Properties

Label 224.6.a.c.1.1
Level $224$
Weight $6$
Character 224.1
Self dual yes
Analytic conductor $35.926$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [224,6,Mod(1,224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("224.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 224.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.9259756381\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{61}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.40512\) of defining polynomial
Character \(\chi\) \(=\) 224.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-14.8102 q^{3} -37.6717 q^{5} -49.0000 q^{7} -23.6565 q^{9} +O(q^{10})\) \(q-14.8102 q^{3} -37.6717 q^{5} -49.0000 q^{7} -23.6565 q^{9} -149.271 q^{11} -627.702 q^{13} +557.928 q^{15} -637.343 q^{17} -1306.13 q^{19} +725.702 q^{21} -376.964 q^{23} -1705.84 q^{25} +3949.25 q^{27} -6216.40 q^{29} +6036.18 q^{31} +2210.75 q^{33} +1845.92 q^{35} -3634.66 q^{37} +9296.43 q^{39} +12772.8 q^{41} -3347.17 q^{43} +891.182 q^{45} +14347.3 q^{47} +2401.00 q^{49} +9439.22 q^{51} -4587.95 q^{53} +5623.32 q^{55} +19344.1 q^{57} +11398.0 q^{59} +3085.32 q^{61} +1159.17 q^{63} +23646.6 q^{65} +35278.7 q^{67} +5582.93 q^{69} +48903.1 q^{71} +15156.6 q^{73} +25263.9 q^{75} +7314.30 q^{77} +23630.2 q^{79} -52740.8 q^{81} -28021.0 q^{83} +24009.8 q^{85} +92066.4 q^{87} -121536. q^{89} +30757.4 q^{91} -89397.3 q^{93} +49204.3 q^{95} -646.205 q^{97} +3531.24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} + 34 q^{5} - 98 q^{7} - 266 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 14 q^{3} + 34 q^{5} - 98 q^{7} - 266 q^{9} + 420 q^{11} - 490 q^{13} + 616 q^{15} - 1056 q^{17} + 1246 q^{19} + 686 q^{21} - 504 q^{23} + 306 q^{25} + 3556 q^{27} - 3904 q^{29} + 2044 q^{31} + 2672 q^{33} - 1666 q^{35} - 7488 q^{37} + 9408 q^{39} + 7832 q^{41} + 10332 q^{43} - 16478 q^{45} + 41972 q^{47} + 4802 q^{49} + 9100 q^{51} + 32812 q^{53} + 46424 q^{55} + 21412 q^{57} + 48398 q^{59} - 718 q^{61} + 13034 q^{63} + 33516 q^{65} + 12824 q^{67} + 5480 q^{69} + 103992 q^{71} - 54100 q^{73} + 26894 q^{75} - 20580 q^{77} + 64568 q^{79} + 5830 q^{81} - 47810 q^{83} - 5996 q^{85} + 93940 q^{87} - 17388 q^{89} + 24010 q^{91} - 92632 q^{93} + 232120 q^{95} - 97296 q^{97} - 134428 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −14.8102 −0.950078 −0.475039 0.879965i \(-0.657566\pi\)
−0.475039 + 0.879965i \(0.657566\pi\)
\(4\) 0 0
\(5\) −37.6717 −0.673893 −0.336946 0.941524i \(-0.609394\pi\)
−0.336946 + 0.941524i \(0.609394\pi\)
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) −23.6565 −0.0973519
\(10\) 0 0
\(11\) −149.271 −0.371959 −0.185980 0.982554i \(-0.559546\pi\)
