[N,k,chi] = [224,6,Mod(1,224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(224, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("224.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(1\)
\(7\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{5} + 10T_{3}^{4} - 876T_{3}^{3} - 7592T_{3}^{2} + 107952T_{3} - 208800 \)
T3^5 + 10*T3^4 - 876*T3^3 - 7592*T3^2 + 107952*T3 - 208800
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(224))\).
$p$
$F_p(T)$
$2$
\( T^{5} \)
T^5
$3$
\( T^{5} + 10 T^{4} - 876 T^{3} + \cdots - 208800 \)
T^5 + 10*T^4 - 876*T^3 - 7592*T^2 + 107952*T - 208800
$5$
\( T^{5} - 36 T^{4} + \cdots - 222365696 \)
T^5 - 36*T^4 - 11972*T^3 + 342672*T^2 + 16702736*T - 222365696
$7$
\( (T - 49)^{5} \)
(T - 49)^5
$11$
\( T^{5} - 116 T^{4} + \cdots + 183286596608 \)
T^5 - 116*T^4 - 455664*T^3 + 173665088*T^2 - 16851132672*T + 183286596608
$13$
\( T^{5} - 40 T^{4} + \cdots + 247266196544 \)
T^5 - 40*T^4 - 829636*T^3 + 37014784*T^2 + 28757047888*T + 247266196544
$17$
\( T^{5} + \cdots - 353511151373280 \)
T^5 + 402*T^4 - 4604968*T^3 - 2695788240*T^2 + 2379976827280*T - 353511151373280
$19$
\( T^{5} + 3582 T^{4} + \cdots + 71\!\cdots\!08 \)
T^5 + 3582*T^4 - 2552972*T^3 - 19135170168*T^2 - 11808407073232*T + 7112109898059808
$23$
\( T^{5} - 472 T^{4} + \cdots + 11\!\cdots\!52 \)
T^5 - 472*T^4 - 30664992*T^3 + 542594048*T^2 + 220159981381888*T + 116982338009905152
$29$
\( T^{5} - 4754 T^{4} + \cdots + 38\!\cdots\!20 \)
T^5 - 4754*T^4 - 50170792*T^3 + 378698413520*T^2 - 750868256585840*T + 385668769900695520
$31$
\( T^{5} + 10500 T^{4} + \cdots + 34\!\cdots\!20 \)
T^5 + 10500*T^4 - 66606704*T^3 - 917812367424*T^2 - 1414979356403968*T + 3408739887300561920
$37$
\( T^{5} - 19642 T^{4} + \cdots + 11\!\cdots\!00 \)
T^5 - 19642*T^4 + 119395160*T^3 - 209626615280*T^2 - 81331223815280*T + 117905791582517600
$41$
\( T^{5} - 23398 T^{4} + \cdots + 13\!\cdots\!00 \)
T^5 - 23398*T^4 - 134223912*T^3 + 6903777643504*T^2 - 55355904066887280*T + 135096159295101604000
$43$
\( T^{5} - 22044 T^{4} + \cdots - 77\!\cdots\!32 \)
T^5 - 22044*T^4 - 164335472*T^3 + 3561557790144*T^2 + 2630170069505792*T - 77538343379353080832
$47$
\( T^{5} - 16004 T^{4} + \cdots + 62\!\cdots\!40 \)
T^5 - 16004*T^4 - 805861168*T^3 + 5982354113600*T^2 + 189448839464612608*T + 628865585262472483840
$53$
\( T^{5} - 54246 T^{4} + \cdots - 57\!\cdots\!00 \)
T^5 - 54246*T^4 + 401563688*T^3 + 10777434128080*T^2 - 55603384403194800*T - 575209828712109810400
$59$
\( T^{5} + 74366 T^{4} + \cdots - 14\!\cdots\!20 \)
T^5 + 74366*T^4 + 1229634900*T^3 + 1264001635336*T^2 - 9671835518624976*T - 14375284696012125920
$61$
\( T^{5} - 68316 T^{4} + \cdots - 30\!\cdots\!16 \)
T^5 - 68316*T^4 + 1136765180*T^3 - 360764942544*T^2 - 38441709688547312*T - 30906780291215481216
$67$
\( T^{5} + 26560 T^{4} + \cdots + 16\!\cdots\!64 \)
T^5 + 26560*T^4 - 3678461600*T^3 - 128473365502720*T^2 + 125084489230373120*T + 16840051092288503435264
$71$
\( T^{5} - 93072 T^{4} + \cdots + 10\!\cdots\!36 \)
T^5 - 93072*T^4 - 859052096*T^3 + 314947215959040*T^2 - 10444629551847829504*T + 103842290588006925991936
$73$
\( T^{5} - 136098 T^{4} + \cdots + 81\!\cdots\!00 \)
T^5 - 136098*T^4 + 6496046888*T^3 - 120728028945936*T^2 + 368605340915279440*T + 8167090664477841583200
$79$
\( T^{5} - 96080 T^{4} + \cdots - 26\!\cdots\!92 \)
T^5 - 96080*T^4 + 499256256*T^3 + 114284266099712*T^2 - 460659393550282752*T - 26989971858101080686592
$83$
\( T^{5} + 145894 T^{4} + \cdots - 86\!\cdots\!00 \)
T^5 + 145894*T^4 + 1004010932*T^3 - 239652720440728*T^2 + 2843881551658836400*T - 8669377299294959100000
$89$
\( T^{5} - 188554 T^{4} + \cdots + 64\!\cdots\!92 \)
T^5 - 188554*T^4 + 6722278824*T^3 + 353156462625456*T^2 - 14597759081174068656*T + 64363064200179994471392
$97$
\( T^{5} + 88146 T^{4} + \cdots + 93\!\cdots\!00 \)
T^5 + 88146*T^4 - 21534547688*T^3 - 1809901383688272*T^2 + 113863368896318852240*T + 9361903593232682369453600
show more
show less