Properties

Label 224.6.a.i.1.2
Level $224$
Weight $6$
Character 224.1
Self dual yes
Analytic conductor $35.926$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [224,6,Mod(1,224)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("224.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(224, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 224.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.9259756381\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 229x^{3} - 272x^{2} + 7973x - 13998 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-8.98949\) of defining polynomial
Character \(\chi\) \(=\) 224.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-19.9790 q^{3} +106.158 q^{5} +49.0000 q^{7} +156.159 q^{9} +452.252 q^{11} +886.820 q^{13} -2120.92 q^{15} +297.950 q^{17} -2286.25 q^{19} -978.970 q^{21} -555.550 q^{23} +8144.48 q^{25} +1734.99 q^{27} -8267.13 q^{29} -4247.14 q^{31} -9035.53 q^{33} +5201.73 q^{35} -758.789 q^{37} -17717.8 q^{39} +17202.5 q^{41} +5371.38 q^{43} +16577.5 q^{45} +25656.0 q^{47} +2401.00 q^{49} -5952.74 q^{51} +10834.4 q^{53} +48010.1 q^{55} +45677.0 q^{57} +2794.28 q^{59} +8464.18 q^{61} +7651.81 q^{63} +94142.9 q^{65} -14334.1 q^{67} +11099.3 q^{69} +61130.9 q^{71} -6008.30 q^{73} -162718. q^{75} +22160.3 q^{77} -25300.2 q^{79} -72610.0 q^{81} +5432.19 q^{83} +31629.7 q^{85} +165169. q^{87} +30312.7 q^{89} +43454.2 q^{91} +84853.5 q^{93} -242703. q^{95} -83046.9 q^{97} +70623.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{3} + 36 q^{5} + 245 q^{7} + 637 q^{9} + 116 q^{11} + 40 q^{13} + 16 q^{15} - 402 q^{17} - 3582 q^{19} - 490 q^{21} + 472 q^{23} + 9615 q^{25} + 356 q^{27} + 4754 q^{29} - 10500 q^{31} + 15864 q^{33}+ \cdots - 260236 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −19.9790 −1.28165 −0.640826 0.767686i \(-0.721408\pi\)
−0.640826 + 0.767686i \(0.721408\pi\)
\(4\) 0 0
\(5\) 106.158 1.89901 0.949504 0.313754i \(-0.101587\pi\)
0.949504 + 0.313754i \(0.101587\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) 156.159 0.642631
\(10\) 0 0
\(11\) 452.252 1.12693 0.563467 0.826138i \(-0.309467\pi\)
0.563467 + 0.826138i \(0.309467\pi\)
\(12\) 0 0
\(13\) 886.820 1.45538 0.727691 0.685905i \(-0.240593\pi\)
0.727691 + 0.685905i \(0.240593\pi\)
\(14\) 0 0
\(15\) −2120.92 −2.43387
\(16\) 0 0
\(17\) 297.950 0.250047 0.125023 0.992154i \(-0.460099\pi\)
0.125023 + 0.992154i \(0.460099\pi\)
\(18\) 0 0
\(19\) −2286.25 −1.45291 −0.726457 0.687212i \(-0.758834\pi\)
−0.726457 + 0.687212i \(0.758834\pi\)
\(20\) 0 0
\(21\) −978.970 −0.484419
\(22\) 0 0
\(23\) −555.550 −0.218979 −0.109490 0.993988i \(-0.534922\pi\)
−0.109490 + 0.993988i \(0.534922\pi\)
\(24\) 0 0
\(25\) 8144.48 2.60623
\(26\) 0 0
\(27\) 1734.99 0.458022
\(28\) 0 0
\(29\) −8267.13 −1.82541 −0.912704 0.408621i \(-0.866010\pi\)
−0.912704 + 0.408621i \(0.866010\pi\)
\(30\) 0 0
\(31\) −4247.14 −0.793765 −0.396883 0.917869i \(-0.629908\pi\)
−0.396883 + 0.917869i \(0.629908\pi\)
\(32\) 0 0
\(33\) −9035.53 −1.44434
\(34\) 0 0
\(35\) 5201.73 0.717758
\(36\) 0 0
\(37\) −758.789 −0.0911206 −0.0455603 0.998962i \(-0.514507\pi\)
−0.0455603 + 0.998962i \(0.514507\pi\)
\(38\) 0 0
\(39\) −17717.8 −1.86529
\(40\) 0 0
\(41\) 17202.5 1.59820 0.799100 0.601198i \(-0.205310\pi\)
0.799100 + 0.601198i \(0.205310\pi\)
\(42\) 0 0
\(43\) 5371.38 0.443011 0.221505 0.975159i \(-0.428903\pi\)
0.221505 + 0.975159i \(0.428903\pi\)
\(44\) 0 0
\(45\) 16577.5 1.22036
\(46\) 0 0
\(47\) 25656.0 1.69412 0.847060 0.531497i \(-0.178370\pi\)
0.847060 + 0.531497i \(0.178370\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −5952.74 −0.320473
\(52\) 0 0
\(53\) 10834.4 0.529806 0.264903 0.964275i \(-0.414660\pi\)
0.264903 + 0.964275i \(0.414660\pi\)
\(54\) 0 0
\(55\) 48010.1 2.14006
\(56\) 0 0
\(57\) 45677.0 1.86213
\(58\) 0 0
\(59\) 2794.28 0.104506 0.0522528 0.998634i \(-0.483360\pi\)
0.0522528 + 0.998634i \(0.483360\pi\)
\(60\) 0 0
\(61\) 8464.18 0.291246 0.145623 0.989340i \(-0.453481\pi\)
0.145623 + 0.989340i \(0.453481\pi\)
\(62\) 0 0
\(63\) 7651.81 0.242892
\(64\) 0 0
\(65\) 94142.9 2.76378
\(66\) 0 0
\(67\) −14334.1 −0.390106 −0.195053 0.980793i \(-0.562488\pi\)
−0.195053 + 0.980793i \(0.562488\pi\)
\(68\) 0 0
\(69\) 11099.3 0.280655
\(70\) 0 0
