# Properties

 Label 2240.2.cc Level $2240$ Weight $2$ Character orbit 2240.cc Rep. character $\chi_{2240}(1279,\cdot)$ Character field $\Q(\zeta_{6})$ Dimension $184$ Sturm bound $768$

# Learn more

## Defining parameters

 Level: $$N$$ $$=$$ $$2240 = 2^{6} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2240.cc (of order $$6$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$140$$ Character field: $$\Q(\zeta_{6})$$ Sturm bound: $$768$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2240, [\chi])$$.

Total New Old
Modular forms 816 200 616
Cusp forms 720 184 536
Eisenstein series 96 16 80

## Trace form

 $$184q + 6q^{5} + 80q^{9} + O(q^{10})$$ $$184q + 6q^{5} + 80q^{9} + 20q^{21} - 2q^{25} + 16q^{29} + 24q^{45} - 8q^{49} + 12q^{61} - 12q^{65} - 68q^{81} + 36q^{85} + 36q^{89} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(2240, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

## Decomposition of $$S_{2}^{\mathrm{old}}(2240, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(2240, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(140, [\chi])$$$$^{\oplus 5}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(560, [\chi])$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(1120, [\chi])$$$$^{\oplus 2}$$