−0.185980 + 0.982554i \(0.559546\pi\)
\(12\) 0 0
\(13\) −627.702 −1.03014 −0.515069 0.857149i \(-0.672234\pi\)
−0.515069 + 0.857149i \(0.672234\pi\)
\(14\) 0 0
\(15\) 557.928 0.640251
\(16\) 0 0
\(17\) −637.343 −0.534874 −0.267437 0.963575i \(-0.586177\pi\)
−0.267437 + 0.963575i \(0.586177\pi\)
\(18\) 0 0
\(19\) −1306.13 −0.830048 −0.415024 0.909811i \(-0.636227\pi\)
−0.415024 + 0.909811i \(0.636227\pi\)
\(20\) 0 0
\(21\) 725.702 0.359096
\(22\) 0 0
\(23\) −376.964 −0.148587 −0.0742934 0.997236i \(-0.523670\pi\)
−0.0742934 + 0.997236i \(0.523670\pi\)
\(24\) 0 0
\(25\) −1705.84 −0.545869
\(26\) 0 0
\(27\) 3949.25 1.04257
\(28\) 0 0
\(29\) −6216.40 −1.37260 −0.686300 0.727319i \(-0.740766\pi\)
−0.686300 + 0.727319i \(0.740766\pi\)
\(30\) 0 0
\(31\) 6036.18 1.12813 0.564063 0.825731i \(-0.309237\pi\)
0.564063 + 0.825731i \(0.309237\pi\)
\(32\) 0 0
\(33\) 2210.75 0.353390
\(34\) 0 0
\(35\) 1845.92 0.254708
\(36\) 0 0
\(37\) −3634.66 −0.436475 −0.218237 0.975896i \(-0.570031\pi\)
−0.218237 + 0.975896i \(0.570031\pi\)
\(38\) 0 0
\(39\) 9296.43 0.978711
\(40\) 0 0
\(41\) 12772.8 1.18666 0.593331 0.804958i \(-0.297812\pi\)
0.593331 + 0.804958i \(0.297812\pi\)
\(42\) 0 0
\(43\) −3347.17 −0.276062 −0.138031 0.990428i \(-0.544077\pi\)
−0.138031 + 0.990428i \(0.544077\pi\)
\(44\) 0 0
\(45\) 891.182 0.0656047
\(46\) 0 0
\(47\) 14347.3 0.947382 0.473691 0.880691i \(-0.342921\pi\)
0.473691 + 0.880691i \(0.342921\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 9439.22 0.508172
\(52\) 0 0
\(53\) −4587.95 −0.224352 −0.112176 0.993688i \(-0.535782\pi\)
−0.112176 + 0.993688i \(0.535782\pi\)
\(54\) 0 0
\(55\) 5623.32 0.250660
\(56\) 0 0
\(57\) 19344.1 0.788610
\(58\) 0 0
\(59\) 11398.0 0.426284 0.213142 0.977021i \(-0.431630\pi\)
0.213142 + 0.977021i \(0.431630\pi\)
\(60\) 0 0
\(61\) 3085.32 0.106164 0.0530818 0.998590i \(-0.483096\pi\)
0.0530818 + 0.998590i \(0.483096\pi\)
\(62\) 0 0
\(63\) 1159.17 0.0367955
\(64\) 0 0
\(65\) 23646.6 0.694202
\(66\) 0 0
\(67\) 35278.7 0.960120 0.480060 0.877236i \(-0.340615\pi\)
0.480060 + 0.877236i \(0.340615\pi\)
\(68\) 0 0
\(69\) 5582.93 0.141169
\(70\) 0 0
\(71\) 48903.1 1.15131 0.575653 0.817694i \(-0.304748\pi\)
0.575653 + 0.817694i \(0.304748\pi\)
\(72\) 0 0
\(73\) 15156.6 0.332885 0.166443 0.986051i \(-0.446772\pi\)
0.166443 + 0.986051i \(0.446772\pi\)
\(74\) 0 0
\(75\) 25263.9 0.518618
\(76\) 0 0
\(77\) 7314.30 0.140587
\(78\) 0 0
\(79\) 23630.2 0.425991 0.212996 0.977053i \(-0.431678\pi\)
0.212996 + 0.977053i \(0.431678\pi\)
\(80\) 0 0
\(81\) −52740.8 −0.893171
\(82\) 0 0
\(83\) −28021.0 −0.446466 −0.223233 0.974765i \(-0.571661\pi\)
