Properties

Label 224.6.a.c.1.2
Level $224$
Weight $6$
Character 224.1
Self dual yes
Analytic conductor $35.926$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [224,6,Mod(1,224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("224.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 224.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.9259756381\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{61}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.40512\) of defining polynomial
Character \(\chi\) \(=\) 224.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.810250 q^{3} +71.6717 q^{5} -49.0000 q^{7} -242.343 q^{9} +O(q^{10})\) \(q+0.810250 q^{3} +71.6717 q^{5} -49.0000 q^{7} -242.343 q^{9} +569.271 q^{11} +137.702 q^{13} +58.0720 q^{15} -418.657 q^{17} +2552.13 q^{19} -39.7022 q^{21} -127.036 q^{23} +2011.84 q^{25} -393.249 q^{27} +2312.40 q^{29} -3992.18 q^{31} +461.252 q^{33} -3511.92 q^{35} -3853.34 q^{37} +111.573 q^{39} -4940.82 q^{41} +13679.2 q^{43} -17369.2 q^{45} +27624.7 q^{47} +2401.00 q^{49} -339.216 q^{51} +37400.0 q^{53} +40800.7 q^{55} +2067.86 q^{57} +37000.0 q^{59} -3803.32 q^{61} +11874.8 q^{63} +9869.36 q^{65} -22454.7 q^{67} -102.931 q^{69} +55088.9 q^{71} -69256.6 q^{73} +1630.09 q^{75} -27894.3 q^{77} +40937.8 q^{79} +58570.8 q^{81} -19789.0 q^{83} -30005.8 q^{85} +1873.62 q^{87} +104148. q^{89} -6747.41 q^{91} -3234.66 q^{93} +182916. q^{95} -96649.8 q^{97} -137959. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} + 34 q^{5} - 98 q^{7} - 266 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 14 q^{3} + 34 q^{5} - 98 q^{7} - 266 q^{9} + 420 q^{11} - 490 q^{13} + 616 q^{15} - 1056 q^{17} + 1246 q^{19} + 686 q^{21} - 504 q^{23} + 306 q^{25} + 3556 q^{27} - 3904 q^{29} + 2044 q^{31} + 2672 q^{33} - 1666 q^{35} - 7488 q^{37} + 9408 q^{39} + 7832 q^{41} + 10332 q^{43} - 16478 q^{45} + 41972 q^{47} + 4802 q^{49} + 9100 q^{51} + 32812 q^{53} + 46424 q^{55} + 21412 q^{57} + 48398 q^{59} - 718 q^{61} + 13034 q^{63} + 33516 q^{65} + 12824 q^{67} + 5480 q^{69} + 103992 q^{71} - 54100 q^{73} + 26894 q^{75} - 20580 q^{77} + 64568 q^{79} + 5830 q^{81} - 47810 q^{83} - 5996 q^{85} + 93940 q^{87} - 17388 q^{89} + 24010 q^{91} - 92632 q^{93} + 232120 q^{95} - 97296 q^{97} - 134428 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.810250 0.0519775 0.0259888 0.999662i \(-0.491727\pi\)
0.0259888 + 0.999662i \(0.491727\pi\)
\(4\) 0 0
\(5\) 71.6717 1.28210 0.641052 0.767498i \(-0.278498\pi\)
0.641052 + 0.767498i \(0.278498\pi\)
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) −242.343 −0.997298
\(10\) 0 0
\(11\) 569.271 1.41853 0.709264 0.704943i \(-0.249028\pi\)
0.709264 + 0.704943i \(0.249028\pi\)
\(12\) 0 0
\(13\) 137.702 0.225987 0.112993 0.993596i \(-0.463956\pi\)
0.112993 + 0.993596i \(0.463956\pi\)
\(14\) 0 0
\(15\) 58.0720 0.0666406
\(16\) 0 0
\(17\) −418.657 −0.351346 −0.175673 0.984449i \(-0.556210\pi\)
−0.175673 + 0.984449i \(0.556210\pi\)
\(18\) 0 0
\(19\) 2552.13 1.62188 0.810941 0.585128i \(-0.198956\pi\)
0.810941 + 0.585128i \(0.198956\pi\)
\(20\) 0 0
\(21\) −39.7022 −0.0196457
\(22\) 0 0
\(23\) −127.036 −0.0500734 −0.0250367 0.999687i \(-0.507970\pi\)
−0.0250367 + 0.999687i \(0.507970\pi\)
\(24\) 0 0
\(25\) 2011.84 0.643789
\(26\) 0 0
\(27\) −393.249 −0.103815
\(28\) 0 0
\(29\) 2312.40 0.510584 0.255292 0.966864i \(-0.417828\pi\)
0.255292 + 0.966864i \(0.417828\pi\)
\(30\) 0 0
\(31\) −3992.18 −0.746115 −0.373058 0.927808i \(-0.621691\pi\)
−0.373058 + 0.927808i \(0.621691\pi\)
\(32\) 0 0
\(33\) 461.252 0.0737316
\(34\) 0 0
\(35\) −3511.92 −0.484589
\(36\) 0 0
\(37\) −3853.34 −0.462736 −0.231368 0.972866i \(-0.574320\pi\)
−0.231368 + 0.972866i \(0.574320\pi\)
\(38\) 0 0
\(39\) 111.573 0.0117462
\(40\) 0 0
\(41\) −4940.82 −0.459029 −0.229514 0.973305i \(-0.573714\pi\)
−0.229514 + 0.973305i \(0.573714\pi\)
\(42\) 0 0
\(43\) 13679.2 1.12821 0.564103 0.825704i \(-0.309222\pi\)
0.564103 + 0.825704i \(0.309222\pi\)
\(44\) 0 0
\(45\) −17369.2 −1.27864
\(46\) 0 0
\(47\) 27624.7 1.82412 0.912059 0.410058i \(-0.134492\pi\)
0.912059 + 0.410058i \(0.134492\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −339.216 −0.0182621
\(52\) 0 0
\(53\) 37400.0 1.82886 0.914432 0.404740i \(-0.132638\pi\)
0.914432 + 0.404740i \(0.132638\pi\)
\(54\) 0 0
\(55\) 40800.7 1.81870