\(71\) 61130.9 1.43918 0.719589 0.694400i \(-0.244330\pi\)
0.719589 + 0.694400i \(0.244330\pi\)
\(72\) 0 0
\(73\) −6008.30 −0.131961 −0.0659803 0.997821i \(-0.521017\pi\)
−0.0659803 + 0.997821i \(0.521017\pi\)
\(74\) 0 0
\(75\) −162718. −3.34029
\(76\) 0 0
\(77\) 22160.3 0.425941
\(78\) 0 0
\(79\) −25300.2 −0.456096 −0.228048 0.973650i \(-0.573234\pi\)
−0.228048 + 0.973650i \(0.573234\pi\)
\(80\) 0 0
\(81\) −72610.0 −1.22966
\(82\) 0 0
\(83\) 5432.19 0.0865526 0.0432763 0.999063i \(-0.486220\pi\)
0.0432763 + 0.999063i \(0.486220\pi\)
\(84\) 0 0
\(85\) 31629.7 0.474841
\(86\) 0 0
\(87\) 165169. 2.33954
\(88\) 0 0
\(89\) 30312.7 0.405649 0.202824 0.979215i \(-0.434988\pi\)
0.202824 + 0.979215i \(0.434988\pi\)
\(90\) 0 0
\(91\) 43454.2 0.550083
\(92\) 0 0
\(93\) 84853.5 1.01733
\(94\) 0 0
\(95\) −242703. −2.75910
\(96\) 0 0
\(97\) −83046.9 −0.896177 −0.448089 0.893989i \(-0.647895\pi\)
−0.448089 + 0.893989i \(0.647895\pi\)
\(98\) 0 0
\(99\) 70623.4 0.724203
\(100\) 0 0
\(101\) −136029. −1.32687 −0.663433 0.748235i \(-0.730901\pi\)
−0.663433 + 0.748235i \(0.730901\pi\)
\(102\) 0 0
\(103\) −65195.4 −0.605514 −0.302757 0.953068i \(-0.597907\pi\)
−0.302757 + 0.953068i \(0.597907\pi\)
\(104\) 0 0
\(105\) −103925. −0.919916
\(106\) 0 0
\(107\) −121743. −1.02798 −0.513988 0.857797i \(-0.671833\pi\)
−0.513988 + 0.857797i \(0.671833\pi\)
\(108\) 0 0
\(109\) 35552.4 0.286617 0.143309 0.989678i \(-0.454226\pi\)
0.143309 + 0.989678i \(0.454226\pi\)
\(110\) 0 0
\(111\) 15159.8 0.116785
\(112\) 0 0
\(113\) 186103. 1.37106 0.685530 0.728045i \(-0.259571\pi\)
0.685530 + 0.728045i \(0.259571\pi\)
\(114\) 0 0
\(115\) −58975.9 −0.415844
\(116\) 0 0
\(117\) 138485. 0.935274
\(118\) 0 0
\(119\) 14599.6 0.0945088
\(120\) 0 0
\(121\) 43480.8 0.269981
\(122\) 0 0
\(123\) −343688. −2.04834
\(124\) 0 0
\(125\) 532857. 3.05025
\(126\) 0 0
\(127\) 171332. 0.942601 0.471301 0.881973i \(-0.343785\pi\)
0.471301 + 0.881973i \(0.343785\pi\)
\(128\) 0 0
\(129\) −107315. −0.567786
\(130\) 0 0
\(131\) 328559. 1.67277 0.836383 0.548145i \(-0.184666\pi\)
0.836383 + 0.548145i \(0.184666\pi\)
\(132\) 0 0
\(133\) −112026. −0.549150
\(134\) 0 0
\(135\) 184182. 0.869788
\(136\) 0 0
\(137\) 32938.6 0.149935 0.0749675 0.997186i \(-0.476115\pi\)
0.0749675 + 0.997186i \(0.476115\pi\)
\(138\) 0 0
\(139\) 129231. 0.567324 0.283662 0.958924i \(-0.408451\pi\)
0.283662 + 0.958924i \(0.408451\pi\)
\(140\) 0 0
\(141\) −512580. −2.17127
\(142\) 0 0
\(143\) 401066. 1.64012
\(144\) 0 0
\(145\) −877621. −3.46647
\(146\) 0 0
\(147\) −47969.5 −0.183093
\(148\) 0 0
\(149\) 306271. 1.13016 0.565081 0.825035i \(-0.308845\pi\)
0.565081 + 0.825035i \(0.308845\pi\)
\(150\) 0 0
\(151\) 263579. 0.940736 0.470368 0.882470i \(-0.344121\pi\)
0.470368 + 0.882470i \(0.344121\pi\)
\(152\) 0 0
\(153\) 46527.7 0.160688
\(154\) 0 0
\(155\) −450867. −1.50737
\(156\) 0 0
\(157\) −386226. −1.25053 −0.625263 0.780414i \(-0.715008\pi\)
−0.625263 + 0.780414i \(0.715008\pi\)
\(158\) 0 0
\(159\) −216461. −0.679027
\(160\) 0 0
\(161\) −27221.9 −0.0827664
\(162\) 0 0
\(163\) 107342. 0.316448 0.158224 0.987403i \(-0.449423\pi\)
0.158224 + 0.987403i \(0.449423\pi\)
\(164\) 0 0
\(165\) −959192. −2.74281
\(166\) 0 0
\(167\) 378368. 1.04984 0.524919 0.851152i \(-0.324095\pi\)
0.524919 + 0.851152i \(0.324095\pi\)
\(168\) 0 0
\(169\) 415157. 1.11814
\(170\) 0 0
\(171\) −357020. −0.933688
\(172\) 0 0
\(173\) −568280. −1.44360 −0.721801 0.692101i \(-0.756685\pi\)
−0.721801 + 0.692101i \(0.756685\pi\)
\(174\) 0 0
\(175\) 399080. 0.985064
\(176\) 0 0
\(177\) −55826.8 −0.133940
\(178\) 0 0
\(179\) 102649. 0.239454 0.119727 0.992807i \(-0.461798\pi\)
0.119727 + 0.992807i \(0.461798\pi\)
\(180\) 0 0
\(181\) −214817. −0.487386 −0.243693 0.969852i \(-0.578359\pi\)
−0.243693 + 0.969852i \(0.578359\pi\)
\(182\) 0 0
\(183\) −169106. −0.373276
\(184\) 0 0
\(185\) −80551.4 −0.173039
\(186\) 0 0
\(187\) 134748. 0.281786
\(188\) 0 0
\(189\) 85014.3 0.173116
\(190\) 0 0
\(191\) 693025. 1.37457 0.687283 0.726390i \(-0.258803\pi\)
0.687283 + 0.726390i \(0.258803\pi\)
\(192\) 0 0
\(193\) 169011. 0.326604 0.163302 0.986576i \(-0.447786\pi\)
0.163302 + 0.986576i \(0.447786\pi\)
\(194\) 0 0
\(195\) −1.88088e6 −3.54221
\(196\) 0 0
