# Properties

 Label 2240.2.g.b Level $2240$ Weight $2$ Character orbit 2240.g Analytic conductor $17.886$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2240 = 2^{6} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2240.g (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$17.8864900528$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 280) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{3} + ( -2 - i ) q^{5} -i q^{7} + 2 q^{9} +O(q^{10})$$ $$q + i q^{3} + ( -2 - i ) q^{5} -i q^{7} + 2 q^{9} + q^{11} -i q^{13} + ( 1 - 2 i ) q^{15} -3 i q^{17} -4 q^{19} + q^{21} -2 i q^{23} + ( 3 + 4 i ) q^{25} + 5 i q^{27} - q^{29} -6 q^{31} + i q^{33} + ( -1 + 2 i ) q^{35} -2 i q^{37} + q^{39} -10 q^{41} + ( -4 - 2 i ) q^{45} + 9 i q^{47} - q^{49} + 3 q^{51} -14 i q^{53} + ( -2 - i ) q^{55} -4 i q^{57} + 6 q^{59} + 4 q^{61} -2 i q^{63} + ( -1 + 2 i ) q^{65} -10 i q^{67} + 2 q^{69} -16 q^{71} -10 i q^{73} + ( -4 + 3 i ) q^{75} -i q^{77} + 11 q^{79} + q^{81} + 4 i q^{83} + ( -3 + 6 i ) q^{85} -i q^{87} -12 q^{89} - q^{91} -6 i q^{93} + ( 8 + 4 i ) q^{95} -19 i q^{97} + 2 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 4q^{5} + 4q^{9} + O(q^{10})$$ $$2q - 4q^{5} + 4q^{9} + 2q^{11} + 2q^{15} - 8q^{19} + 2q^{21} + 6q^{25} - 2q^{29} - 12q^{31} - 2q^{35} + 2q^{39} - 20q^{41} - 8q^{45} - 2q^{49} + 6q^{51} - 4q^{55} + 12q^{59} + 8q^{61} - 2q^{65} + 4q^{69} - 32q^{71} - 8q^{75} + 22q^{79} + 2q^{81} - 6q^{85} - 24q^{89} - 2q^{91} + 16q^{95} + 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times$$.

 $$n$$ $$897$$ $$1471$$ $$1541$$ $$1921$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 − 1.00000i 1.00000i
0 1.00000i 0 −2.00000 + 1.00000i 0 1.00000i 0 2.00000 0
449.2 0 1.00000i 0 −2.00000 1.00000i 0 1.00000i 0 2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.2.g.b 2
4.b odd 2 1 2240.2.g.a 2
5.b even 2 1 inner 2240.2.g.b 2
8.b even 2 1 280.2.g.a 2
8.d odd 2 1 560.2.g.d 2
20.d odd 2 1 2240.2.g.a 2
24.f even 2 1 5040.2.t.a 2
24.h odd 2 1 2520.2.t.a 2
40.e odd 2 1 560.2.g.d 2
40.f even 2 1 280.2.g.a 2
40.i odd 4 1 1400.2.a.d 1
40.i odd 4 1 1400.2.a.j 1
40.k even 4 1 2800.2.a.k 1
40.k even 4 1 2800.2.a.u 1
56.h odd 2 1 1960.2.g.a 2
120.i odd 2 1 2520.2.t.a 2
120.m even 2 1 5040.2.t.a 2
280.c odd 2 1 1960.2.g.a 2
280.s even 4 1 9800.2.a.p 1
280.s even 4 1 9800.2.a.bb 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.g.a 2 8.b even 2 1
280.2.g.a 2 40.f even 2 1
560.2.g.d 2 8.d odd 2 1
560.2.g.d 2 40.e odd 2 1
1400.2.a.d 1 40.i odd 4 1
1400.2.a.j 1 40.i odd 4 1
1960.2.g.a 2 56.h odd 2 1
1960.2.g.a 2 280.c odd 2 1
2240.2.g.a 2 4.b odd 2 1
2240.2.g.a 2 20.d odd 2 1
2240.2.g.b 2 1.a even 1 1 trivial
2240.2.g.b 2 5.b even 2 1 inner
2520.2.t.a 2 24.h odd 2 1
2520.2.t.a 2 120.i odd 2 1
2800.2.a.k 1 40.k even 4 1
2800.2.a.u 1 40.k even 4 1
5040.2.t.a 2 24.f even 2 1
5040.2.t.a 2 120.m even 2 1
9800.2.a.p 1 280.s even 4 1
9800.2.a.bb 1 280.s even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2240, [\chi])$$:

 $$T_{3}^{2} + 1$$ $$T_{11} - 1$$ $$T_{19} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$1 + T^{2}$$
$5$ $$5 + 4 T + T^{2}$$
$7$ $$1 + T^{2}$$
$11$ $$( -1 + T )^{2}$$
$13$ $$1 + T^{2}$$
$17$ $$9 + T^{2}$$
$19$ $$( 4 + T )^{2}$$
$23$ $$4 + T^{2}$$
$29$ $$( 1 + T )^{2}$$
$31$ $$( 6 + T )^{2}$$
$37$ $$4 + T^{2}$$
$41$ $$( 10 + T )^{2}$$
$43$ $$T^{2}$$
$47$ $$81 + T^{2}$$
$53$ $$196 + T^{2}$$
$59$ $$( -6 + T )^{2}$$
$61$ $$( -4 + T )^{2}$$
$67$ $$100 + T^{2}$$
$71$ $$( 16 + T )^{2}$$
$73$ $$100 + T^{2}$$
$79$ $$( -11 + T )^{2}$$
$83$ $$16 + T^{2}$$
$89$ $$( 12 + T )^{2}$$
$97$ $$361 + T^{2}$$