\(56\) 0 0
\(57\) 2067.86 0.0843014
\(58\) 0 0
\(59\) 37000.0 1.38379 0.691897 0.721996i \(-0.256775\pi\)
0.691897 + 0.721996i \(0.256775\pi\)
\(60\) 0 0
\(61\) −3803.32 −0.130869 −0.0654347 0.997857i \(-0.520843\pi\)
−0.0654347 + 0.997857i \(0.520843\pi\)
\(62\) 0 0
\(63\) 11874.8 0.376943
\(64\) 0 0
\(65\) 9869.36 0.289738
\(66\) 0 0
\(67\) −22454.7 −0.611111 −0.305555 0.952174i \(-0.598842\pi\)
−0.305555 + 0.952174i \(0.598842\pi\)
\(68\) 0 0
\(69\) −102.931 −0.00260269
\(70\) 0 0
\(71\) 55088.9 1.29693 0.648467 0.761243i \(-0.275410\pi\)
0.648467 + 0.761243i \(0.275410\pi\)
\(72\) 0 0
\(73\) −69256.6 −1.52109 −0.760543 0.649287i \(-0.775067\pi\)
−0.760543 + 0.649287i \(0.775067\pi\)
\(74\) 0 0
\(75\) 1630.09 0.0334625
\(76\) 0 0
\(77\) −27894.3 −0.536153
\(78\) 0 0
\(79\) 40937.8 0.738000 0.369000 0.929429i \(-0.379700\pi\)
0.369000 + 0.929429i \(0.379700\pi\)
\(80\) 0 0
\(81\) 58570.8 0.991902
\(82\) 0 0
\(83\) −19789.0 −0.315303 −0.157652 0.987495i \(-0.550392\pi\)
−0.157652 + 0.987495i \(0.550392\pi\)
\(84\) 0 0
\(85\) −30005.8 −0.450462
\(86\) 0 0
\(87\) 1873.62 0.0265389
\(88\) 0 0
\(89\) 104148. 1.39373 0.696864 0.717203i \(-0.254578\pi\)
0.696864 + 0.717203i \(0.254578\pi\)
\(90\) 0 0
\(91\) −6747.41 −0.0854149
\(92\) 0 0
\(93\) −3234.66 −0.0387812
\(94\) 0 0
\(95\) 182916. 2.07942
\(96\) 0 0
\(97\) −96649.8 −1.04297 −0.521485 0.853261i \(-0.674622\pi\)
−0.521485 + 0.853261i \(0.674622\pi\)
\(98\) 0 0
\(99\) −137959. −1.41469
\(100\) 0 0
\(101\) 26636.2 0.259817 0.129909 0.991526i \(-0.458532\pi\)
0.129909 + 0.991526i \(0.458532\pi\)
\(102\) 0 0
\(103\) −62232.5 −0.577995 −0.288998 0.957330i \(-0.593322\pi\)
−0.288998 + 0.957330i \(0.593322\pi\)
\(104\) 0 0
\(105\) −2845.53 −0.0251878
\(106\) 0 0
\(107\) 111445. 0.941026 0.470513 0.882393i \(-0.344069\pi\)
0.470513 + 0.882393i \(0.344069\pi\)
\(108\) 0 0
\(109\) 163349. 1.31690 0.658448 0.752627i \(-0.271213\pi\)
0.658448 + 0.752627i \(0.271213\pi\)
\(110\) 0 0
\(111\) −3122.17 −0.0240519
\(112\) 0 0
\(113\) −180728. −1.33146 −0.665732 0.746191i \(-0.731881\pi\)
−0.665732 + 0.746191i \(0.731881\pi\)
\(114\) 0 0
\(115\) −9104.89 −0.0641993
\(116\) 0 0
\(117\) −33371.2 −0.225376
\(118\) 0 0
\(119\) 20514.2 0.132796
\(120\) 0 0
\(121\) 163019. 1.01222
\(122\) 0 0
\(123\) −4003.30 −0.0238592
\(124\) 0 0
\(125\) −79782.2 −0.456700
\(126\) 0 0
\(127\) 121589. 0.668938 0.334469 0.942407i \(-0.391443\pi\)
0.334469 + 0.942407i \(0.391443\pi\)
\(128\) 0 0
\(129\) 11083.5 0.0586414
\(130\) 0 0
\(131\) −119712. −0.609482 −0.304741 0.952435i \(-0.598570\pi\)
−0.304741 + 0.952435i \(0.598570\pi\)
\(132\) 0 0
\(133\) −125054. −0.613014
\(134\) 0 0
\(135\) −28184.9 −0.133101
\(136\) 0 0
\(137\) −4767.80 −0.0217028 −0.0108514 0.999941i \(-0.503454\pi\)
−0.0108514 + 0.999941i \(0.503454\pi\)
\(138\) 0 0
\(139\) −173481. −0.761578 −0.380789 0.924662i \(-0.624348\pi\)
−0.380789 + 0.924662i \(0.624348\pi\)
\(140\) 0 0
\(141\) 22382.9 0.0948132
\(142\) 0 0
\(143\) 78390.0 0.320568
\(144\) 0 0
\(145\) 165733. 0.654621
\(146\) 0 0
\(147\) 1945.41 0.00742536
\(148\) 0 0
\(149\) −236401. −0.872337 −0.436169 0.899865i \(-0.643665\pi\)
−0.436169 + 0.899865i \(0.643665\pi\)
\(150\) 0 0
\(151\) −280973. −1.00282 −0.501410 0.865210i \(-0.667185\pi\)
−0.501410 + 0.865210i \(0.667185\pi\)
\(152\) 0 0
\(153\) 101459. 0.350397
\(154\) 0 0
\(155\) −286127. −0.956597
\(156\) 0 0
\(157\) 343000. 1.11057 0.555284 0.831661i \(-0.312610\pi\)
0.555284 + 0.831661i \(0.312610\pi\)
\(158\) 0 0
\(159\) 30303.3 0.0950598
\(160\) 0 0
\(161\) 6224.76 0.0189260
\(162\) 0 0
\(163\) −631306. −1.86110 −0.930552 0.366160i \(-0.880672\pi\)
−0.930552 + 0.366160i \(0.880672\pi\)
\(164\) 0 0
\(165\) 33058.7 0.0945315
\(166\) 0 0
\(167\) 174139. 0.483176 0.241588 0.970379i \(-0.422332\pi\)
0.241588 + 0.970379i \(0.422332\pi\)
\(168\) 0 0
\(169\) −352331. −0.948930
\(170\) 0 0
\(171\) −618493. −1.61750
\(172\) 0 0
\(173\) −389487. −0.989412 −0.494706 0.869060i \(-0.664724\pi\)
−0.494706 + 0.869060i \(0.664724\pi\)
\(174\) 0 0
\(175\) −98580.1 −0.243329
\(176\) 0 0
\(177\) 29979.2 0.0719262
\(178\) 0 0
\(179\) −827314. −1.92991 −0.964956 0.262411i \(-0.915482\pi\)
−0.964956 + 0.262411i \(0.915482\pi\)
\(180\) 0 0
\(181\) 250850. 0.569138 0.284569 0.958656i \(-0.408150\pi\)
0.284569 + 0.958656i \(0.408150\pi\)
\(182\) 0 0