\(197\) −461835. −0.847855 −0.423927 0.905696i \(-0.639349\pi\)
−0.423927 + 0.905696i \(0.639349\pi\)
\(198\) 0 0
\(199\) −844976. −1.51256 −0.756278 0.654250i \(-0.772984\pi\)
−0.756278 + 0.654250i \(0.772984\pi\)
\(200\) 0 0
\(201\) 286380. 0.499980
\(202\) 0 0
\(203\) −405090. −0.689939
\(204\) 0 0
\(205\) 1.82618e6 3.03500
\(206\) 0 0
\(207\) −86754.3 −0.140723
\(208\) 0 0
\(209\) −1.03396e6 −1.63734
\(210\) 0 0
\(211\) 497886. 0.769882 0.384941 0.922941i \(-0.374222\pi\)
0.384941 + 0.922941i \(0.374222\pi\)
\(212\) 0 0
\(213\) −1.22133e6 −1.84453
\(214\) 0 0
\(215\) 570214. 0.841282
\(216\) 0 0
\(217\) −208110. −0.300015
\(218\) 0 0
\(219\) 120040. 0.169127
\(220\) 0 0
\(221\) 264228. 0.363914
\(222\) 0 0
\(223\) −976639. −1.31514 −0.657570 0.753394i \(-0.728416\pi\)
−0.657570 + 0.753394i \(0.728416\pi\)
\(224\) 0 0
\(225\) 1.27184e6 1.67485
\(226\) 0 0
\(227\) −1.01893e6 −1.31244 −0.656222 0.754568i \(-0.727846\pi\)
−0.656222 + 0.754568i \(0.727846\pi\)
\(228\) 0 0
\(229\) 172096. 0.216862 0.108431 0.994104i \(-0.465417\pi\)
0.108431 + 0.994104i \(0.465417\pi\)
\(230\) 0 0
\(231\) −442741. −0.545908
\(232\) 0 0
\(233\) 569270. 0.686955 0.343478 0.939161i \(-0.388395\pi\)
0.343478 + 0.939161i \(0.388395\pi\)
\(234\) 0 0
\(235\) 2.72358e6 3.21715
\(236\) 0 0
\(237\) 505472. 0.584556
\(238\) 0 0
\(239\) 1.39868e6 1.58389 0.791943 0.610595i \(-0.209070\pi\)
0.791943 + 0.610595i \(0.209070\pi\)
\(240\) 0 0
\(241\) 1.18533e6 1.31461 0.657307 0.753623i \(-0.271695\pi\)
0.657307 + 0.753623i \(0.271695\pi\)
\(242\) 0 0
\(243\) 1.02907e6 1.11797
\(244\) 0 0
\(245\) 254885. 0.271287
\(246\) 0 0
\(247\) −2.02749e6 −2.11455
\(248\) 0 0
\(249\) −108530. −0.110930
\(250\) 0 0
\(251\) −781131. −0.782599 −0.391300 0.920263i \(-0.627974\pi\)
−0.391300 + 0.920263i \(0.627974\pi\)
\(252\) 0 0
\(253\) −251248. −0.246775
\(254\) 0 0
\(255\) −631930. −0.608581
\(256\) 0 0
\(257\) −1.52738e6 −1.44249 −0.721247 0.692678i \(-0.756431\pi\)
−0.721247 + 0.692678i \(0.756431\pi\)
\(258\) 0 0
\(259\) −37180.7 −0.0344404
\(260\) 0 0
\(261\) −1.29099e6 −1.17306
\(262\) 0 0
\(263\) −728038. −0.649030 −0.324515 0.945881i \(-0.605201\pi\)
−0.324515 + 0.945881i \(0.605201\pi\)
\(264\) 0 0
\(265\) 1.15016e6 1.00611
\(266\) 0 0
\(267\) −605617. −0.519901
\(268\) 0 0
\(269\) −1.05070e6 −0.885313 −0.442656 0.896691i \(-0.645964\pi\)
−0.442656 + 0.896691i \(0.645964\pi\)
\(270\) 0 0
\(271\) 688732. 0.569675 0.284837 0.958576i \(-0.408060\pi\)
0.284837 + 0.958576i \(0.408060\pi\)
\(272\) 0 0
\(273\) −868170. −0.705015
\(274\) 0 0
\(275\) 3.68336e6 2.93706
\(276\) 0 0
\(277\) 317611. 0.248711 0.124356 0.992238i \(-0.460314\pi\)
0.124356 + 0.992238i \(0.460314\pi\)
\(278\) 0 0
\(279\) −663231. −0.510098
\(280\) 0 0
\(281\) −1.01321e6 −0.765478 −0.382739 0.923856i \(-0.625019\pi\)
−0.382739 + 0.923856i \(0.625019\pi\)
\(282\) 0 0
\(283\) 1.28474e6 0.953561 0.476781 0.879022i \(-0.341804\pi\)
0.476781 + 0.879022i \(0.341804\pi\)
\(284\) 0 0
\(285\) 4.84897e6 3.53620
\(286\) 0 0
\(287\) 842921. 0.604063
\(288\) 0 0
\(289\) −1.33108e6 −0.937477
\(290\) 0 0
\(291\) 1.65919e6 1.14859
\(292\) 0 0
\(293\) 2.37245e6 1.61446 0.807230 0.590237i \(-0.200966\pi\)
0.807230 + 0.590237i \(0.200966\pi\)
\(294\) 0 0
\(295\) 296634. 0.198457
\(296\) 0 0
\(297\) 784651. 0.516161
\(298\) 0 0
\(299\) −492673. −0.318699
\(300\) 0 0
\(301\) 263197. 0.167442
\(302\) 0 0
\(303\) 2.71772e6 1.70058
\(304\) 0 0
\(305\) 898539. 0.553079
\(306\) 0 0
\(307\) −3.00154e6 −1.81760 −0.908800 0.417231i \(-0.863000\pi\)
−0.908800 + 0.417231i \(0.863000\pi\)
\(308\) 0 0
\(309\) 1.30254e6 0.776058
\(310\) 0 0
\(311\) −378276. −0.221773 −0.110886 0.993833i \(-0.535369\pi\)
−0.110886 + 0.993833i \(0.535369\pi\)
\(312\) 0 0
\(313\) −306373. −0.176763 −0.0883813 0.996087i \(-0.528169\pi\)
−0.0883813 + 0.996087i \(0.528169\pi\)
\(314\) 0 0
\(315\) 812299. 0.461254
\(316\) 0 0
\(317\) −2.43596e6 −1.36152 −0.680758 0.732509i \(-0.738349\pi\)
−0.680758 + 0.732509i \(0.738349\pi\)
\(318\) 0 0
\(319\) −3.73883e6 −2.05712
\(320\) 0 0
\(321\) 2.43229e6 1.31751
\(322\) 0 0
\(323\) −681189. −0.363297
\(324\) 0 0
\(325\) 7.22269e6 3.79307
\(326\) 0 0
\(327\) −710299. −0.367343
\(328\) 0 0
\(329\) 1.25714e6 0.640317
\(330\) 0 0
\(331\) 217384. 0.109058 0.0545291 0.998512i \(-0.482634\pi\)
