Properties

Label 2240.2.dp
Level $2240$
Weight $2$
Character orbit 2240.dp
Rep. character $\chi_{2240}(17,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $368$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.dp (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 560 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2240, [\chi])\).

Total New Old
Modular forms 1600 400 1200
Cusp forms 1472 368 1104
Eisenstein series 128 32 96

Trace form

\( 368q + 12q^{3} - 6q^{5} + 168q^{9} + O(q^{10}) \) \( 368q + 12q^{3} - 6q^{5} + 168q^{9} + 4q^{11} + 16q^{15} - 12q^{17} - 8q^{21} + 24q^{31} - 12q^{33} + 26q^{35} - 4q^{37} - 24q^{39} - 24q^{45} + 12q^{47} + 4q^{51} - 24q^{57} + 48q^{59} - 12q^{61} - 20q^{63} - 4q^{65} + 6q^{75} - 128q^{81} - 28q^{85} + 36q^{87} - 8q^{91} - 28q^{93} + 28q^{95} + 24q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2240, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 3}\)