\(183\) −3081.64 −0.00680227
\(184\) 0 0
\(185\) −276176. −0.593275
\(186\) 0 0
\(187\) −238329. −0.498395
\(188\) 0 0
\(189\) 19269.2 0.0392383
\(190\) 0 0
\(191\) 166405. 0.330052 0.165026 0.986289i \(-0.447229\pi\)
0.165026 + 0.986289i \(0.447229\pi\)
\(192\) 0 0
\(193\) −408270. −0.788959 −0.394480 0.918905i \(-0.629075\pi\)
−0.394480 + 0.918905i \(0.629075\pi\)
\(194\) 0 0
\(195\) 7996.65 0.0150599
\(196\) 0 0
\(197\) 895496. 1.64399 0.821993 0.569497i \(-0.192862\pi\)
0.821993 + 0.569497i \(0.192862\pi\)
\(198\) 0 0
\(199\) 177488. 0.317714 0.158857 0.987302i \(-0.449219\pi\)
0.158857 + 0.987302i \(0.449219\pi\)
\(200\) 0 0
\(201\) −18193.9 −0.0317640
\(202\) 0 0
\(203\) −113307. −0.192983
\(204\) 0 0
\(205\) −354117. −0.588522
\(206\) 0 0
\(207\) 30786.3 0.0499381
\(208\) 0 0
\(209\) 1.45286e6 2.30068
\(210\) 0 0
\(211\) 963464. 1.48981 0.744903 0.667173i \(-0.232496\pi\)
0.744903 + 0.667173i \(0.232496\pi\)
\(212\) 0 0
\(213\) 44635.7 0.0674114
\(214\) 0 0
\(215\) 980410. 1.44648
\(216\) 0 0
\(217\) 195617. 0.282005
\(218\) 0 0
\(219\) −56115.1 −0.0790623
\(220\) 0 0
\(221\) −57649.9 −0.0793996
\(222\) 0 0
\(223\) −513529. −0.691518 −0.345759 0.938323i \(-0.612378\pi\)
−0.345759 + 0.938323i \(0.612378\pi\)
\(224\) 0 0
\(225\) −487556. −0.642049
\(226\) 0 0
\(227\) −251707. −0.324213 −0.162106 0.986773i \(-0.551829\pi\)
−0.162106 + 0.986773i \(0.551829\pi\)
\(228\) 0 0
\(229\) −1.11802e6 −1.40884 −0.704419 0.709784i \(-0.748793\pi\)
−0.704419 + 0.709784i \(0.748793\pi\)
\(230\) 0 0
\(231\) −22601.3 −0.0278679
\(232\) 0 0
\(233\) −1.09444e6 −1.32070 −0.660349 0.750959i \(-0.729592\pi\)
−0.660349 + 0.750959i \(0.729592\pi\)
\(234\) 0 0
\(235\) 1.97991e6 2.33871
\(236\) 0 0
\(237\) 33169.8 0.0383594
\(238\) 0 0
\(239\) −1.61769e6 −1.83190 −0.915949 0.401295i \(-0.868560\pi\)
−0.915949 + 0.401295i \(0.868560\pi\)
\(240\) 0 0
\(241\) 368001. 0.408137 0.204069 0.978957i \(-0.434583\pi\)
0.204069 + 0.978957i \(0.434583\pi\)
\(242\) 0 0
\(243\) 143017. 0.155371
\(244\) 0 0
\(245\) 172084. 0.183158
\(246\) 0 0
\(247\) 351434. 0.366523
\(248\) 0 0
\(249\) −16034.0 −0.0163887
\(250\) 0 0
\(251\) −132644. −0.132893 −0.0664466 0.997790i \(-0.521166\pi\)
−0.0664466 + 0.997790i \(0.521166\pi\)
\(252\) 0 0
\(253\) −72318.0 −0.0710305
\(254\) 0 0
\(255\) −24312.2 −0.0234139
\(256\) 0 0
\(257\) −648941. −0.612876 −0.306438 0.951891i \(-0.599137\pi\)
−0.306438 + 0.951891i \(0.599137\pi\)
\(258\) 0 0
\(259\) 188814. 0.174898
\(260\) 0 0
\(261\) −560394. −0.509205
\(262\) 0 0
\(263\) −559540. −0.498818 −0.249409 0.968398i \(-0.580236\pi\)
−0.249409 + 0.968398i \(0.580236\pi\)
\(264\) 0 0
\(265\) 2.68052e6 2.34479
\(266\) 0 0
\(267\) 84386.3 0.0724425
\(268\) 0 0
\(269\) 1.11891e6 0.942793 0.471397 0.881921i \(-0.343750\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(270\) 0 0
\(271\) −1.85235e6 −1.53214 −0.766072 0.642754i \(-0.777792\pi\)
−0.766072 + 0.642754i \(0.777792\pi\)
\(272\) 0 0
\(273\) −5467.09 −0.00443966
\(274\) 0 0
\(275\) 1.14528e6 0.913232
\(276\) 0 0
\(277\) −150989. −0.118235 −0.0591173 0.998251i \(-0.518829\pi\)
−0.0591173 + 0.998251i \(0.518829\pi\)
\(278\) 0 0
\(279\) 967479. 0.744099
\(280\) 0 0
\(281\) −658293. −0.497340 −0.248670 0.968588i \(-0.579994\pi\)
−0.248670 + 0.968588i \(0.579994\pi\)
\(282\) 0 0
\(283\) 1.88185e6 1.39675 0.698376 0.715731i \(-0.253906\pi\)
0.698376 + 0.715731i \(0.253906\pi\)
\(284\) 0 0
\(285\) 148207. 0.108083
\(286\) 0 0
\(287\) 242100. 0.173496
\(288\) 0 0
\(289\) −1.24458e6 −0.876556
\(290\) 0 0
\(291\) −78310.5 −0.0542110
\(292\) 0 0
\(293\) 1.04860e6 0.713577 0.356789 0.934185i \(-0.383872\pi\)
0.356789 + 0.934185i \(0.383872\pi\)
\(294\) 0 0
\(295\) 2.65185e6 1.77417
\(296\) 0 0
\(297\) −223866. −0.147264
\(298\) 0 0
\(299\) −17493.1 −0.0113159
\(300\) 0 0
\(301\) −670279. −0.426422
\(302\) 0 0
\(303\) 21581.9 0.0135047
\(304\) 0 0
\(305\) −272591. −0.167788
\(306\) 0 0
\(307\) 2.11586e6 1.28127 0.640634 0.767846i \(-0.278671\pi\)
0.640634 + 0.767846i \(0.278671\pi\)
\(308\) 0 0
\(309\) −50423.9 −0.0300428
\(310\) 0 0
\(311\) 1.58928e6 0.931749 0.465875 0.884851i \(-0.345740\pi\)
0.465875 + 0.884851i \(0.345740\pi\)
\(312\) 0 0
\(313\) 150833. 0.0870235 0.0435118 0.999053i \(-0.486145\pi\)
0.0435118 + 0.999053i \(0.486145\pi\)
\(314\) 0 0
\(315\) 851090. 0.483280