0.0545291 + 0.998512i \(0.482634\pi\)
\(332\) 0 0
\(333\) −118492. −0.0585569
\(334\) 0 0
\(335\) −1.52167e6 −0.740815
\(336\) 0 0
\(337\) 1.34165e6 0.643522 0.321761 0.946821i \(-0.395725\pi\)
0.321761 + 0.946821i \(0.395725\pi\)
\(338\) 0 0
\(339\) −3.71814e6 −1.75722
\(340\) 0 0
\(341\) −1.92078e6 −0.894522
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 1.17828e6 0.532967
\(346\) 0 0
\(347\) −1.47196e6 −0.656253 −0.328127 0.944634i \(-0.606417\pi\)
−0.328127 + 0.944634i \(0.606417\pi\)
\(348\) 0 0
\(349\) −4.15482e6 −1.82595 −0.912975 0.408016i \(-0.866221\pi\)
−0.912975 + 0.408016i \(0.866221\pi\)
\(350\) 0 0
\(351\) 1.53862e6 0.666598
\(352\) 0 0
\(353\) −2.41522e6 −1.03162 −0.515810 0.856703i \(-0.672509\pi\)
−0.515810 + 0.856703i \(0.672509\pi\)
\(354\) 0 0
\(355\) 6.48952e6 2.73301
\(356\) 0 0
\(357\) −291684. −0.121127
\(358\) 0 0
\(359\) −803886. −0.329199 −0.164599 0.986361i \(-0.552633\pi\)
−0.164599 + 0.986361i \(0.552633\pi\)
\(360\) 0 0
\(361\) 2.75085e6 1.11096
\(362\) 0 0
\(363\) −868701. −0.346022
\(364\) 0 0
\(365\) −637828. −0.250594
\(366\) 0 0
\(367\) 5.03890e6 1.95286 0.976428 0.215842i \(-0.0692497\pi\)
0.976428 + 0.215842i \(0.0692497\pi\)
\(368\) 0 0
\(369\) 2.68633e6 1.02705
\(370\) 0 0
\(371\) 530888. 0.200248
\(372\) 0 0
\(373\) −86405.3 −0.0321565 −0.0160782 0.999871i \(-0.505118\pi\)
−0.0160782 + 0.999871i \(0.505118\pi\)
\(374\) 0 0
\(375\) −1.06459e7 −3.90936
\(376\) 0 0
\(377\) −7.33146e6 −2.65667
\(378\) 0 0
\(379\) 1.60986e6 0.575691 0.287845 0.957677i \(-0.407061\pi\)
0.287845 + 0.957677i \(0.407061\pi\)
\(380\) 0 0
\(381\) −3.42303e6 −1.20809
\(382\) 0 0
\(383\) −3.09358e6 −1.07762 −0.538808 0.842429i \(-0.681125\pi\)
−0.538808 + 0.842429i \(0.681125\pi\)
\(384\) 0 0
\(385\) 2.35249e6 0.808866
\(386\) 0 0
\(387\) 838791. 0.284693
\(388\) 0 0
\(389\) 331993. 0.111238 0.0556191 0.998452i \(-0.482287\pi\)
0.0556191 + 0.998452i \(0.482287\pi\)
\(390\) 0 0
\(391\) −165526. −0.0547551
\(392\) 0 0
\(393\) −6.56427e6 −2.14390
\(394\) 0 0
\(395\) −2.68581e6 −0.866130
\(396\) 0 0
\(397\) 797824. 0.254057 0.127028 0.991899i \(-0.459456\pi\)
0.127028 + 0.991899i \(0.459456\pi\)
\(398\) 0 0
\(399\) 2.23817e6 0.703819
\(400\) 0 0
\(401\) −2.22782e6 −0.691862 −0.345931 0.938260i \(-0.612437\pi\)
−0.345931 + 0.938260i \(0.612437\pi\)
\(402\) 0 0
\(403\) −3.76645e6 −1.15523
\(404\) 0 0
\(405\) −7.70812e6 −2.33513
\(406\) 0 0
\(407\) −343164. −0.102687
\(408\) 0 0
\(409\) 1.00358e6 0.296650 0.148325 0.988939i \(-0.452612\pi\)
0.148325 + 0.988939i \(0.452612\pi\)
\(410\) 0 0
\(411\) −658079. −0.192165
\(412\) 0 0
\(413\) 136920. 0.0394994
\(414\) 0 0
\(415\) 576670. 0.164364
\(416\) 0 0
\(417\) −2.58191e6 −0.727111
\(418\) 0 0
\(419\) 3.56464e6 0.991929 0.495965 0.868343i \(-0.334815\pi\)
0.495965 + 0.868343i \(0.334815\pi\)
\(420\) 0 0
\(421\) 2.39330e6 0.658100 0.329050 0.944312i \(-0.393271\pi\)
0.329050 + 0.944312i \(0.393271\pi\)
\(422\) 0 0
\(423\) 4.00642e6 1.08869
\(424\) 0 0
\(425\) 2.42665e6 0.651681
\(426\) 0 0
\(427\) 414745. 0.110081
\(428\) 0 0
\(429\) −8.01289e6 −2.10206
\(430\) 0 0
\(431\) 130925. 0.0339491 0.0169745 0.999856i \(-0.494597\pi\)
0.0169745 + 0.999856i \(0.494597\pi\)
\(432\) 0 0
\(433\) 2.70732e6 0.693937 0.346969 0.937877i \(-0.387211\pi\)
0.346969 + 0.937877i \(0.387211\pi\)
\(434\) 0 0
\(435\) 1.75340e7 4.44280
\(436\) 0 0
\(437\) 1.27013e6 0.318158
\(438\) 0 0
\(439\) −7.04646e6 −1.74506 −0.872529 0.488562i \(-0.837522\pi\)
−0.872529 + 0.488562i \(0.837522\pi\)
\(440\) 0 0
\(441\) 374939. 0.0918045
\(442\) 0 0
\(443\) 2.17797e6 0.527281 0.263641 0.964621i \(-0.415077\pi\)
0.263641 + 0.964621i \(0.415077\pi\)
\(444\) 0 0
\(445\) 3.21793e6 0.770331
\(446\) 0 0
\(447\) −6.11899e6 −1.44847
\(448\) 0 0
\(449\) −2.52327e6 −0.590674 −0.295337 0.955393i \(-0.595432\pi\)
−0.295337 + 0.955393i \(0.595432\pi\)
\(450\) 0 0
\(451\) 7.77985e6 1.80107
\(452\) 0 0
\(453\) −5.26603e6 −1.20570
\(454\) 0 0
\(455\) 4.61300e6 1.04461
\(456\) 0 0
\(457\) 1.08980e6 0.244094 0.122047 0.992524i \(-0.461054\pi\)
0.122047 + 0.992524i \(0.461054\pi\)
\(458\) 0 0
\(459\) 516939. 0.114527
\(460\) 0 0
\(461\) 5.14703e6 1.12799 0.563994 0.825779i \(-0.309264\pi\)
0.563994 + 0.825779i \(0.309264\pi\)
