Properties

Label 2240.2.bd
Level $2240$
Weight $2$
Character orbit 2240.bd
Rep. character $\chi_{2240}(561,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $96$
Newform subspaces $2$
Sturm bound $768$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.bd (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(768\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2240, [\chi])\).

Total New Old
Modular forms 800 96 704
Cusp forms 736 96 640
Eisenstein series 64 0 64

Trace form

\( 96q + O(q^{10}) \) \( 96q - 8q^{11} - 16q^{15} - 16q^{19} + 48q^{27} + 16q^{29} + 16q^{37} + 8q^{43} - 96q^{49} + 16q^{51} - 16q^{53} - 48q^{59} - 32q^{61} + 40q^{63} + 40q^{67} - 32q^{69} - 16q^{77} + 32q^{79} - 96q^{81} + 32q^{85} + 96q^{93} + 64q^{95} + 24q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2240, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
2240.2.bd.a \(44\) \(17.886\) None \(0\) \(0\) \(0\) \(0\)
2240.2.bd.b \(52\) \(17.886\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(2240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2240, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 3}\)