# Properties

 Label 2240.2.g.h Level $2240$ Weight $2$ Character orbit 2240.g Analytic conductor $17.886$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2240 = 2^{6} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2240.g (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$17.8864900528$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 35) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{3} + ( 2 + i ) q^{5} -i q^{7} + 2 q^{9} +O(q^{10})$$ $$q + i q^{3} + ( 2 + i ) q^{5} -i q^{7} + 2 q^{9} + 3 q^{11} + i q^{13} + ( -1 + 2 i ) q^{15} + 7 i q^{17} + q^{21} -6 i q^{23} + ( 3 + 4 i ) q^{25} + 5 i q^{27} -5 q^{29} + 2 q^{31} + 3 i q^{33} + ( 1 - 2 i ) q^{35} -2 i q^{37} - q^{39} + 2 q^{41} -4 i q^{43} + ( 4 + 2 i ) q^{45} -3 i q^{47} - q^{49} -7 q^{51} + 6 i q^{53} + ( 6 + 3 i ) q^{55} + 10 q^{59} + 8 q^{61} -2 i q^{63} + ( -1 + 2 i ) q^{65} -2 i q^{67} + 6 q^{69} -8 q^{71} -6 i q^{73} + ( -4 + 3 i ) q^{75} -3 i q^{77} + 5 q^{79} + q^{81} -4 i q^{83} + ( -7 + 14 i ) q^{85} -5 i q^{87} + q^{91} + 2 i q^{93} + 7 i q^{97} + 6 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 4q^{5} + 4q^{9} + O(q^{10})$$ $$2q + 4q^{5} + 4q^{9} + 6q^{11} - 2q^{15} + 2q^{21} + 6q^{25} - 10q^{29} + 4q^{31} + 2q^{35} - 2q^{39} + 4q^{41} + 8q^{45} - 2q^{49} - 14q^{51} + 12q^{55} + 20q^{59} + 16q^{61} - 2q^{65} + 12q^{69} - 16q^{71} - 8q^{75} + 10q^{79} + 2q^{81} - 14q^{85} + 2q^{91} + 12q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times$$.

 $$n$$ $$897$$ $$1471$$ $$1541$$ $$1921$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 − 1.00000i 1.00000i
0 1.00000i 0 2.00000 1.00000i 0 1.00000i 0 2.00000 0
449.2 0 1.00000i 0 2.00000 + 1.00000i 0 1.00000i 0 2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.2.g.h 2
4.b odd 2 1 2240.2.g.g 2
5.b even 2 1 inner 2240.2.g.h 2
8.b even 2 1 35.2.b.a 2
8.d odd 2 1 560.2.g.b 2
20.d odd 2 1 2240.2.g.g 2
24.f even 2 1 5040.2.t.p 2
24.h odd 2 1 315.2.d.a 2
40.e odd 2 1 560.2.g.b 2
40.f even 2 1 35.2.b.a 2
40.i odd 4 1 175.2.a.a 1
40.i odd 4 1 175.2.a.c 1
40.k even 4 1 2800.2.a.l 1
40.k even 4 1 2800.2.a.w 1
56.h odd 2 1 245.2.b.a 2
56.j odd 6 2 245.2.j.d 4
56.p even 6 2 245.2.j.e 4
120.i odd 2 1 315.2.d.a 2
120.m even 2 1 5040.2.t.p 2
120.w even 4 1 1575.2.a.a 1
120.w even 4 1 1575.2.a.k 1
168.i even 2 1 2205.2.d.b 2
280.c odd 2 1 245.2.b.a 2
280.s even 4 1 1225.2.a.a 1
280.s even 4 1 1225.2.a.i 1
280.bf even 6 2 245.2.j.e 4
280.bk odd 6 2 245.2.j.d 4
840.u even 2 1 2205.2.d.b 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.b.a 2 8.b even 2 1
35.2.b.a 2 40.f even 2 1
175.2.a.a 1 40.i odd 4 1
175.2.a.c 1 40.i odd 4 1
245.2.b.a 2 56.h odd 2 1
245.2.b.a 2 280.c odd 2 1
245.2.j.d 4 56.j odd 6 2
245.2.j.d 4 280.bk odd 6 2
245.2.j.e 4 56.p even 6 2
245.2.j.e 4 280.bf even 6 2
315.2.d.a 2 24.h odd 2 1
315.2.d.a 2 120.i odd 2 1
560.2.g.b 2 8.d odd 2 1
560.2.g.b 2 40.e odd 2 1
1225.2.a.a 1 280.s even 4 1
1225.2.a.i 1 280.s even 4 1
1575.2.a.a 1 120.w even 4 1
1575.2.a.k 1 120.w even 4 1
2205.2.d.b 2 168.i even 2 1
2205.2.d.b 2 840.u even 2 1
2240.2.g.g 2 4.b odd 2 1
2240.2.g.g 2 20.d odd 2 1
2240.2.g.h 2 1.a even 1 1 trivial
2240.2.g.h 2 5.b even 2 1 inner
2800.2.a.l 1 40.k even 4 1
2800.2.a.w 1 40.k even 4 1
5040.2.t.p 2 24.f even 2 1
5040.2.t.p 2 120.m even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2240, [\chi])$$:

 $$T_{3}^{2} + 1$$ $$T_{11} - 3$$ $$T_{19}$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$1 + T^{2}$$
$5$ $$5 - 4 T + T^{2}$$
$7$ $$1 + T^{2}$$
$11$ $$( -3 + T )^{2}$$
$13$ $$1 + T^{2}$$
$17$ $$49 + T^{2}$$
$19$ $$T^{2}$$
$23$ $$36 + T^{2}$$
$29$ $$( 5 + T )^{2}$$
$31$ $$( -2 + T )^{2}$$
$37$ $$4 + T^{2}$$
$41$ $$( -2 + T )^{2}$$
$43$ $$16 + T^{2}$$
$47$ $$9 + T^{2}$$
$53$ $$36 + T^{2}$$
$59$ $$( -10 + T )^{2}$$
$61$ $$( -8 + T )^{2}$$
$67$ $$4 + T^{2}$$
$71$ $$( 8 + T )^{2}$$
$73$ $$36 + T^{2}$$
$79$ $$( -5 + T )^{2}$$
$83$ $$16 + T^{2}$$
$89$ $$T^{2}$$
$97$ $$49 + T^{2}$$