Properties

Label 2240.2.dh
Level $2240$
Weight $2$
Character orbit 2240.dh
Rep. character $\chi_{2240}(529,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $368$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.dh (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 560 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2240, [\chi])\).

Total New Old
Modular forms 1600 400 1200
Cusp forms 1472 368 1104
Eisenstein series 128 32 96

Trace form

\( 368q - 2q^{5} + O(q^{10}) \) \( 368q - 2q^{5} + 4q^{11} + 16q^{15} + 4q^{19} + 4q^{21} - 16q^{29} + 56q^{31} - 18q^{35} - 16q^{45} - 16q^{49} + 28q^{51} - 12q^{59} - 4q^{61} - 4q^{65} + 8q^{69} - 10q^{75} + 8q^{79} + 112q^{81} - 28q^{85} + 80q^{91} - 20q^{95} + 112q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2240, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 3}\)