−0.223233 + 0.974765i \(0.571661\pi\)
\(84\) 0 0
\(85\) 24009.8 0.360447
\(86\) 0 0
\(87\) 92066.4 1.30408
\(88\) 0 0
\(89\) −121536. −1.62642 −0.813208 0.581973i \(-0.802281\pi\)
−0.813208 + 0.581973i \(0.802281\pi\)
\(90\) 0 0
\(91\) 30757.4 0.389355
\(92\) 0 0
\(93\) −89397.3 −1.07181
\(94\) 0 0
\(95\) 49204.3 0.559363
\(96\) 0 0
\(97\) −646.205 −0.00697335 −0.00348667 0.999994i \(-0.501110\pi\)
−0.00348667 + 0.999994i \(0.501110\pi\)
\(98\) 0 0
\(99\) 3531.24 0.0362109
\(100\) 0 0
\(101\) 73325.8 0.715243 0.357621 0.933867i \(-0.383588\pi\)
0.357621 + 0.933867i \(0.383588\pi\)
\(102\) 0 0
\(103\) 179916. 1.67101 0.835503 0.549486i \(-0.185176\pi\)
0.835503 + 0.549486i \(0.185176\pi\)
\(104\) 0 0
\(105\) −27338.5 −0.241992
\(106\) 0 0
\(107\) −229269. −1.93591 −0.967957 0.251115i \(-0.919203\pi\)
−0.967957 + 0.251115i \(0.919203\pi\)
\(108\) 0 0
\(109\) −38061.4 −0.306844 −0.153422 0.988161i \(-0.549029\pi\)
−0.153422 + 0.988161i \(0.549029\pi\)
\(110\) 0 0
\(111\) 53830.2 0.414685
\(112\) 0 0
\(113\) 50424.1 0.371485 0.185743 0.982598i \(-0.440531\pi\)
0.185743 + 0.982598i \(0.440531\pi\)
\(114\) 0 0
\(115\) 14200.9 0.100132
\(116\) 0 0
\(117\) 14849.2 0.100286
\(118\) 0 0
\(119\) 31229.8 0.202163
\(120\) 0 0
\(121\) −138769. −0.861646
\(122\) 0 0
\(123\) −189169. −1.12742
\(124\) 0 0
\(125\) 181986. 1.04175
\(126\) 0 0
\(127\) −163141. −0.897541 −0.448771 0.893647i \(-0.648138\pi\)
−0.448771 + 0.893647i \(0.648138\pi\)
\(128\) 0 0
\(129\) 49572.5 0.262281
\(130\) 0 0
\(131\) −147002. −0.748417 −0.374208 0.927345i \(-0.622086\pi\)
−0.374208 + 0.927345i \(0.622086\pi\)
\(132\) 0 0
\(133\) 64000.5 0.313728
\(134\) 0 0
\(135\) −148775. −0.702580
\(136\) 0 0
\(137\) 5291.80 0.0240881 0.0120440 0.999927i \(-0.496166\pi\)
0.0120440 + 0.999927i \(0.496166\pi\)
\(138\) 0 0
\(139\) −173621. −0.762195 −0.381097 0.924535i \(-0.624454\pi\)
−0.381097 + 0.924535i \(0.624454\pi\)
\(140\) 0 0
\(141\) −212487. −0.900087
\(142\) 0 0
\(143\) 93698.0 0.383169
\(144\) 0 0
\(145\) 234183. 0.924985
\(146\) 0 0
\(147\) −35559.4 −0.135725
\(148\) 0 0
\(149\) 352741. 1.30164 0.650820 0.759232i \(-0.274425\pi\)
0.650820 + 0.759232i \(0.274425\pi\)
\(150\) 0 0
\(151\) 474621. 1.69397 0.846983 0.531619i \(-0.178416\pi\)
0.846983 + 0.531619i \(0.178416\pi\)
\(152\) 0 0
\(153\) 15077.3 0.0520710
\(154\) 0 0
\(155\) −227393. −0.760237
\(156\) 0 0
\(157\) −79394.0 −0.257062 −0.128531 0.991705i \(-0.541026\pi\)
−0.128531 + 0.991705i \(0.541026\pi\)
\(158\) 0 0
\(159\) 67948.7 0.213151
\(160\) 0 0
\(161\) 18471.2 0.0561605
\(162\) 0 0
\(163\) −566730. −1.67073 −0.835367 0.549692i \(-0.814745\pi\)
