1.11086i 0.831563 + 0.555430i \(0.187446\pi\)
−0.831563 + 0.555430i \(0.812554\pi\)
\(734\) 0 0
\(735\) −5.41035 4.86056i −0.199564 0.179284i
\(736\) 0 0
\(737\) 38.0008i 1.39978i
\(738\) 0 0
\(739\) −43.0252 −1.58271 −0.791355 0.611357i \(-0.790624\pi\)
−0.791355 + 0.611357i \(0.790624\pi\)
\(740\) 0 0
\(741\) −112.677 −4.13931
\(742\) 0 0
\(743\) 10.0854i 0.369997i 0.982739 + 0.184999i \(0.0592281\pi\)
−0.982739 + 0.184999i \(0.940772\pi\)
\(744\) 0 0
\(745\) 16.8970 18.8083i 0.619058 0.689082i
\(746\) 0 0
\(747\) 25.6290i 0.937715i
\(748\) 0 0
\(749\) 9.68652 0.353938
\(750\) 0 0
\(751\) −13.2964 −0.485192 −0.242596 0.970127i \(-0.577999\pi\)
−0.242596 + 0.970127i \(0.577999\pi\)
\(752\) 0 0
\(753\) 52.0169i 1.89560i
\(754\) 0 0
\(755\) 2.30348 2.56403i 0.0838321 0.0933146i
\(756\) 0 0
\(757\) 49.0007i 1.78096i −0.455023 0.890480i \(-0.650369\pi\)
0.455023 0.890480i \(-0.349631\pi\)
\(758\) 0 0
\(759\) −21.9616 −0.797155
\(760\) 0 0
\(761\) 46.9511 1.70198 0.850988 0.525185i \(-0.176004\pi\)
0.850988 + 0.525185i \(0.176004\pi\)
\(762\) 0 0
\(763\) 0.465592i 0.0168556i
\(764\) 0 0
\(765\) 6.93158 + 6.22720i 0.250612 + 0.225145i
\(766\) 0 0
\(767\) 62.8297i 2.26865i
\(768\) 0 0
\(769\) 47.5364 1.71420 0.857102 0.515146i \(-0.172262\pi\)
0.857102 + 0.515146i \(0.172262\pi\)
\(770\) 0 0
\(771\) 72.9927 2.62877
\(772\) 0 0
\(773\) 41.3651i 1.48780i −0.668292 0.743899i \(-0.732974\pi\)
0.668292 0.743899i \(-0.267026\pi\)
\(774\) 0 0
\(775\) 2.88533 + 26.8735i 0.103644 + 0.965326i
\(776\) 0 0
\(777\) 27.0470i 0.970306i
\(778\) 0 0
\(779\) 14.3568 0.514386
\(780\) 0 0
\(781\) −9.49898 −0.339900
\(782\) 0 0
\(783\) 76.5855i 2.73694i
\(784\) 0 0
\(785\) −21.6463 19.4466i −0.772589 0.694079i
\(786\) 0 0
\(787\) 26.2363i 0.935222i 0.883934 + 0.467611i \(0.154885\pi\)
−0.883934 + 0.467611i \(0.845115\pi\)
\(788\) 0 0
\(789\) 17.2621 0.614545
\(790\) 0 0
\(791\) 17.3259 0.616038
\(792\) 0 0
\(793\) 14.6581i 0.520526i
\(794\) 0 0
\(795\) −8.79916 + 9.79447i −0.312074 + 0.347374i
\(796\) 0 0
\(797\) 10.0462i 0.355856i −0.984043 0.177928i \(-0.943061\pi\)
0.984043 0.177928i \(-0.0569395\pi\)
\(798\) 0 0
\(799\) −4.53106 −0.160297
\(800\) 0 0
\(801\) −24.6177 −0.869824
\(802\) 0 0