Properties

Label 2240.2.cc
Level $2240$
Weight $2$
Character orbit 2240.cc
Rep. character $\chi_{2240}(1279,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $184$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.cc (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 140 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2240, [\chi])\).

Total New Old
Modular forms 816 200 616
Cusp forms 720 184 536
Eisenstein series 96 16 80

Trace form

\( 184q + 6q^{5} + 80q^{9} + O(q^{10}) \) \( 184q + 6q^{5} + 80q^{9} + 20q^{21} - 2q^{25} + 16q^{29} + 24q^{45} - 8q^{49} + 12q^{61} - 12q^{65} - 68q^{81} + 36q^{85} + 36q^{89} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2240, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1120, [\chi])\)\(^{\oplus 2}\)