# Properties

 Label 2240.2.a.bl Level $2240$ Weight $2$ Character orbit 2240.a Self dual yes Analytic conductor $17.886$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2240 = 2^{6} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2240.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$17.8864900528$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{17})$$ Defining polynomial: $$x^{2} - x - 4$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1120) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{17})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{3} + q^{5} + q^{7} + ( 1 + \beta ) q^{9} +O(q^{10})$$ $$q + \beta q^{3} + q^{5} + q^{7} + ( 1 + \beta ) q^{9} + ( 4 - \beta ) q^{11} + ( 2 - \beta ) q^{13} + \beta q^{15} + ( -2 + 3 \beta ) q^{17} + 4 q^{19} + \beta q^{21} + q^{25} + ( 4 - \beta ) q^{27} + ( -2 - \beta ) q^{29} -2 \beta q^{31} + ( -4 + 3 \beta ) q^{33} + q^{35} + ( -6 + 2 \beta ) q^{37} + ( -4 + \beta ) q^{39} + ( 2 - 4 \beta ) q^{41} + ( 1 + \beta ) q^{45} + ( -4 - \beta ) q^{47} + q^{49} + ( 12 + \beta ) q^{51} + ( 2 + 2 \beta ) q^{53} + ( 4 - \beta ) q^{55} + 4 \beta q^{57} + ( 4 + 4 \beta ) q^{59} + ( -2 + 4 \beta ) q^{61} + ( 1 + \beta ) q^{63} + ( 2 - \beta ) q^{65} + ( 8 - 4 \beta ) q^{67} + ( -8 + 4 \beta ) q^{71} + ( 2 - 4 \beta ) q^{73} + \beta q^{75} + ( 4 - \beta ) q^{77} + ( 4 - \beta ) q^{79} -7 q^{81} + ( 4 - 4 \beta ) q^{83} + ( -2 + 3 \beta ) q^{85} + ( -4 - 3 \beta ) q^{87} + ( -6 - 4 \beta ) q^{89} + ( 2 - \beta ) q^{91} + ( -8 - 2 \beta ) q^{93} + 4 q^{95} + ( -2 + 3 \beta ) q^{97} + 2 \beta q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{3} + 2q^{5} + 2q^{7} + 3q^{9} + O(q^{10})$$ $$2q + q^{3} + 2q^{5} + 2q^{7} + 3q^{9} + 7q^{11} + 3q^{13} + q^{15} - q^{17} + 8q^{19} + q^{21} + 2q^{25} + 7q^{27} - 5q^{29} - 2q^{31} - 5q^{33} + 2q^{35} - 10q^{37} - 7q^{39} + 3q^{45} - 9q^{47} + 2q^{49} + 25q^{51} + 6q^{53} + 7q^{55} + 4q^{57} + 12q^{59} + 3q^{63} + 3q^{65} + 12q^{67} - 12q^{71} + q^{75} + 7q^{77} + 7q^{79} - 14q^{81} + 4q^{83} - q^{85} - 11q^{87} - 16q^{89} + 3q^{91} - 18q^{93} + 8q^{95} - q^{97} + 2q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.56155 2.56155
0 −1.56155 0 1.00000 0 1.00000 0 −0.561553 0
1.2 0 2.56155 0 1.00000 0 1.00000 0 3.56155 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.2.a.bl 2
4.b odd 2 1 2240.2.a.bf 2
8.b even 2 1 1120.2.a.q 2
8.d odd 2 1 1120.2.a.s yes 2
40.e odd 2 1 5600.2.a.bb 2
40.f even 2 1 5600.2.a.bg 2
56.e even 2 1 7840.2.a.bd 2
56.h odd 2 1 7840.2.a.bi 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1120.2.a.q 2 8.b even 2 1
1120.2.a.s yes 2 8.d odd 2 1
2240.2.a.bf 2 4.b odd 2 1
2240.2.a.bl 2 1.a even 1 1 trivial
5600.2.a.bb 2 40.e odd 2 1
5600.2.a.bg 2 40.f even 2 1
7840.2.a.bd 2 56.e even 2 1
7840.2.a.bi 2 56.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2240))$$:

 $$T_{3}^{2} - T_{3} - 4$$ $$T_{11}^{2} - 7 T_{11} + 8$$ $$T_{13}^{2} - 3 T_{13} - 2$$ $$T_{19} - 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$-4 - T + T^{2}$$
$5$ $$( -1 + T )^{2}$$
$7$ $$( -1 + T )^{2}$$
$11$ $$8 - 7 T + T^{2}$$
$13$ $$-2 - 3 T + T^{2}$$
$17$ $$-38 + T + T^{2}$$
$19$ $$( -4 + T )^{2}$$
$23$ $$T^{2}$$
$29$ $$2 + 5 T + T^{2}$$
$31$ $$-16 + 2 T + T^{2}$$
$37$ $$8 + 10 T + T^{2}$$
$41$ $$-68 + T^{2}$$
$43$ $$T^{2}$$
$47$ $$16 + 9 T + T^{2}$$
$53$ $$-8 - 6 T + T^{2}$$
$59$ $$-32 - 12 T + T^{2}$$
$61$ $$-68 + T^{2}$$
$67$ $$-32 - 12 T + T^{2}$$
$71$ $$-32 + 12 T + T^{2}$$
$73$ $$-68 + T^{2}$$
$79$ $$8 - 7 T + T^{2}$$
$83$ $$-64 - 4 T + T^{2}$$
$89$ $$-4 + 16 T + T^{2}$$
$97$ $$-38 + T + T^{2}$$