Properties

Label 2240.2.dz
Level $2240$
Weight $2$
Character orbit 2240.dz
Rep. character $\chi_{2240}(29,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $2304$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.dz (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 320 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2240, [\chi])\).

Total New Old
Modular forms 3104 2304 800
Cusp forms 3040 2304 736
Eisenstein series 64 0 64

Trace form

\( 2304q + O(q^{10}) \) \( 2304q + 160q^{26} - 80q^{30} + 160q^{36} - 80q^{40} - 64q^{51} - 128q^{54} + 128q^{55} + 96q^{56} - 96q^{60} - 96q^{70} - 96q^{74} + 128q^{75} + 128q^{76} + 64q^{79} + 352q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2240, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 2}\)