Properties

Label 2240.2.bv
Level $2240$
Weight $2$
Character orbit 2240.bv
Rep. character $\chi_{2240}(289,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $192$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.bv (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 280 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2240, [\chi])\).

Total New Old
Modular forms 816 192 624
Cusp forms 720 192 528
Eisenstein series 96 0 96

Trace form

\( 192q - 96q^{9} + O(q^{10}) \) \( 192q - 96q^{9} - 144q^{81} - 48q^{89} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2240, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1120, [\chi])\)\(^{\oplus 2}\)