\(316\) 0 0
\(317\) −17178.1 −0.00960122 −0.00480061 0.999988i \(-0.501528\pi\)
−0.00480061 + 0.999988i \(0.501528\pi\)
\(318\) 0 0
\(319\) 1.31638e6 0.724277
\(320\) 0 0
\(321\) 90298.4 0.0489122
\(322\) 0 0
\(323\) −1.06847e6 −0.569842
\(324\) 0 0
\(325\) 277035. 0.145488
\(326\) 0 0
\(327\) 132354. 0.0684490
\(328\) 0 0
\(329\) −1.35361e6 −0.689452
\(330\) 0 0
\(331\) 2.47433e6 1.24133 0.620666 0.784075i \(-0.286862\pi\)
0.620666 + 0.784075i \(0.286862\pi\)
\(332\) 0 0
\(333\) 933833. 0.461486
\(334\) 0 0
\(335\) −1.60937e6 −0.783507
\(336\) 0 0
\(337\) −1.92911e6 −0.925302 −0.462651 0.886541i \(-0.653102\pi\)
−0.462651 + 0.886541i \(0.653102\pi\)
\(338\) 0 0
\(339\) −146435. −0.0692062
\(340\) 0 0
\(341\) −2.27263e6 −1.05838
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) −7377.24 −0.00333692
\(346\) 0 0
\(347\) −566575. −0.252600 −0.126300 0.991992i \(-0.540310\pi\)
−0.126300 + 0.991992i \(0.540310\pi\)
\(348\) 0 0
\(349\) 1.91470e6 0.841469 0.420734 0.907184i \(-0.361772\pi\)
0.420734 + 0.907184i \(0.361772\pi\)
\(350\) 0 0
\(351\) −54151.3 −0.0234607
\(352\) 0 0
\(353\) 3.75846e6 1.60536 0.802681 0.596409i \(-0.203406\pi\)
0.802681 + 0.596409i \(0.203406\pi\)
\(354\) 0 0
\(355\) 3.94831e6 1.66280
\(356\) 0 0
\(357\) 16621.6 0.00690243
\(358\) 0 0
\(359\) −2.88170e6 −1.18008 −0.590042 0.807373i \(-0.700889\pi\)
−0.590042 + 0.807373i \(0.700889\pi\)
\(360\) 0 0
\(361\) 4.03728e6 1.63050
\(362\) 0 0
\(363\) 132086. 0.0526127
\(364\) 0 0
\(365\) −4.96374e6 −1.95019
\(366\) 0 0
\(367\) −4.00494e6 −1.55214 −0.776070 0.630647i \(-0.782789\pi\)
−0.776070 + 0.630647i \(0.782789\pi\)
\(368\) 0 0
\(369\) 1.19738e6 0.457788
\(370\) 0 0
\(371\) −1.83260e6 −0.691246
\(372\) 0 0
\(373\) −527856. −0.196446 −0.0982230 0.995164i \(-0.531316\pi\)
−0.0982230 + 0.995164i \(0.531316\pi\)
\(374\) 0 0
\(375\) −64643.5 −0.0237381
\(376\) 0 0
\(377\) 318422. 0.115385
\(378\) 0 0
\(379\) 771013. 0.275717 0.137858 0.990452i \(-0.455978\pi\)
0.137858 + 0.990452i \(0.455978\pi\)
\(380\) 0 0
\(381\) 98517.6 0.0347697
\(382\) 0 0
\(383\) −1.49145e6 −0.519530 −0.259765 0.965672i \(-0.583645\pi\)
−0.259765 + 0.965672i \(0.583645\pi\)
\(384\) 0 0
\(385\) −1.99923e6 −0.687403
\(386\) 0 0
\(387\) −3.31506e6 −1.12516
\(388\) 0 0
\(389\) 4.84613e6 1.62376 0.811878 0.583827i \(-0.198445\pi\)
0.811878 + 0.583827i \(0.198445\pi\)
\(390\) 0 0
\(391\) 53184.4 0.0175931
\(392\) 0 0
\(393\) −96997.0 −0.0316794
\(394\) 0 0
\(395\) 2.93408e6 0.946192
\(396\) 0 0
\(397\) 241537. 0.0769144 0.0384572 0.999260i \(-0.487756\pi\)
0.0384572 + 0.999260i \(0.487756\pi\)
\(398\) 0 0
\(399\) −101325. −0.0318629
\(400\) 0 0
\(401\) −3.33211e6 −1.03481 −0.517403 0.855742i \(-0.673101\pi\)
−0.517403 + 0.855742i \(0.673101\pi\)
\(402\) 0 0
\(403\) −549732. −0.168612
\(404\) 0 0
\(405\) 4.19787e6 1.27172
\(406\) 0 0
\(407\) −2.19360e6 −0.656404
\(408\) 0 0
\(409\) −4.42388e6 −1.30766 −0.653831 0.756641i \(-0.726839\pi\)
−0.653831 + 0.756641i \(0.726839\pi\)
\(410\) 0 0
\(411\) −3863.11 −0.00112806
\(412\) 0 0
\(413\) −1.81300e6 −0.523025
\(414\) 0 0
\(415\) −1.41831e6 −0.404251
\(416\) 0 0
\(417\) −140563. −0.0395849
\(418\) 0 0
\(419\) −5.05733e6 −1.40730 −0.703649 0.710548i \(-0.748447\pi\)
−0.703649 + 0.710548i \(0.748447\pi\)
\(420\) 0 0
\(421\) −6.46515e6 −1.77776 −0.888881 0.458139i \(-0.848516\pi\)
−0.888881 + 0.458139i \(0.848516\pi\)
\(422\) 0 0
\(423\) −6.69467e6 −1.81919
\(424\) 0 0
\(425\) −842270. −0.226193
\(426\) 0 0
\(427\) 186363. 0.0494640
\(428\) 0 0
\(429\) 63515.4 0.0166623
\(430\) 0 0
\(431\) −4.92475e6 −1.27700 −0.638500 0.769622i \(-0.720445\pi\)
−0.638500 + 0.769622i \(0.720445\pi\)
\(432\) 0 0
\(433\) 2.99870e6 0.768622 0.384311 0.923204i \(-0.374439\pi\)
0.384311 + 0.923204i \(0.374439\pi\)
\(434\) 0 0
\(435\) 134286. 0.0340256
\(436\) 0 0
\(437\) −324213. −0.0812131
\(438\) 0 0
\(439\) 5.09504e6 1.26179 0.630894 0.775869i \(-0.282688\pi\)
0.630894 + 0.775869i \(0.282688\pi\)
\(440\) 0 0
\(441\) −581867. −0.142471
\(442\) 0 0
\(443\) 2.63893e6 0.638878 0.319439 0.947607i \(-0.396506\pi\)
0.319439 + 0.947607i \(0.396506\pi\)
\(444\) 0 0
\(445\) 7.46450e6 1.78690
\(446\) 0 0
\(447\) −191544. −0.0453419
\(448\) 0 0
\(449\) 5.01164e6 1.17318 0.586589 0.809885i \(-0.300470\pi\)
0.586589 + 0.809885i \(0.300470\pi\)
\(450\) 0 0
\(451\) −2.81267e6 −0.651145
