Properties

 Label 2240.2.bd.b Level $2240$ Weight $2$ Character orbit 2240.bd Analytic conductor $17.886$ Analytic rank $0$ Dimension $52$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$2240 = 2^{6} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2240.bd (of order $$4$$, degree $$2$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$17.8864900528$$ Analytic rank: $$0$$ Dimension: $$52$$ Relative dimension: $$26$$ over $$\Q(i)$$ Twist minimal: no (minimal twist has level 560) Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic $$q$$-expansion, but we have computed the trace expansion.

 $$\operatorname{Tr}(f)(q) =$$ $$52q + O(q^{10})$$ $$\operatorname{Tr}(f)(q) =$$ $$52q + 4q^{11} - 8q^{15} - 8q^{19} + 24q^{27} + 4q^{29} - 12q^{37} - 36q^{43} - 52q^{49} + 8q^{51} - 4q^{53} - 24q^{59} - 16q^{61} + 68q^{63} + 40q^{65} + 12q^{67} - 72q^{69} - 4q^{77} + 16q^{79} - 116q^{81} + 16q^{85} + 8q^{93} + 32q^{95} + 52q^{99} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
561.1 0 −2.37790 + 2.37790i 0 −0.707107 0.707107i 0 1.00000i 0 8.30879i 0
561.2 0 −2.16124 + 2.16124i 0 0.707107 + 0.707107i 0 1.00000i 0 6.34189i 0
561.3 0 −2.07558 + 2.07558i 0 0.707107 + 0.707107i 0 1.00000i 0 5.61608i 0
561.4 0 −2.00539 + 2.00539i 0 0.707107 + 0.707107i 0 1.00000i 0 5.04319i 0
561.5 0 −1.86516 + 1.86516i 0 −0.707107 0.707107i 0 1.00000i 0 3.95763i 0
561.6 0 −1.56700 + 1.56700i 0 −0.707107 0.707107i 0 1.00000i 0 1.91098i 0
561.7 0 −1.51271 + 1.51271i 0 0.707107 + 0.707107i 0 1.00000i 0 1.57659i 0
561.8 0 −0.975138 + 0.975138i 0 −0.707107 0.707107i 0 1.00000i 0 1.09821i 0
561.9 0 −0.523494 + 0.523494i 0 0.707107 + 0.707107i 0 1.00000i 0 2.45191i 0
561.10 0 −0.401069 + 0.401069i 0 −0.707107 0.707107i 0 1.00000i 0 2.67829i 0
561.11 0 −0.363076 + 0.363076i 0 −0.707107 0.707107i 0 1.00000i 0 2.73635i 0
561.12 0 −0.359066 + 0.359066i 0 0.707107 + 0.707107i 0 1.00000i 0 2.74214i 0
561.13 0 −0.280441 + 0.280441i 0 0.707107 + 0.707107i 0 1.00000i 0 2.84271i 0
561.14 0 −0.0811559 + 0.0811559i 0 0.707107 + 0.707107i 0 1.00000i 0 2.98683i 0
561.15 0 0.303944 0.303944i 0 −0.707107 0.707107i 0 1.00000i 0 2.81524i 0
561.16 0 0.367823 0.367823i 0 −0.707107 0.707107i 0 1.00000i 0 2.72941i 0
561.17 0 0.991372 0.991372i 0 0.707107 + 0.707107i 0 1.00000i 0 1.03436i 0
561.18 0 1.01907 1.01907i 0 −0.707107 0.707107i 0 1.00000i 0 0.922998i 0
561.19 0 1.21993 1.21993i 0 0.707107 + 0.707107i 0 1.00000i 0 0.0235503i 0
561.20 0 1.24266 1.24266i 0 −0.707107 0.707107i 0 1.00000i 0 0.0884307i 0
See all 52 embeddings
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1681.26 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.2.bd.b 52
4.b odd 2 1 560.2.bd.b 52
16.e even 4 1 inner 2240.2.bd.b 52
16.f odd 4 1 560.2.bd.b 52

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
560.2.bd.b 52 4.b odd 2 1
560.2.bd.b 52 16.f odd 4 1
2240.2.bd.b 52 1.a even 1 1 trivial
2240.2.bd.b 52 16.e even 4 1 inner