\(462\) 0 0
\(463\) 5.03321e6 1.09117 0.545585 0.838055i \(-0.316307\pi\)
0.545585 + 0.838055i \(0.316307\pi\)
\(464\) 0 0
\(465\) 9.00786e6 1.93192
\(466\) 0 0
\(467\) 1.07086e6 0.227216 0.113608 0.993526i \(-0.463759\pi\)
0.113608 + 0.993526i \(0.463759\pi\)
\(468\) 0 0
\(469\) −702370. −0.147446
\(470\) 0 0
\(471\) 7.71640e6 1.60274
\(472\) 0 0
\(473\) 2.42921e6 0.499244
\(474\) 0 0
\(475\) −1.86203e7 −3.78664
\(476\) 0 0
\(477\) 1.69190e6 0.340470
\(478\) 0 0
\(479\) −5.30339e6 −1.05612 −0.528062 0.849206i \(-0.677081\pi\)
−0.528062 + 0.849206i \(0.677081\pi\)
\(480\) 0 0
\(481\) −672909. −0.132615
\(482\) 0 0
\(483\) 543866. 0.106078
\(484\) 0 0
\(485\) −8.81607e6 −1.70185
\(486\) 0 0
\(487\) −3.00137e6 −0.573453 −0.286726 0.958013i \(-0.592567\pi\)
−0.286726 + 0.958013i \(0.592567\pi\)
\(488\) 0 0
\(489\) −2.14459e6 −0.405576
\(490\) 0 0
\(491\) −7.37046e6 −1.37972 −0.689860 0.723943i \(-0.742328\pi\)
−0.689860 + 0.723943i \(0.742328\pi\)
\(492\) 0 0
\(493\) −2.46319e6 −0.456437
\(494\) 0 0
\(495\) 7.49722e6 1.37527
\(496\) 0 0
\(497\) 2.99541e6 0.543958
\(498\) 0 0
\(499\) −8624.58 −0.00155055 −0.000775276 1.00000i \(-0.500247\pi\)
−0.000775276 1.00000i \(0.500247\pi\)
\(500\) 0 0
\(501\) −7.55939e6 −1.34553
\(502\) 0 0
\(503\) 124603. 0.0219587 0.0109794 0.999940i \(-0.496505\pi\)
0.0109794 + 0.999940i \(0.496505\pi\)
\(504\) 0 0
\(505\) −1.44405e7 −2.51973
\(506\) 0 0
\(507\) −8.29441e6 −1.43306
\(508\) 0 0
\(509\) −1.12727e6 −0.192856 −0.0964279 0.995340i \(-0.530742\pi\)
−0.0964279 + 0.995340i \(0.530742\pi\)
\(510\) 0 0
\(511\) −294406. −0.0498764
\(512\) 0 0
\(513\) −3.96662e6 −0.665467
\(514\) 0 0
\(515\) −6.92101e6 −1.14988
\(516\) 0 0
\(517\) 1.16030e7 1.90916
\(518\) 0 0
\(519\) 1.13537e7 1.85019
\(520\) 0 0
\(521\) −7.96035e6 −1.28481 −0.642404 0.766367i \(-0.722063\pi\)
−0.642404 + 0.766367i \(0.722063\pi\)
\(522\) 0 0
\(523\) −2.19765e6 −0.351321 −0.175661 0.984451i \(-0.556206\pi\)
−0.175661 + 0.984451i \(0.556206\pi\)
\(524\) 0 0
\(525\) −7.97320e6 −1.26251
\(526\) 0 0
\(527\) −1.26544e6 −0.198478
\(528\) 0 0
\(529\) −6.12771e6 −0.952048
\(530\) 0 0
\(531\) 436352. 0.0671585
\(532\) 0 0
\(533\) 1.52555e7 2.32599
\(534\) 0 0
\(535\) −1.29239e7 −1.95214
\(536\) 0 0
\(537\) −2.05082e6 −0.306897
\(538\) 0 0
\(539\) 1.08586e6 0.160991
\(540\) 0 0
\(541\) 1.57555e6 0.231440 0.115720 0.993282i \(-0.463082\pi\)
0.115720 + 0.993282i \(0.463082\pi\)
\(542\) 0 0
\(543\) 4.29183e6 0.624659
\(544\) 0 0
\(545\) 3.77416e6 0.544288
\(546\) 0 0
\(547\) −1.04857e7 −1.49840 −0.749201 0.662343i \(-0.769562\pi\)
−0.749201 + 0.662343i \(0.769562\pi\)
\(548\) 0 0
\(549\) 1.32176e6 0.187164
\(550\) 0 0
\(551\) 1.89007e7 2.65216
\(552\) 0 0
\(553\) −1.23971e6 −0.172388
\(554\) 0 0
\(555\) 1.60933e6 0.221776
\(556\) 0 0
\(557\) 2.88209e6 0.393613 0.196807 0.980442i \(-0.436943\pi\)
0.196807 + 0.980442i \(0.436943\pi\)
\(558\) 0 0
\(559\) 4.76344e6 0.644750
\(560\) 0 0
\(561\) −2.69214e6 −0.361152
\(562\) 0 0
\(563\) −7.31106e6 −0.972096 −0.486048 0.873932i \(-0.661562\pi\)
−0.486048 + 0.873932i \(0.661562\pi\)
\(564\) 0 0
\(565\) 1.97562e7 2.60365
\(566\) 0 0
\(567\) −3.55789e6 −0.464766
\(568\) 0 0
\(569\) 3.30620e6 0.428103 0.214052 0.976822i \(-0.431334\pi\)
0.214052 + 0.976822i \(0.431334\pi\)
\(570\) 0 0
\(571\) −4.22306e6 −0.542047 −0.271024 0.962573i \(-0.587362\pi\)
−0.271024 + 0.962573i \(0.587362\pi\)
\(572\) 0 0
\(573\) −1.38459e7 −1.76171
\(574\) 0 0
\(575\) −4.52467e6 −0.570712
\(576\) 0 0
\(577\) −4.28814e6 −0.536203 −0.268102 0.963391i \(-0.586396\pi\)
−0.268102 + 0.963391i \(0.586396\pi\)
\(578\) 0 0
\(579\) −3.37666e6 −0.418592
\(580\) 0 0
\(581\) 266177. 0.0327138
\(582\) 0 0
\(583\) 4.89990e6 0.597057
\(584\) 0 0
\(585\) 1.47013e7 1.77609
\(586\) 0 0
\(587\) −1.56309e7 −1.87236 −0.936180 0.351521i \(-0.885665\pi\)
−0.936180 + 0.351521i \(0.885665\pi\)
\(588\) 0 0
\(589\) 9.71003e6 1.15327
\(590\) 0 0
\(591\) 9.22699e6 1.08665
\(592\) 0 0
\(593\) −6.78346e6 −0.792163 −0.396081 0.918215i \(-0.629630\pi\)
−0.396081 + 0.918215i \(0.629630\pi\)
\(594\) 0 0
\(595\) 1.54986e6 0.179473
\(596\) 0 0
\(597\) 1.68817e7 1.93857
\(598\) 0 0
\(599\) −1.41543e6 −0.161184 −0.0805919 0.996747i \(-0.525681\pi\)
−0.0805919 + 0.996747i \(0.525681\pi\)
