Properties

Label 2240.2.a.bd
Level $2240$
Weight $2$
Character orbit 2240.a
Self dual yes
Analytic conductor $17.886$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(17.8864900528\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} - q^{5} + q^{7} + (\beta + 1) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{3} - q^{5} + q^{7} + (\beta + 1) q^{9} + \beta q^{11} + ( - \beta - 2) q^{13} + \beta q^{15} + ( - \beta - 2) q^{17} + (2 \beta - 4) q^{19} - \beta q^{21} + 2 \beta q^{23} + q^{25} + (\beta - 4) q^{27} + (3 \beta - 2) q^{29} + ( - \beta - 4) q^{33} - q^{35} - 6 q^{37} + (3 \beta + 4) q^{39} + ( - 2 \beta + 2) q^{41} + (2 \beta + 4) q^{43} + ( - \beta - 1) q^{45} + ( - 3 \beta + 4) q^{47} + q^{49} + (3 \beta + 4) q^{51} + ( - 2 \beta + 2) q^{53} - \beta q^{55} + (2 \beta - 8) q^{57} - 4 q^{59} + (6 \beta - 6) q^{61} + (\beta + 1) q^{63} + (\beta + 2) q^{65} + ( - 4 \beta + 4) q^{67} + ( - 2 \beta - 8) q^{69} - 8 q^{71} + (4 \beta - 6) q^{73} - \beta q^{75} + \beta q^{77} + (\beta + 4) q^{79} - 7 q^{81} + 4 q^{83} + (\beta + 2) q^{85} + ( - \beta - 12) q^{87} + (2 \beta + 2) q^{89} + ( - \beta - 2) q^{91} + ( - 2 \beta + 4) q^{95} + ( - 5 \beta - 2) q^{97} + (2 \beta + 4) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{5} + 2 q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} - 2 q^{5} + 2 q^{7} + 3 q^{9} + q^{11} - 5 q^{13} + q^{15} - 5 q^{17} - 6 q^{19} - q^{21} + 2 q^{23} + 2 q^{25} - 7 q^{27} - q^{29} - 9 q^{33} - 2 q^{35} - 12 q^{37} + 11 q^{39} + 2 q^{41} + 10 q^{43} - 3 q^{45} + 5 q^{47} + 2 q^{49} + 11 q^{51} + 2 q^{53} - q^{55} - 14 q^{57} - 8 q^{59} - 6 q^{61} + 3 q^{63} + 5 q^{65} + 4 q^{67} - 18 q^{69} - 16 q^{71} - 8 q^{73} - q^{75} + q^{77} + 9 q^{79} - 14 q^{81} + 8 q^{83} + 5 q^{85} - 25 q^{87} + 6 q^{89} - 5 q^{91} + 6 q^{95} - 9 q^{97} + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
0 −2.56155 0 −1.00000 0 1.00000 0 3.56155 0
1.2 0 1.56155 0 −1.00000 0 1.00000 0 −0.561553 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.2.a.bd 2
4.b odd 2 1 2240.2.a.bh 2
8.b even 2 1 560.2.a.i 2
8.d odd 2 1 35.2.a.b 2
24.f even 2 1 315.2.a.e 2
24.h odd 2 1 5040.2.a.bt 2
40.e odd 2 1 175.2.a.f 2
40.f even 2 1 2800.2.a.bi 2
40.i odd 4 2 2800.2.g.t 4
40.k even 4 2 175.2.b.b 4
56.e even 2 1 245.2.a.d 2
56.h odd 2 1 3920.2.a.bs 2
56.k odd 6 2 245.2.e.i 4
56.m even 6 2 245.2.e.h 4
88.g even 2 1 4235.2.a.m 2
104.h odd 2 1 5915.2.a.l 2
120.m even 2 1 1575.2.a.p 2
120.q odd 4 2 1575.2.d.e 4
168.e odd 2 1 2205.2.a.x 2
280.n even 2 1 1225.2.a.s 2
280.y odd 4 2 1225.2.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.a.b 2 8.d odd 2 1
175.2.a.f 2 40.e odd 2 1
175.2.b.b 4 40.k even 4 2
245.2.a.d 2 56.e even 2 1
245.2.e.h 4 56.m even 6 2
245.2.e.i 4 56.k odd 6 2
315.2.a.e 2 24.f even 2 1
560.2.a.i 2 8.b even 2 1
1225.2.a.s 2 280.n even 2 1
1225.2.b.f 4 280.y odd 4 2
1575.2.a.p 2 120.m even 2 1
1575.2.d.e 4 120.q odd 4 2
2205.2.a.x 2 168.e odd 2 1
2240.2.a.bd 2 1.a even 1 1 trivial
2240.2.a.bh 2 4.b odd 2 1
2800.2.a.bi 2 40.f even 2 1
2800.2.g.t 4 40.i odd 4 2
3920.2.a.bs 2 56.h odd 2 1
4235.2.a.m 2 88.g even 2 1
5040.2.a.bt 2 24.h odd 2 1
5915.2.a.l 2 104.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2240))\):

\( T_{3}^{2} + T_{3} - 4 \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} - 4 \) Copy content Toggle raw display
\( T_{13}^{2} + 5T_{13} + 2 \) Copy content Toggle raw display
\( T_{19}^{2} + 6T_{19} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} + 5T + 2 \) Copy content Toggle raw display
$17$ \( T^{2} + 5T + 2 \) Copy content Toggle raw display
$19$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$29$ \( T^{2} + T - 38 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T + 6)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$43$ \( T^{2} - 10T + 8 \) Copy content Toggle raw display
$47$ \( T^{2} - 5T - 32 \) Copy content Toggle raw display
$53$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 6T - 144 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T - 64 \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 8T - 52 \) Copy content Toggle raw display
$79$ \( T^{2} - 9T + 16 \) Copy content Toggle raw display
$83$ \( (T - 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$97$ \( T^{2} + 9T - 86 \) Copy content Toggle raw display
show more
show less