\(452\) 0 0
\(453\) −227659. −0.0521241
\(454\) 0 0
\(455\) −483599. −0.109511
\(456\) 0 0
\(457\) −5.62960e6 −1.26092 −0.630460 0.776222i \(-0.717134\pi\)
−0.630460 + 0.776222i \(0.717134\pi\)
\(458\) 0 0
\(459\) 164636. 0.0364749
\(460\) 0 0
\(461\) 4.21775e6 0.924334 0.462167 0.886793i \(-0.347072\pi\)
0.462167 + 0.886793i \(0.347072\pi\)
\(462\) 0 0
\(463\) −1.79250e6 −0.388603 −0.194301 0.980942i \(-0.562244\pi\)
−0.194301 + 0.980942i \(0.562244\pi\)
\(464\) 0 0
\(465\) −231834. −0.0497215
\(466\) 0 0
\(467\) −5.56530e6 −1.18085 −0.590427 0.807091i \(-0.701041\pi\)
−0.590427 + 0.807091i \(0.701041\pi\)
\(468\) 0 0
\(469\) 1.10028e6 0.230978
\(470\) 0 0
\(471\) 277916. 0.0577246
\(472\) 0 0
\(473\) 7.78716e6 1.60039
\(474\) 0 0
\(475\) 5.13448e6 1.04415
\(476\) 0 0
\(477\) −9.06363e6 −1.82392
\(478\) 0 0
\(479\) 7.98318e6 1.58978 0.794890 0.606753i \(-0.207528\pi\)
0.794890 + 0.606753i \(0.207528\pi\)
\(480\) 0 0
\(481\) −530614. −0.104572
\(482\) 0 0
\(483\) 5043.61 0.000983726 0
\(484\) 0 0
\(485\) −6.92706e6 −1.33719
\(486\) 0 0
\(487\) 1.89273e6 0.361631 0.180815 0.983517i \(-0.442126\pi\)
0.180815 + 0.983517i \(0.442126\pi\)
\(488\) 0 0
\(489\) −511515. −0.0967356
\(490\) 0 0
\(491\) 714559. 0.133762 0.0668812 0.997761i \(-0.478695\pi\)
0.0668812 + 0.997761i \(0.478695\pi\)
\(492\) 0 0
\(493\) −968100. −0.179392
\(494\) 0 0
\(495\) −9.88778e6 −1.81378
\(496\) 0 0
\(497\) −2.69935e6 −0.490195
\(498\) 0 0
\(499\) −6.55243e6 −1.17802 −0.589008 0.808127i \(-0.700481\pi\)
−0.589008 + 0.808127i \(0.700481\pi\)
\(500\) 0 0
\(501\) 141096. 0.0251143
\(502\) 0 0
\(503\) 990048. 0.174476 0.0872381 0.996187i \(-0.472196\pi\)
0.0872381 + 0.996187i \(0.472196\pi\)
\(504\) 0 0
\(505\) 1.90906e6 0.333113
\(506\) 0 0
\(507\) −285476. −0.0493231
\(508\) 0 0
\(509\) −5.01675e6 −0.858277 −0.429139 0.903239i \(-0.641183\pi\)
−0.429139 + 0.903239i \(0.641183\pi\)
\(510\) 0 0
\(511\) 3.39357e6 0.574917
\(512\) 0 0
\(513\) −1.00362e6 −0.168375
\(514\) 0 0
\(515\) −4.46031e6 −0.741049
\(516\) 0 0
\(517\) 1.57260e7 2.58756
\(518\) 0 0
\(519\) −315581. −0.0514272
\(520\) 0 0
\(521\) −196789. −0.0317619 −0.0158809 0.999874i \(-0.505055\pi\)
−0.0158809 + 0.999874i \(0.505055\pi\)
\(522\) 0 0
\(523\) −4.81508e6 −0.769749 −0.384875 0.922969i \(-0.625755\pi\)
−0.384875 + 0.922969i \(0.625755\pi\)
\(524\) 0 0
\(525\) −79874.5 −0.0126477
\(526\) 0 0
\(527\) 1.67135e6 0.262145
\(528\) 0 0
\(529\) −6.42020e6 −0.997493
\(530\) 0 0
\(531\) −8.96671e6 −1.38006
\(532\) 0 0
\(533\) −680362. −0.103734
\(534\) 0 0
\(535\) 7.98747e6 1.20649
\(536\) 0 0
\(537\) −670330. −0.100312
\(538\) 0 0
\(539\) 1.36682e6 0.202647
\(540\) 0 0
\(541\) 2.47799e6 0.364005 0.182002 0.983298i \(-0.441742\pi\)
0.182002 + 0.983298i \(0.441742\pi\)
\(542\) 0 0
\(543\) 203251. 0.0295824
\(544\) 0 0
\(545\) 1.17075e7 1.68840
\(546\) 0 0
\(547\) −5.97032e6 −0.853158 −0.426579 0.904450i \(-0.640281\pi\)
−0.426579 + 0.904450i \(0.640281\pi\)
\(548\) 0 0
\(549\) 921710. 0.130516
\(550\) 0 0
\(551\) 5.90154e6 0.828107
\(552\) 0 0
\(553\) −2.00595e6 −0.278938
\(554\) 0 0
\(555\) −223771. −0.0308370
\(556\) 0 0
\(557\) 7.59368e6 1.03708 0.518542 0.855052i \(-0.326475\pi\)
0.518542 + 0.855052i \(0.326475\pi\)
\(558\) 0 0
\(559\) 1.88365e6 0.254960
\(560\) 0 0
\(561\) −193106. −0.0259053
\(562\) 0 0
\(563\) −1.11744e7 −1.48578 −0.742888 0.669416i \(-0.766544\pi\)
−0.742888 + 0.669416i \(0.766544\pi\)
\(564\) 0 0
\(565\) −1.29531e7 −1.70707
\(566\) 0 0
\(567\) −2.86997e6 −0.374904
\(568\) 0 0
\(569\) −1.18434e7 −1.53354 −0.766771 0.641921i \(-0.778138\pi\)
−0.766771 + 0.641921i \(0.778138\pi\)
\(570\) 0 0
\(571\) 1.00356e7 1.28811 0.644057 0.764977i \(-0.277250\pi\)
0.644057 + 0.764977i \(0.277250\pi\)
\(572\) 0 0
\(573\) 134829. 0.0171553
\(574\) 0 0
\(575\) −255576. −0.0322367
\(576\) 0 0
\(577\) 1.12162e7 1.40251 0.701256 0.712909i \(-0.252623\pi\)
0.701256 + 0.712909i \(0.252623\pi\)
\(578\) 0 0
\(579\) −330801. −0.0410082
\(580\) 0 0
\(581\) 969661. 0.119173
\(582\) 0 0
\(583\) 2.12907e7 2.59429
\(584\) 0 0
\(585\) −2.39178e6 −0.288955
\(586\) 0 0
\(587\) 3.16178e6 0.378736 0.189368 0.981906i \(-0.439356\pi\)
0.189368 + 0.981906i \(0.439356\pi\)
\(588\) 0 0
\(589\) −1.01886e7 −1.21011
\(590\) 0 0
\(591\) 725575. 0.0854504
\(592\) 0 0