\(600\) 0 0
\(601\) 5.71218e6 0.645083 0.322542 0.946555i \(-0.395463\pi\)
0.322542 + 0.946555i \(0.395463\pi\)
\(602\) 0 0
\(603\) −2.23840e6 −0.250694
\(604\) 0 0
\(605\) 4.61582e6 0.512697
\(606\) 0 0
\(607\) 7.41559e6 0.816910 0.408455 0.912779i \(-0.366068\pi\)
0.408455 + 0.912779i \(0.366068\pi\)
\(608\) 0 0
\(609\) 8.09327e6 0.884262
\(610\) 0 0
\(611\) 2.27522e7 2.46559
\(612\) 0 0
\(613\) −1.00094e7 −1.07587 −0.537933 0.842988i \(-0.680795\pi\)
−0.537933 + 0.842988i \(0.680795\pi\)
\(614\) 0 0
\(615\) −3.64851e7 −3.88981
\(616\) 0 0
\(617\) 1.32953e7 1.40600 0.702999 0.711190i \(-0.251844\pi\)
0.702999 + 0.711190i \(0.251844\pi\)
\(618\) 0 0
\(619\) −785629. −0.0824121 −0.0412060 0.999151i \(-0.513120\pi\)
−0.0412060 + 0.999151i \(0.513120\pi\)
\(620\) 0 0
\(621\) −963871. −0.100297
\(622\) 0 0
\(623\) 1.48532e6 0.153321
\(624\) 0 0
\(625\) 3.11155e7 3.18622
\(626\) 0 0
\(627\) 2.06575e7 2.09850
\(628\) 0 0
\(629\) −226081. −0.0227844
\(630\) 0 0
\(631\) 1.13220e7 1.13201 0.566005 0.824402i \(-0.308488\pi\)
0.566005 + 0.824402i \(0.308488\pi\)
\(632\) 0 0
\(633\) −9.94726e6 −0.986720
\(634\) 0 0
\(635\) 1.81882e7 1.79001
\(636\) 0 0
\(637\) 2.12926e6 0.207912
\(638\) 0 0
\(639\) 9.54616e6 0.924861
\(640\) 0 0
\(641\) −5.12306e6 −0.492475 −0.246237 0.969210i \(-0.579194\pi\)
−0.246237 + 0.969210i \(0.579194\pi\)
\(642\) 0 0
\(643\) −6.74313e6 −0.643182 −0.321591 0.946879i \(-0.604218\pi\)
−0.321591 + 0.946879i \(0.604218\pi\)
\(644\) 0 0
\(645\) −1.13923e7 −1.07823
\(646\) 0 0
\(647\) −1.93239e7 −1.81482 −0.907410 0.420247i \(-0.861943\pi\)
−0.907410 + 0.420247i \(0.861943\pi\)
\(648\) 0 0
\(649\) 1.26372e6 0.117771
\(650\) 0 0
\(651\) 4.15782e6 0.384515
\(652\) 0 0
\(653\) 9.59779e6 0.880823 0.440411 0.897796i \(-0.354833\pi\)
0.440411 + 0.897796i \(0.354833\pi\)
\(654\) 0 0
\(655\) 3.48791e7 3.17660
\(656\) 0 0
\(657\) −938252. −0.0848020
\(658\) 0 0
\(659\) −1.51712e7 −1.36084 −0.680419 0.732824i \(-0.738202\pi\)
−0.680419 + 0.732824i \(0.738202\pi\)
\(660\) 0 0
\(661\) −1.17829e6 −0.104894 −0.0524468 0.998624i \(-0.516702\pi\)
−0.0524468 + 0.998624i \(0.516702\pi\)
\(662\) 0 0
\(663\) −5.27901e6 −0.466411
\(664\) 0 0
\(665\) −1.18925e7 −1.04284
\(666\) 0 0
\(667\) 4.59280e6 0.399727
\(668\) 0 0
\(669\) 1.95122e7 1.68555
\(670\) 0 0
\(671\) 3.82794e6 0.328215
\(672\) 0 0
\(673\) 1.34216e7 1.14226 0.571131 0.820859i \(-0.306505\pi\)
0.571131 + 0.820859i \(0.306505\pi\)
\(674\) 0 0
\(675\) 1.41306e7 1.19371
\(676\) 0 0
\(677\) −3.24042e6 −0.271725 −0.135862 0.990728i \(-0.543380\pi\)
−0.135862 + 0.990728i \(0.543380\pi\)
\(678\) 0 0
\(679\) −4.06930e6 −0.338723
\(680\) 0 0
\(681\) 2.03572e7 1.68210
\(682\) 0 0
\(683\) −1.97746e7 −1.62202 −0.811011 0.585031i \(-0.801082\pi\)
−0.811011 + 0.585031i \(0.801082\pi\)
\(684\) 0 0
\(685\) 3.49669e6 0.284728
\(686\) 0 0
\(687\) −3.43831e6 −0.277941
\(688\) 0 0
\(689\) 9.60821e6 0.771071
\(690\) 0 0
\(691\) −1.59677e7 −1.27217 −0.636086 0.771618i \(-0.719448\pi\)
−0.636086 + 0.771618i \(0.719448\pi\)
\(692\) 0 0
\(693\) 3.46055e6 0.273723
\(694\) 0 0
\(695\) 1.37189e7 1.07735
\(696\) 0 0
\(697\) 5.12548e6 0.399625
\(698\) 0 0
\(699\) −1.13734e7 −0.880438
\(700\) 0 0
\(701\) −2.38418e6 −0.183250 −0.0916251 0.995794i \(-0.529206\pi\)
−0.0916251 + 0.995794i \(0.529206\pi\)
\(702\) 0 0
\(703\) 1.73478e6 0.132390
\(704\) 0 0
\(705\) −5.44144e7 −4.12326
\(706\) 0 0
\(707\) −6.66541e6 −0.501509
\(708\) 0 0
\(709\) −2.13193e7 −1.59278 −0.796391 0.604782i \(-0.793260\pi\)
−0.796391 + 0.604782i \(0.793260\pi\)
\(710\) 0 0
\(711\) −3.95086e6 −0.293102
\(712\) 0 0
\(713\) 2.35950e6 0.173818
\(714\) 0 0
\(715\) 4.25763e7 3.11460
\(716\) 0 0
\(717\) −2.79442e7 −2.02999
\(718\) 0 0
\(719\) 2.57018e7 1.85413 0.927067 0.374897i \(-0.122322\pi\)
0.927067 + 0.374897i \(0.122322\pi\)
\(720\) 0 0
\(721\) −3.19458e6 −0.228863
\(722\) 0 0
\(723\) −2.36818e7 −1.68488
\(724\) 0 0
\(725\) −6.73315e7 −4.75744
\(726\) 0 0
\(727\) −1.23186e7 −0.864423 −0.432211 0.901772i \(-0.642267\pi\)
−0.432211 + 0.901772i \(0.642267\pi\)
\(728\) 0 0
\(729\) −2.91556e6 −0.203190
\(730\) 0 0
\(731\) 1.60040e6 0.110773
\(732\) 0 0
\(733\) 1.74378e7 1.19876 0.599379 0.800466i \(-0.295414\pi\)
0.599379 + 0.800466i \(0.295414\pi\)