−0.835367 + 0.549692i \(0.814745\pi\)
\(164\) 0 0
\(165\) −83282.7 −0.238147
\(166\) 0 0
\(167\) −537999. −1.49276 −0.746381 0.665519i \(-0.768210\pi\)
−0.746381 + 0.665519i \(0.768210\pi\)
\(168\) 0 0
\(169\) 22717.1 0.0611837
\(170\) 0 0
\(171\) 30898.5 0.0808067
\(172\) 0 0
\(173\) −182499. −0.463603 −0.231801 0.972763i \(-0.574462\pi\)
−0.231801 + 0.972763i \(0.574462\pi\)
\(174\) 0 0
\(175\) 83586.1 0.206319
\(176\) 0 0
\(177\) −168807. −0.405003
\(178\) 0 0
\(179\) −270286. −0.630510 −0.315255 0.949007i \(-0.602090\pi\)
−0.315255 + 0.949007i \(0.602090\pi\)
\(180\) 0 0
\(181\) 391356. 0.887924 0.443962 0.896046i \(-0.353573\pi\)
0.443962 + 0.896046i \(0.353573\pi\)
\(182\) 0 0
\(183\) −45694.4 −0.100864
\(184\) 0 0
\(185\) 136924. 0.294137
\(186\) 0 0
\(187\) 95137.2 0.198951
\(188\) 0 0
\(189\) −193513. −0.394054
\(190\) 0 0
\(191\) −489469. −0.970826 −0.485413 0.874285i \(-0.661331\pi\)
−0.485413 + 0.874285i \(0.661331\pi\)
\(192\) 0 0
\(193\) 620214. 1.19853 0.599265 0.800551i \(-0.295460\pi\)
0.599265 + 0.800551i \(0.295460\pi\)
\(194\) 0 0
\(195\) −350213. −0.659546
\(196\) 0 0
\(197\) −614756. −1.12859 −0.564296 0.825572i \(-0.690853\pi\)
−0.564296 + 0.825572i \(0.690853\pi\)
\(198\) 0 0
\(199\) 6443.77 0.0115347 0.00576736 0.999983i \(-0.498164\pi\)
0.00576736 + 0.999983i \(0.498164\pi\)
\(200\) 0 0
\(201\) −522486. −0.912189
\(202\) 0 0
\(203\) 304603. 0.518794
\(204\) 0 0
\(205\) −481175. −0.799683
\(206\) 0 0
\(207\) 8917.65 0.0144652
\(208\) 0 0
\(209\) 194968. 0.308744
\(210\) 0 0
\(211\) −533104. −0.824340 −0.412170 0.911107i \(-0.635229\pi\)
−0.412170 + 0.911107i \(0.635229\pi\)
\(212\) 0 0
\(213\) −724268. −1.09383
\(214\) 0 0
\(215\) 126094. 0.186036
\(216\) 0 0
\(217\) −295773. −0.426392
\(218\) 0 0
\(219\) −224473. −0.316267
\(220\) 0 0
\(221\) 400062. 0.550994
\(222\) 0 0
\(223\) −67470.5 −0.0908556 −0.0454278 0.998968i \(-0.514465\pi\)
−0.0454278 + 0.998968i \(0.514465\pi\)
\(224\) 0 0
\(225\) 40354.2 0.0531413
\(226\) 0 0
\(227\) 489721. 0.630788 0.315394 0.948961i \(-0.397863\pi\)
0.315394 + 0.948961i \(0.397863\pi\)
\(228\) 0 0
\(229\) 373971. 0.471248 0.235624 0.971844i \(-0.424287\pi\)
0.235624 + 0.971844i \(0.424287\pi\)
\(230\) 0 0
\(231\) −108327. −0.133569
\(232\) 0 0
\(233\) −579217. −0.698958 −0.349479 0.936944i \(-0.613641\pi\)
−0.349479 + 0.936944i \(0.613641\pi\)
\(234\) 0 0
\(235\) −540487. −0.638434
\(236\) 0 0
\(237\) −349970. −0.404725
\(238\) 0 0
\(239\) 165669. 0.187605 0.0938027 0.995591i \(-0.470098\pi\)
0.0938027 + 0.995591i \(0.470098\pi\)
\(240\) 0 0
\(241\) 574223. 0.636851 0.318426 0.947948i \(-0.396846\pi\)
0.318426 + 0.947948i \(0.396846\pi\)
