[N,k,chi] = [224,6,Mod(1,224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(224, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("224.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(1\)
\(7\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{4} - 18T_{3}^{3} - 672T_{3}^{2} + 6328T_{3} + 82320 \)
T3^4 - 18*T3^3 - 672*T3^2 + 6328*T3 + 82320
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(224))\).
$p$
$F_p(T)$
$2$
\( T^{4} \)
T^4
$3$
\( T^{4} - 18 T^{3} - 672 T^{2} + \cdots + 82320 \)
T^4 - 18*T^3 - 672*T^2 + 6328*T + 82320
$5$
\( T^{4} + 30 T^{3} - 7452 T^{2} + \cdots + 3096576 \)
T^4 + 30*T^3 - 7452*T^2 - 7680*T + 3096576
$7$
\( (T - 49)^{4} \)
(T - 49)^4
$11$
\( T^{4} - 484 T^{3} + \cdots - 9325648640 \)
T^4 - 484*T^3 - 251328*T^2 + 108484544*T - 9325648640
$13$
\( T^{4} - 686 T^{3} + \cdots - 40778482496 \)
T^4 - 686*T^3 - 545556*T^2 + 431237632*T - 40778482496
$17$
\( T^{4} + 1700 T^{3} + \cdots - 670305393104 \)
T^4 + 1700*T^3 - 1626096*T^2 - 2605885264*T - 670305393104
$19$
\( T^{4} - 654 T^{3} + \cdots - 9671002992 \)
T^4 - 654*T^3 - 1225728*T^2 + 314167560*T - 9671002992
$23$
\( T^{4} - 136 T^{3} + \cdots + 2509965337600 \)
T^4 - 136*T^3 - 6413232*T^2 + 4869804800*T + 2509965337600
$29$
\( T^{4} - 3812 T^{3} + \cdots - 69185366122448 \)
T^4 - 3812*T^3 - 40521072*T^2 + 127721893456*T - 69185366122448
$31$
\( T^{4} - 12748 T^{3} + \cdots + 5102153647360 \)
T^4 - 12748*T^3 + 37677696*T^2 - 34029440704*T + 5102153647360
$37$
\( T^{4} + \cdots - 386774083587152 \)
T^4 - 820*T^3 - 92517456*T^2 - 366255272560*T - 386774083587152
$41$
\( T^{4} - 22340 T^{3} + \cdots - 20\!\cdots\!12 \)
T^4 - 22340*T^3 + 91483296*T^2 + 484174732240*T - 2039137154212112
$43$
\( T^{4} - 32924 T^{3} + \cdots - 14\!\cdots\!00 \)
T^4 - 32924*T^3 + 230947584*T^2 + 274374022720*T - 1478151549996800
$47$
\( T^{4} + 2620 T^{3} + \cdots + 11\!\cdots\!44 \)
T^4 + 2620*T^3 - 802202016*T^2 - 2883628365632*T + 117113183580031744
$53$
\( T^{4} - 22984 T^{3} + \cdots - 12\!\cdots\!88 \)
T^4 - 22984*T^3 - 1108119432*T^2 + 31757960073056*T - 129781829771243888
$59$
\( T^{4} - 108158 T^{3} + \cdots - 80\!\cdots\!16 \)
T^4 - 108158*T^3 + 3540385968*T^2 - 29768982266744*T - 80066800645808816
$61$
\( T^{4} - 4258 T^{3} + \cdots - 43\!\cdots\!20 \)
T^4 - 4258*T^3 - 1331878188*T^2 + 16370440382144*T - 43772939924837120
$67$
\( T^{4} - 109496 T^{3} + \cdots - 14\!\cdots\!68 \)
T^4 - 109496*T^3 + 2682511440*T^2 + 15165381172480*T - 14845390230637568
$71$
\( T^{4} - 54600 T^{3} + \cdots - 22\!\cdots\!40 \)
T^4 - 54600*T^3 + 49984704*T^2 + 11966378704896*T - 22694026322903040
$73$
\( T^{4} + 12384 T^{3} + \cdots + 60\!\cdots\!40 \)
T^4 + 12384*T^3 - 1950734808*T^2 - 6979752520512*T + 60660284912364240
$79$
\( T^{4} - 78184 T^{3} + \cdots - 14\!\cdots\!20 \)
T^4 - 78184*T^3 - 5463764544*T^2 + 625864811651072*T - 14026318454902046720
$83$
\( T^{4} - 115582 T^{3} + \cdots - 34\!\cdots\!04 \)
T^4 - 115582*T^3 - 5772382896*T^2 + 1118779048651208*T - 34363982916934710704
$89$
\( T^{4} + 31560 T^{3} + \cdots + 12\!\cdots\!40 \)
T^4 + 31560*T^3 - 341160840*T^2 - 10451646931296*T + 12288085414442640
$97$
\( T^{4} - 41068 T^{3} + \cdots + 56\!\cdots\!76 \)
T^4 - 41068*T^3 - 24795398064*T^2 + 1218933541754480*T + 56099733441007740976
show more
show less