\(734\) 0 0
\(735\) −5.09234e6 −0.347695
\(736\) 0 0
\(737\) −6.48261e6 −0.439624
\(738\) 0 0
\(739\) −2.50344e7 −1.68627 −0.843134 0.537704i \(-0.819292\pi\)
−0.843134 + 0.537704i \(0.819292\pi\)
\(740\) 0 0
\(741\) 4.05072e7 2.71011
\(742\) 0 0
\(743\) −2.31077e7 −1.53562 −0.767811 0.640676i \(-0.778654\pi\)
−0.767811 + 0.640676i \(0.778654\pi\)
\(744\) 0 0
\(745\) 3.25131e7 2.14619
\(746\) 0 0
\(747\) 848288. 0.0556214
\(748\) 0 0
\(749\) −5.96539e6 −0.388539
\(750\) 0 0
\(751\) −1.74588e7 −1.12957 −0.564786 0.825238i \(-0.691041\pi\)
−0.564786 + 0.825238i \(0.691041\pi\)
\(752\) 0 0
\(753\) 1.56062e7 1.00302
\(754\) 0 0
\(755\) 2.79809e7 1.78647
\(756\) 0 0
\(757\) 6.63158e6 0.420608 0.210304 0.977636i \(-0.432555\pi\)
0.210304 + 0.977636i \(0.432555\pi\)
\(758\) 0 0
\(759\) 5.01968e6 0.316280
\(760\) 0 0
\(761\) −1.74131e7 −1.08997 −0.544985 0.838446i \(-0.683465\pi\)
−0.544985 + 0.838446i \(0.683465\pi\)
\(762\) 0 0
\(763\) 1.74207e6 0.108331
\(764\) 0 0
\(765\) 4.93928e6 0.305148
\(766\) 0 0
\(767\) 2.47802e6 0.152095
\(768\) 0 0
\(769\) 2.83850e7 1.73090 0.865452 0.500991i \(-0.167031\pi\)
0.865452 + 0.500991i \(0.167031\pi\)
\(770\) 0 0
\(771\) 3.05154e7 1.84877
\(772\) 0 0
\(773\) −2.59767e7 −1.56363 −0.781816 0.623509i \(-0.785706\pi\)
−0.781816 + 0.623509i \(0.785706\pi\)
\(774\) 0 0
\(775\) −3.45907e7 −2.06874
\(776\) 0 0
\(777\) 742831. 0.0441405
\(778\) 0 0
\(779\) −3.93292e7 −2.32205
\(780\) 0 0
\(781\) 2.76465e7 1.62186
\(782\) 0 0
\(783\) −1.43434e7 −0.836078
\(784\) 0 0
\(785\) −4.10009e7 −2.37476
\(786\) 0 0
\(787\) −2.68085e7 −1.54290 −0.771448 0.636293i \(-0.780467\pi\)
−0.771448 + 0.636293i \(0.780467\pi\)
\(788\) 0 0
\(789\) 1.45455e7 0.831830
\(790\) 0 0
\(791\) 9.11903e6 0.518212
\(792\) 0 0
\(793\) 7.50621e6 0.423875
\(794\) 0 0
\(795\) −2.29790e7 −1.28948
\(796\) 0 0
\(797\) −2.93026e6 −0.163403 −0.0817014 0.996657i \(-0.526035\pi\)
−0.0817014 + 0.996657i \(0.526035\pi\)
\(798\) 0 0
\(799\) 7.64421e6 0.423609
\(800\) 0 0
\(801\) 4.73362e6 0.260683
\(802\) 0 0
\(803\) −2.71726e6 −0.148711
\(804\) 0 0
\(805\) −2.88982e6 −0.157174
\(806\) 0 0
\(807\) 2.09918e7 1.13466
\(808\) 0 0
\(809\) 2.98402e7 1.60299 0.801494 0.598003i \(-0.204039\pi\)
0.801494 + 0.598003i \(0.204039\pi\)
\(810\) 0 0
\(811\) 2.53235e7 1.35199 0.675993 0.736908i \(-0.263715\pi\)
0.675993 + 0.736908i \(0.263715\pi\)
\(812\) 0 0
\(813\) −1.37602e7 −0.730124
\(814\) 0 0
\(815\) 1.13952e7 0.600937
\(816\) 0 0
\(817\) −1.22803e7 −0.643657
\(818\) 0 0
\(819\) 6.78578e6 0.353500
\(820\) 0 0
\(821\) −5.86859e6 −0.303862 −0.151931 0.988391i \(-0.548549\pi\)
−0.151931 + 0.988391i \(0.548549\pi\)
\(822\) 0 0
\(823\) 9.81684e6 0.505210 0.252605 0.967569i \(-0.418713\pi\)
0.252605 + 0.967569i \(0.418713\pi\)
\(824\) 0 0
\(825\) −7.35897e7 −3.76428
\(826\) 0 0
\(827\) −2.76584e7 −1.40625 −0.703127 0.711065i \(-0.748213\pi\)
−0.703127 + 0.711065i \(0.748213\pi\)
\(828\) 0 0
\(829\) −2.06302e7 −1.04260 −0.521298 0.853374i \(-0.674552\pi\)
−0.521298 + 0.853374i \(0.674552\pi\)
\(830\) 0 0
\(831\) −6.34553e6 −0.318761
\(832\) 0 0
\(833\) 715378. 0.0357210
\(834\) 0 0
\(835\) 4.01667e7 1.99365
\(836\) 0 0
\(837\) −7.36873e6 −0.363562
\(838\) 0 0
\(839\) 1.55068e7 0.760533 0.380266 0.924877i \(-0.375832\pi\)
0.380266 + 0.924877i \(0.375832\pi\)
\(840\) 0 0
\(841\) 4.78343e7 2.33211
\(842\) 0 0
\(843\) 2.02429e7 0.981076
\(844\) 0 0
\(845\) 4.40721e7 2.12335
\(846\) 0 0
\(847\) 2.13056e6 0.102043
\(848\) 0 0
\(849\) −2.56678e7 −1.22213
\(850\) 0 0
\(851\) 421545. 0.0199535
\(852\) 0 0
\(853\) 6.07567e6 0.285905 0.142952 0.989730i \(-0.454340\pi\)
0.142952 + 0.989730i \(0.454340\pi\)
\(854\) 0 0
\(855\) −3.79004e7 −1.77308
\(856\) 0 0
\(857\) −2.60713e7 −1.21258 −0.606291 0.795243i \(-0.707343\pi\)
−0.606291 + 0.795243i \(0.707343\pi\)
\(858\) 0 0
\(859\) −3.89265e6 −0.179996 −0.0899980 0.995942i \(-0.528686\pi\)
−0.0899980 + 0.995942i \(0.528686\pi\)
\(860\) 0 0
\(861\) −1.68407e7 −0.774198
\(862\) 0 0
\(863\) 1.73425e7 0.792657 0.396329 0.918109i \(-0.370284\pi\)
0.396329 + 0.918109i \(0.370284\pi\)
\(864\) 0 0
\(865\) −6.03274e7 −2.74141
\(866\) 0 0
\(867\) 2.65937e7 1.20152
\(868\) 0 0
\(869\) −1.14421e7 −0.513990
\(870\) 0 0
\(871\) −1.27117e7 −0.567754