\(242\) 0 0
\(243\) −178563. −0.193988
\(244\) 0 0
\(245\) −90449.9 −0.0962704
\(246\) 0 0
\(247\) 819862. 0.855063
\(248\) 0 0
\(249\) 414998. 0.424178
\(250\) 0 0
\(251\) 940094. 0.941861 0.470931 0.882170i \(-0.343918\pi\)
0.470931 + 0.882170i \(0.343918\pi\)
\(252\) 0 0
\(253\) 56270.0 0.0552682
\(254\) 0 0
\(255\) −355592. −0.342453
\(256\) 0 0
\(257\) 129585. 0.122383 0.0611915 0.998126i \(-0.480510\pi\)
0.0611915 + 0.998126i \(0.480510\pi\)
\(258\) 0 0
\(259\) 178098. 0.164972
\(260\) 0 0
\(261\) 147058. 0.133625
\(262\) 0 0
\(263\) 1.42670e6 1.27187 0.635936 0.771742i \(-0.280614\pi\)
0.635936 + 0.771742i \(0.280614\pi\)
\(264\) 0 0
\(265\) 172836. 0.151189
\(266\) 0 0
\(267\) 1.79999e6 1.54522
\(268\) 0 0
\(269\) 1.00662e6 0.848173 0.424087 0.905622i \(-0.360595\pi\)
0.424087 + 0.905622i \(0.360595\pi\)
\(270\) 0 0
\(271\) 1.14104e6 0.943793 0.471897 0.881654i \(-0.343570\pi\)
0.471897 + 0.881654i \(0.343570\pi\)
\(272\) 0 0
\(273\) −455525. −0.369918
\(274\) 0 0
\(275\) 254633. 0.203041
\(276\) 0 0
\(277\) 2.20121e6 1.72370 0.861850 0.507163i \(-0.169306\pi\)
0.861850 + 0.507163i \(0.169306\pi\)
\(278\) 0 0
\(279\) −142795. −0.109825
\(280\) 0 0
\(281\) 359913. 0.271914 0.135957 0.990715i \(-0.456589\pi\)
0.135957 + 0.990715i \(0.456589\pi\)
\(282\) 0 0
\(283\) 2.10587e6 1.56302 0.781510 0.623893i \(-0.214450\pi\)
0.781510 + 0.623893i \(0.214450\pi\)
\(284\) 0 0
\(285\) −728727. −0.531438
\(286\) 0 0
\(287\) −625868. −0.448516
\(288\) 0 0
\(289\) −1.01365e6 −0.713910
\(290\) 0 0
\(291\) 9570.46 0.00662522
\(292\) 0 0
\(293\) 2.47171e6 1.68201 0.841003 0.541030i \(-0.181965\pi\)
0.841003 + 0.541030i \(0.181965\pi\)
\(294\) 0 0
\(295\) −429383. −0.287269
\(296\) 0 0
\(297\) −589510. −0.387793
\(298\) 0 0
\(299\) 236621. 0.153065
\(300\) 0 0
\(301\) 164011. 0.104342
\(302\) 0 0
\(303\) −1.08597e6 −0.679537
\(304\) 0 0
\(305\) −116229. −0.0715429
\(306\) 0 0
\(307\) 2.46333e6 1.49169 0.745843 0.666122i \(-0.232047\pi\)
0.745843 + 0.666122i \(0.232047\pi\)
\(308\) 0 0
\(309\) −2.66461e6 −1.58759
\(310\) 0 0
\(311\) −1.87297e6 −1.09807 −0.549036 0.835799i \(-0.685005\pi\)
−0.549036 + 0.835799i \(0.685005\pi\)
\(312\) 0 0
\(313\) −482265. −0.278244 −0.139122 0.990275i \(-0.544428\pi\)
−0.139122 + 0.990275i \(0.544428\pi\)
\(314\) 0 0
\(315\) −43667.9 −0.0247963
\(316\) 0 0
\(317\) −790018. −0.441559 −0.220780 0.975324i \(-0.570860\pi\)
−0.220780 + 0.975324i \(0.570860\pi\)
\(318\) 0 0
\(319\) 927931. 0.510551
\(320\) 0 0
\(321\) 3.39553e6 1.83927
\(322\) 0 0
\(323\) 832455. 0.443971
\(324\) 0 0
\(325\) 1.07076e6 0.562320
\(326\) 0 0
\(327\) 563698. 0.291526
\(328\) 0 0