\(593\) −7.55501e6 −0.882264 −0.441132 0.897442i \(-0.645423\pi\)
−0.441132 + 0.897442i \(0.645423\pi\)
\(594\) 0 0
\(595\) 1.47029e6 0.170259
\(596\) 0 0
\(597\) 143810. 0.0165140
\(598\) 0 0
\(599\) 1.56629e7 1.78364 0.891818 0.452394i \(-0.149430\pi\)
0.891818 + 0.452394i \(0.149430\pi\)
\(600\) 0 0
\(601\) 1.07168e7 1.21027 0.605133 0.796125i \(-0.293120\pi\)
0.605133 + 0.796125i \(0.293120\pi\)
\(602\) 0 0
\(603\) 5.44175e6 0.609460
\(604\) 0 0
\(605\) 1.16839e7 1.29777
\(606\) 0 0
\(607\) 1.24101e7 1.36711 0.683557 0.729897i \(-0.260432\pi\)
0.683557 + 0.729897i \(0.260432\pi\)
\(608\) 0 0
\(609\) −91807.3 −0.0100308
\(610\) 0 0
\(611\) 3.80398e6 0.412226
\(612\) 0 0
\(613\) −8.92284e6 −0.959074 −0.479537 0.877522i \(-0.659195\pi\)
−0.479537 + 0.877522i \(0.659195\pi\)
\(614\) 0 0
\(615\) −286924. −0.0305899
\(616\) 0 0
\(617\) 5.46678e6 0.578121 0.289060 0.957311i \(-0.406657\pi\)
0.289060 + 0.957311i \(0.406657\pi\)
\(618\) 0 0
\(619\) 4.14856e6 0.435181 0.217591 0.976040i \(-0.430180\pi\)
0.217591 + 0.976040i \(0.430180\pi\)
\(620\) 0 0
\(621\) 49956.8 0.00519835
\(622\) 0 0
\(623\) −5.10328e6 −0.526780
\(624\) 0 0
\(625\) −1.20051e7 −1.22932
\(626\) 0 0
\(627\) 1.17718e6 0.119584
\(628\) 0 0
\(629\) 1.61323e6 0.162581
\(630\) 0 0
\(631\) 1.66340e7 1.66312 0.831561 0.555433i \(-0.187447\pi\)
0.831561 + 0.555433i \(0.187447\pi\)
\(632\) 0 0
\(633\) 780647. 0.0774364
\(634\) 0 0
\(635\) 8.71451e6 0.857647
\(636\) 0 0
\(637\) 330623. 0.0322838
\(638\) 0 0
\(639\) −1.33504e7 −1.29343
\(640\) 0 0
\(641\) −1.54577e7 −1.48594 −0.742968 0.669327i \(-0.766582\pi\)
−0.742968 + 0.669327i \(0.766582\pi\)
\(642\) 0 0
\(643\) 1.42448e7 1.35872 0.679360 0.733805i \(-0.262257\pi\)
0.679360 + 0.733805i \(0.262257\pi\)
\(644\) 0 0
\(645\) 794377. 0.0751843
\(646\) 0 0
\(647\) 9.78031e6 0.918527 0.459264 0.888300i \(-0.348113\pi\)
0.459264 + 0.888300i \(0.348113\pi\)
\(648\) 0 0
\(649\) 2.10630e7 1.96295
\(650\) 0 0
\(651\) 158498. 0.0146579
\(652\) 0 0
\(653\) 2.43600e6 0.223560 0.111780 0.993733i \(-0.464345\pi\)
0.111780 + 0.993733i \(0.464345\pi\)
\(654\) 0 0
\(655\) −8.58000e6 −0.781419
\(656\) 0 0
\(657\) 1.67839e7 1.51698
\(658\) 0 0
\(659\) −3.49022e6 −0.313069 −0.156534 0.987673i \(-0.550032\pi\)
−0.156534 + 0.987673i \(0.550032\pi\)
\(660\) 0 0
\(661\) 1.38495e7 1.23291 0.616453 0.787392i \(-0.288569\pi\)
0.616453 + 0.787392i \(0.288569\pi\)
\(662\) 0 0
\(663\) −46710.8 −0.00412699
\(664\) 0 0
\(665\) −8.96287e6 −0.785947
\(666\) 0 0
\(667\) −293758. −0.0255667
\(668\) 0 0
\(669\) −416087. −0.0359434
\(670\) 0 0
\(671\) −2.16512e6 −0.185642
\(672\) 0 0
\(673\) −1.47132e7 −1.25219 −0.626093 0.779748i \(-0.715347\pi\)
−0.626093 + 0.779748i \(0.715347\pi\)
\(674\) 0 0
\(675\) −791155. −0.0668347
\(676\) 0 0
\(677\) −2.00252e7 −1.67921 −0.839605 0.543198i \(-0.817213\pi\)
−0.839605 + 0.543198i \(0.817213\pi\)
\(678\) 0 0
\(679\) 4.73584e6 0.394205
\(680\) 0 0
\(681\) −203945. −0.0168518
\(682\) 0 0
\(683\) −1.84454e7 −1.51299 −0.756495 0.654000i \(-0.773090\pi\)
−0.756495 + 0.654000i \(0.773090\pi\)
\(684\) 0 0
\(685\) −341717. −0.0278253
\(686\) 0 0
\(687\) −905876. −0.0732280
\(688\) 0 0
\(689\) 5.15006e6 0.413299
\(690\) 0 0
\(691\) 5.52332e6 0.440053 0.220027 0.975494i \(-0.429386\pi\)
0.220027 + 0.975494i \(0.429386\pi\)
\(692\) 0 0
\(693\) 6.76000e6 0.534704
\(694\) 0 0
\(695\) −1.24337e7 −0.976421
\(696\) 0 0
\(697\) 2.06851e6 0.161278
\(698\) 0 0
\(699\) −886772. −0.0686466
\(700\) 0 0
\(701\) 5.11961e6 0.393497 0.196749 0.980454i \(-0.436962\pi\)
0.196749 + 0.980454i \(0.436962\pi\)
\(702\) 0 0
\(703\) −9.83424e6 −0.750503
\(704\) 0 0
\(705\) 1.60422e6 0.121560
\(706\) 0 0
\(707\) −1.30517e6 −0.0982017
\(708\) 0 0
\(709\) 2.98577e6 0.223070 0.111535 0.993761i \(-0.464423\pi\)
0.111535 + 0.993761i \(0.464423\pi\)
\(710\) 0 0
\(711\) −9.92100e6 −0.736006
\(712\) 0 0
\(713\) 507151. 0.0373605
\(714\) 0 0
\(715\) 5.61835e6 0.411001
\(716\) 0 0
\(717\) −1.31073e6 −0.0952175
\(718\) 0 0
\(719\) −2.51554e6 −0.181472 −0.0907360 0.995875i \(-0.528922\pi\)
−0.0907360 + 0.995875i \(0.528922\pi\)
\(720\) 0 0
\(721\) 3.04939e6 0.218462
\(722\) 0 0
\(723\) 298173. 0.0212140
\(724\) 0 0
\(725\) 4.65217e6 0.328708
\(726\) 0 0
\(727\) 1.55008e7 1.08772 0.543862 0.839175i \(-0.316962\pi\)
0.543862 + 0.839175i \(0.316962\pi\)
\(728\) 0 0
\(729\) −1.41168e7 −0.983826