\(872\) 0 0
\(873\) −1.29685e7 −0.575911
\(874\) 0 0
\(875\) 2.61100e7 1.15289
\(876\) 0 0
\(877\) 2.40336e6 0.105516 0.0527582 0.998607i \(-0.483199\pi\)
0.0527582 + 0.998607i \(0.483199\pi\)
\(878\) 0 0
\(879\) −4.73990e7 −2.06918
\(880\) 0 0
\(881\) −1.40789e7 −0.611125 −0.305563 0.952172i \(-0.598845\pi\)
−0.305563 + 0.952172i \(0.598845\pi\)
\(882\) 0 0
\(883\) 4.30002e7 1.85596 0.927979 0.372632i \(-0.121545\pi\)
0.927979 + 0.372632i \(0.121545\pi\)
\(884\) 0 0
\(885\) −5.92645e6 −0.254353
\(886\) 0 0
\(887\) −136209. −0.00581297 −0.00290648 0.999996i \(-0.500925\pi\)
−0.00290648 + 0.999996i \(0.500925\pi\)
\(888\) 0 0
\(889\) 8.39524e6 0.356270
\(890\) 0 0
\(891\) −3.28380e7 −1.38574
\(892\) 0 0
\(893\) −5.86561e7 −2.46141
\(894\) 0 0
\(895\) 1.08970e7 0.454725
\(896\) 0 0
\(897\) 9.84309e6 0.408461
\(898\) 0 0
\(899\) 3.51117e7 1.44895
\(900\) 0 0
\(901\) 3.22813e6 0.132476
\(902\) 0 0
\(903\) −5.25841e6 −0.214603
\(904\) 0 0
\(905\) −2.28045e7 −0.925550
\(906\) 0 0
\(907\) 8.23331e6 0.332320 0.166160 0.986099i \(-0.446863\pi\)
0.166160 + 0.986099i \(0.446863\pi\)
\(908\) 0 0
\(909\) −2.12422e7 −0.852686
\(910\) 0 0
\(911\) −9.15065e6 −0.365306 −0.182653 0.983177i \(-0.558468\pi\)
−0.182653 + 0.983177i \(0.558468\pi\)
\(912\) 0 0
\(913\) 2.45672e6 0.0975391
\(914\) 0 0
\(915\) −1.79519e7 −0.708855
\(916\) 0 0
\(917\) 1.60994e7 0.632246
\(918\) 0 0
\(919\) −2.27063e7 −0.886865 −0.443433 0.896308i \(-0.646239\pi\)
−0.443433 + 0.896308i \(0.646239\pi\)
\(920\) 0 0
\(921\) 5.99677e7 2.32953
\(922\) 0 0
\(923\) 5.42121e7 2.09456
\(924\) 0 0
\(925\) −6.17994e6 −0.237482
\(926\) 0 0
\(927\) −1.01809e7 −0.389122
\(928\) 0 0
\(929\) −1.95825e6 −0.0744439 −0.0372220 0.999307i \(-0.511851\pi\)
−0.0372220 + 0.999307i \(0.511851\pi\)
\(930\) 0 0
\(931\) −5.48929e6 −0.207559
\(932\) 0 0
\(933\) 7.55757e6 0.284235
\(934\) 0 0
\(935\) 1.43046e7 0.535115
\(936\) 0 0
\(937\) −3.49113e7 −1.29902 −0.649512 0.760351i \(-0.725027\pi\)
−0.649512 + 0.760351i \(0.725027\pi\)
\(938\) 0 0
\(939\) 6.12103e6 0.226548
\(940\) 0 0
\(941\) 2.99605e7 1.10300 0.551500 0.834175i \(-0.314056\pi\)
0.551500 + 0.834175i \(0.314056\pi\)
\(942\) 0 0
\(943\) −9.55683e6 −0.349973
\(944\) 0 0
\(945\) 9.02494e6 0.328749
\(946\) 0 0
\(947\) 1.74875e7 0.633655 0.316827 0.948483i \(-0.397382\pi\)
0.316827 + 0.948483i \(0.397382\pi\)
\(948\) 0 0
\(949\) −5.32828e6 −0.192053
\(950\) 0 0
\(951\) 4.86681e7 1.74499
\(952\) 0 0
\(953\) −1.25389e7 −0.447226 −0.223613 0.974678i \(-0.571785\pi\)
−0.223613 + 0.974678i \(0.571785\pi\)
\(954\) 0 0
\(955\) 7.35700e7 2.61031
\(956\) 0 0
\(957\) 7.46979e7 2.63651
\(958\) 0 0
\(959\) 1.61399e6 0.0566701
\(960\) 0 0
\(961\) −1.05910e7 −0.369936
\(962\) 0 0
\(963\) −1.90113e7 −0.660610
\(964\) 0 0
\(965\) 1.79418e7 0.620223
\(966\) 0 0
\(967\) 2.28111e7 0.784477 0.392238 0.919864i \(-0.371701\pi\)
0.392238 + 0.919864i \(0.371701\pi\)
\(968\) 0 0
\(969\) 1.36095e7 0.465620
\(970\) 0 0
\(971\) −190729. −0.00649186 −0.00324593 0.999995i \(-0.501033\pi\)
−0.00324593 + 0.999995i \(0.501033\pi\)
\(972\) 0 0
\(973\) 6.33234e6 0.214428
\(974\) 0 0
\(975\) −1.44302e8 −4.86139
\(976\) 0 0
\(977\) 1.92970e7 0.646775 0.323388 0.946267i \(-0.395178\pi\)
0.323388 + 0.946267i \(0.395178\pi\)
\(978\) 0 0
\(979\) 1.37090e7 0.457140
\(980\) 0 0
\(981\) 5.55183e6 0.184189
\(982\) 0 0
\(983\) −1.60890e7 −0.531062 −0.265531 0.964102i \(-0.585547\pi\)
−0.265531 + 0.964102i \(0.585547\pi\)
\(984\) 0 0
\(985\) −4.90274e7 −1.61008
\(986\) 0 0
\(987\) −2.51164e7 −0.820664
\(988\) 0 0
\(989\) −2.98407e6 −0.0970103
\(990\) 0 0
\(991\) −2.90847e7 −0.940762 −0.470381 0.882463i \(-0.655883\pi\)
−0.470381 + 0.882463i \(0.655883\pi\)
\(992\) 0 0
\(993\) −4.34311e6 −0.139775
\(994\) 0 0
\(995\) −8.97008e7 −2.87236
\(996\) 0 0
\(997\) 4.48593e7 1.42927 0.714636 0.699497i \(-0.246592\pi\)
0.714636 + 0.699497i \(0.246592\pi\)
\(998\) 0 0
\(999\) −1.31649e6 −0.0417353
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 224.6.a.i.1.2 5
4.3 odd 2 224.6.a.j.1.4 yes 5
8.3 odd 2 448.6.a.be.1.2 5
8.5 even 2 448.6.a.bf.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.6.a.i.1.2 5 1.1 even 1 trivial
224.6.a.j.1.4 yes 5 4.3 odd 2
448.6.a.be.1.2 5 8.3 odd 2
448.6.a.bf.1.4 5 8.5 even 2