\(730\) 0 0
\(731\) −5.72687e6 −0.396391
\(732\) 0 0
\(733\) −1.88611e7 −1.29660 −0.648302 0.761384i \(-0.724520\pi\)
−0.648302 + 0.761384i \(0.724520\pi\)
\(734\) 0 0
\(735\) 139431. 0.00952008
\(736\) 0 0
\(737\) −1.27828e7 −0.866877
\(738\) 0 0
\(739\) 2.73270e6 0.184069 0.0920346 0.995756i \(-0.470663\pi\)
0.0920346 + 0.995756i \(0.470663\pi\)
\(740\) 0 0
\(741\) 284749. 0.0190510
\(742\) 0 0
\(743\) 108079. 0.00718239 0.00359119 0.999994i \(-0.498857\pi\)
0.00359119 + 0.999994i \(0.498857\pi\)
\(744\) 0 0
\(745\) −1.69433e7 −1.11843
\(746\) 0 0
\(747\) 4.79574e6 0.314452
\(748\) 0 0
\(749\) −5.46081e6 −0.355675
\(750\) 0 0
\(751\) 1.41662e7 0.916543 0.458272 0.888812i \(-0.348469\pi\)
0.458272 + 0.888812i \(0.348469\pi\)
\(752\) 0 0
\(753\) −107475. −0.00690747
\(754\) 0 0
\(755\) −2.01379e7 −1.28572
\(756\) 0 0
\(757\) −1.35016e6 −0.0856339 −0.0428169 0.999083i \(-0.513633\pi\)
−0.0428169 + 0.999083i \(0.513633\pi\)
\(758\) 0 0
\(759\) −58595.6 −0.00369199
\(760\) 0 0
\(761\) 1.16646e7 0.730146 0.365073 0.930979i \(-0.381044\pi\)
0.365073 + 0.930979i \(0.381044\pi\)
\(762\) 0 0
\(763\) −8.00412e6 −0.497740
\(764\) 0 0
\(765\) 7.27172e6 0.449245
\(766\) 0 0
\(767\) 5.09498e6 0.312719
\(768\) 0 0
\(769\) 1.99473e7 1.21638 0.608188 0.793793i \(-0.291897\pi\)
0.608188 + 0.793793i \(0.291897\pi\)
\(770\) 0 0
\(771\) −525804. −0.0318558
\(772\) 0 0
\(773\) 1.52976e7 0.920818 0.460409 0.887707i \(-0.347703\pi\)
0.460409 + 0.887707i \(0.347703\pi\)
\(774\) 0 0
\(775\) −8.03163e6 −0.480340
\(776\) 0 0
\(777\) 152986. 0.00909076
\(778\) 0 0
\(779\) −1.26096e7 −0.744490
\(780\) 0 0
\(781\) 3.13605e7 1.83974
\(782\) 0 0
\(783\) −909348. −0.0530061
\(784\) 0 0
\(785\) 2.45834e7 1.42386
\(786\) 0 0
\(787\) 3.34094e7 1.92279 0.961394 0.275176i \(-0.0887360\pi\)
0.961394 + 0.275176i \(0.0887360\pi\)
\(788\) 0 0
\(789\) −453367. −0.0259273
\(790\) 0 0
\(791\) 8.85568e6 0.503246
\(792\) 0 0
\(793\) −523726. −0.0295747
\(794\) 0 0
\(795\) 2.17189e6 0.121877
\(796\) 0 0
\(797\) −3.12154e7 −1.74070 −0.870349 0.492436i \(-0.836107\pi\)
−0.870349 + 0.492436i \(0.836107\pi\)
\(798\) 0 0
\(799\) −1.15653e7 −0.640898
\(800\) 0 0
\(801\) −2.52397e7 −1.38996
\(802\) 0 0
\(803\) −3.94258e7 −2.15770
\(804\) 0 0
\(805\) 446140. 0.0242651
\(806\) 0 0
\(807\) 906600. 0.0490041
\(808\) 0 0
\(809\) 7.90944e6 0.424888 0.212444 0.977173i \(-0.431858\pi\)
0.212444 + 0.977173i \(0.431858\pi\)
\(810\) 0 0
\(811\) −4.94124e6 −0.263805 −0.131903 0.991263i \(-0.542109\pi\)
−0.131903 + 0.991263i \(0.542109\pi\)
\(812\) 0 0
\(813\) −1.50087e6 −0.0796371
\(814\) 0 0
\(815\) −4.52468e7 −2.38613
\(816\) 0 0
\(817\) 3.49110e7 1.82982
\(818\) 0 0
\(819\) 1.63519e6 0.0851841
\(820\) 0 0
\(821\) 4.08881e6 0.211709 0.105855 0.994382i \(-0.466242\pi\)
0.105855 + 0.994382i \(0.466242\pi\)
\(822\) 0 0
\(823\) 9.11809e6 0.469250 0.234625 0.972086i \(-0.424614\pi\)
0.234625 + 0.972086i \(0.424614\pi\)
\(824\) 0 0
\(825\) 927965. 0.0474675
\(826\) 0 0
\(827\) −8.21913e6 −0.417890 −0.208945 0.977927i \(-0.567003\pi\)
−0.208945 + 0.977927i \(0.567003\pi\)
\(828\) 0 0
\(829\) −2.40529e7 −1.21557 −0.607787 0.794100i \(-0.707943\pi\)
−0.607787 + 0.794100i \(0.707943\pi\)
\(830\) 0 0
\(831\) −122338. −0.00614555
\(832\) 0 0
\(833\) −1.00519e6 −0.0501923
\(834\) 0 0
\(835\) 1.24809e7 0.619482
\(836\) 0 0
\(837\) 1.56992e6 0.0774577
\(838\) 0 0
\(839\) −4.55100e6 −0.223204 −0.111602 0.993753i \(-0.535598\pi\)
−0.111602 + 0.993753i \(0.535598\pi\)
\(840\) 0 0
\(841\) −1.51640e7 −0.739304
\(842\) 0 0
\(843\) −533382. −0.0258505
\(844\) 0 0
\(845\) −2.52522e7 −1.21663
\(846\) 0 0
\(847\) −7.98793e6 −0.382583
\(848\) 0 0
\(849\) 1.52477e6 0.0725998
\(850\) 0 0
\(851\) 489513. 0.0231708
\(852\) 0 0
\(853\) −1.92326e7 −0.905033 −0.452517 0.891756i \(-0.649474\pi\)
−0.452517 + 0.891756i \(0.649474\pi\)
\(854\) 0 0
\(855\) −4.43284e7 −2.07380
\(856\) 0 0
\(857\) −2.44005e7 −1.13487 −0.567435 0.823418i \(-0.692064\pi\)
−0.567435 + 0.823418i \(0.692064\pi\)
\(858\) 0 0
\(859\) 1.80489e7 0.834581 0.417291 0.908773i \(-0.362980\pi\)
0.417291 + 0.908773i \(0.362980\pi\)
\(860\) 0 0
\(861\) 196162. 0.00901792
\(862\) 0 0
\(863\) −2.08506e7 −0.952999 −0.476499 0.879175i \(-0.658095\pi\)
−0.476499 + 0.879175i \(0.658095\pi\)
\(864\) 0 0
\(865\) −2.79152e7 −1.26853
\(866\) 0 0
\(867\) −1.00842e6 −0.0455612
\(868\) 0 0
\(869\) 2.33047e7 1.04687
\(870\) 0 0
\(871\) −3.09206e6 −0.138103
\(872\) 0 0
\(873\) 2.34224e7 1.04015
\(874\) 0 0
\(875\) 3.90933e6 0.172616
\(876\) 0 0
\(877\) 1.18628e7 0.520819 0.260409 0.965498i \(-0.416142\pi\)
0.260409 + 0.965498i \(0.416142\pi\)
\(878\) 0 0
\(879\) 849628. 0.0370900
\(880\) 0 0
\(881\) −1.67453e7 −0.726866 −0.363433 0.931620i \(-0.618395\pi\)
−0.363433 + 0.931620i \(0.618395\pi\)
\(882\) 0 0
\(883\) −3.53639e6 −0.152637 −0.0763183 0.997084i \(-0.524317\pi\)
−0.0763183 + 0.997084i \(0.524317\pi\)
\(884\) 0 0
\(885\) 2.14866e6 0.0922169
\(886\) 0 0
\(887\) −3.80164e7 −1.62242 −0.811208 0.584758i \(-0.801189\pi\)
−0.811208 + 0.584758i \(0.801189\pi\)
\(888\) 0 0
\(889\) −5.95787e6 −0.252835
\(890\) 0 0
\(891\) 3.33427e7 1.40704
\(892\) 0 0
\(893\) 7.05019e7 2.95850
\(894\) 0 0
\(895\) −5.92950e7 −2.47435
\(896\) 0 0
\(897\) −14173.8 −0.000588174 0
\(898\) 0 0
\(899\) −9.23150e6 −0.380955
\(900\) 0 0
\(901\) −1.56577e7 −0.642565
\(902\) 0 0
\(903\) −543094. −0.0221644
\(904\) 0 0
\(905\) 1.79788e7 0.729693
\(906\) 0 0
\(907\) 2.50380e7 1.01060 0.505302 0.862943i \(-0.331381\pi\)
0.505302 + 0.862943i \(0.331381\pi\)
\(908\) 0 0
\(909\) −6.45510e6 −0.259115
\(910\) 0 0
\(911\) 2.36962e7 0.945982 0.472991 0.881067i \(-0.343174\pi\)
0.472991 + 0.881067i \(0.343174\pi\)
\(912\) 0 0
\(913\) −1.12653e7 −0.447266
\(914\) 0 0
\(915\) −220866. −0.00872122
\(916\) 0 0
\(917\) 5.86591e6 0.230363
\(918\) 0 0
\(919\) −2.73462e7 −1.06809 −0.534044 0.845456i \(-0.679329\pi\)
−0.534044 + 0.845456i \(0.679329\pi\)
\(920\) 0 0
\(921\) 1.71437e6 0.0665972
\(922\) 0 0
\(923\) 7.58586e6 0.293090
\(924\) 0 0
\(925\) −7.75231e6 −0.297904
\(926\) 0 0
\(927\) 1.50816e7 0.576434
\(928\) 0 0
\(929\) 3.14288e7 1.19478 0.597390 0.801951i \(-0.296204\pi\)
0.597390 + 0.801951i \(0.296204\pi\)
\(930\) 0 0
\(931\) 6.12767e6 0.231697
\(932\) 0 0
\(933\) 1.28771e6 0.0484300
\(934\) 0 0
\(935\) −1.70815e7 −0.638993
\(936\) 0 0
\(937\) −4.07773e7 −1.51729 −0.758646 0.651503i \(-0.774139\pi\)
−0.758646 + 0.651503i \(0.774139\pi\)
\(938\) 0 0
\(939\) 122213. 0.00452327
\(940\) 0 0
\(941\) 1.38493e7 0.509863 0.254931 0.966959i \(-0.417947\pi\)
0.254931 + 0.966959i \(0.417947\pi\)
\(942\) 0 0
\(943\) 627662. 0.0229851
\(944\) 0 0
\(945\) 1.38106e6 0.0503075
\(946\) 0 0
\(947\) −1.45927e7 −0.528762 −0.264381 0.964418i \(-0.585168\pi\)
−0.264381 + 0.964418i \(0.585168\pi\)
\(948\) 0 0
\(949\) −9.53679e6 −0.343745
\(950\) 0 0
\(951\) −13918.5 −0.000499048 0
\(952\) 0 0
\(953\) 2.78156e7 0.992100 0.496050 0.868294i \(-0.334783\pi\)
0.496050 + 0.868294i \(0.334783\pi\)
\(954\) 0 0
\(955\) 1.19265e7 0.423161
\(956\) 0 0
\(957\) 1.06660e6 0.0376462
\(958\) 0 0
\(959\) 233622. 0.00820290
\(960\) 0 0
\(961\) −1.26916e7 −0.443312
\(962\) 0 0
\(963\) −2.70080e7 −0.938484
\(964\) 0 0
\(965\) −2.92615e7 −1.01153
\(966\) 0 0
\(967\) 2.97734e7 1.02391 0.511956 0.859012i \(-0.328921\pi\)
0.511956 + 0.859012i \(0.328921\pi\)
\(968\) 0 0
\(969\) −865725. −0.0296190
\(970\) 0 0
\(971\) 4.00707e7 1.36389 0.681944 0.731404i \(-0.261135\pi\)
0.681944 + 0.731404i \(0.261135\pi\)
\(972\) 0 0
\(973\) 8.50055e6 0.287849
\(974\) 0 0
\(975\) 224467. 0.00756209
\(976\) 0 0
\(977\) −3.66964e7 −1.22995 −0.614974 0.788547i \(-0.710834\pi\)
−0.614974 + 0.788547i \(0.710834\pi\)
\(978\) 0 0
\(979\) 5.92888e7 1.97704
\(980\) 0 0
\(981\) −3.95867e7 −1.31334
\(982\) 0 0
\(983\) 1.14382e7 0.377550 0.188775 0.982020i \(-0.439548\pi\)
0.188775 + 0.982020i \(0.439548\pi\)
\(984\) 0 0
\(985\) 6.41818e7 2.10776
\(986\) 0 0
\(987\) −1.09676e6 −0.0358360
\(988\) 0 0
\(989\) −1.73775e6 −0.0564932
\(990\) 0 0
\(991\) −3.22413e7 −1.04286 −0.521432 0.853293i \(-0.674602\pi\)
−0.521432 + 0.853293i \(0.674602\pi\)
\(992\) 0 0
\(993\) 2.00483e6 0.0645213
\(994\) 0 0
\(995\) 1.27209e7 0.407343
\(996\) 0 0
\(997\) 2.17997e7 0.694566 0.347283 0.937760i \(-0.387104\pi\)
0.347283 + 0.937760i \(0.387104\pi\)
\(998\) 0 0
\(999\) 1.51533e6 0.0480388
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 224.6.a.c.1.2 2
4.3 odd 2 224.6.a.d.1.1 yes 2
8.3 odd 2 448.6.a.s.1.2 2
8.5 even 2 448.6.a.y.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.6.a.c.1.2 2 1.1 even 1 trivial
224.6.a.d.1.1 yes 2 4.3 odd 2
448.6.a.s.1.2 2 8.3 odd 2
448.6.a.y.1.1 2 8.5 even 2