\(329\) −703017. −0.358077
\(330\) 0 0
\(331\) 3.54749e6 1.77972 0.889859 0.456236i \(-0.150803\pi\)
0.889859 + 0.456236i \(0.150803\pi\)
\(332\) 0 0
\(333\) 85983.3 0.0424916
\(334\) 0 0
\(335\) −1.32901e6 −0.647018
\(336\) 0 0
\(337\) −3.78817e6 −1.81700 −0.908500 0.417884i \(-0.862772\pi\)
−0.908500 + 0.417884i \(0.862772\pi\)
\(338\) 0 0
\(339\) −746793. −0.352940
\(340\) 0 0
\(341\) −901030. −0.419617
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) −210319. −0.0951328
\(346\) 0 0
\(347\) −352917. −0.157344 −0.0786719 0.996901i \(-0.525068\pi\)
−0.0786719 + 0.996901i \(0.525068\pi\)
\(348\) 0 0
\(349\) 1.43108e6 0.628926 0.314463 0.949270i \(-0.398176\pi\)
0.314463 + 0.949270i \(0.398176\pi\)
\(350\) 0 0
\(351\) −2.47895e6 −1.07399
\(352\) 0 0
\(353\) −2.23269e6 −0.953657 −0.476828 0.878996i \(-0.658214\pi\)
−0.476828 + 0.878996i \(0.658214\pi\)
\(354\) 0 0
\(355\) −1.84227e6 −0.775857
\(356\) 0 0
\(357\) −462522. −0.192071
\(358\) 0 0
\(359\) 3.95264e6 1.61864 0.809322 0.587365i \(-0.199835\pi\)
0.809322 + 0.587365i \(0.199835\pi\)
\(360\) 0 0
\(361\) −770119. −0.311021
\(362\) 0 0
\(363\) 2.05520e6 0.818631
\(364\) 0 0
\(365\) −570975. −0.224329
\(366\) 0 0
\(367\) −1.67542e6 −0.649320 −0.324660 0.945831i \(-0.605250\pi\)
−0.324660 + 0.945831i \(0.605250\pi\)
\(368\) 0 0
\(369\) −302160. −0.115524
\(370\) 0 0
\(371\) 224810. 0.0847969
\(372\) 0 0
\(373\) −3.64764e6 −1.35750 −0.678751 0.734369i \(-0.737478\pi\)
−0.678751 + 0.734369i \(0.737478\pi\)
\(374\) 0 0
\(375\) −2.69526e6 −0.989743
\(376\) 0 0
\(377\) 3.90205e6 1.41397
\(378\) 0 0
\(379\) 4.23267e6 1.51362 0.756809 0.653636i \(-0.226757\pi\)
0.756809 + 0.653636i \(0.226757\pi\)
\(380\) 0 0
\(381\) 2.41616e6 0.852734
\(382\) 0 0
\(383\) −4.11709e6 −1.43415 −0.717074 0.696997i \(-0.754519\pi\)
−0.717074 + 0.696997i \(0.754519\pi\)
\(384\) 0 0
\(385\) −275543. −0.0947408
\(386\) 0 0
\(387\) 79182.4 0.0268752
\(388\) 0 0
\(389\) −1.41160e6 −0.472974 −0.236487 0.971635i \(-0.575996\pi\)
−0.236487 + 0.971635i \(0.575996\pi\)
\(390\) 0 0
\(391\) 240256. 0.0794752
\(392\) 0 0
\(393\) 2.17713e6 0.711054
\(394\) 0 0
\(395\) −890193. −0.287072
\(396\) 0 0
\(397\) −3.99388e6 −1.27180 −0.635900 0.771771i \(-0.719371\pi\)
−0.635900 + 0.771771i \(0.719371\pi\)
\(398\) 0 0
\(399\) −947863. −0.298067
\(400\) 0 0
\(401\) −1.72629e6 −0.536110 −0.268055 0.963404i \(-0.586381\pi\)
−0.268055 + 0.963404i \(0.586381\pi\)
\(402\) 0 0
\(403\) −3.78892e6 −1.16213
\(404\) 0 0
\(405\) 1.98684e6 0.601901
\(406\) 0 0
\(407\) 542551. 0.162351
\(408\) 0 0
\(409\) 4.99081e6 1.47524 0.737620 0.675216i \(-0.235949\pi\)
0.737620 + 0.675216i \(0.235949\pi\)
\(410\) 0 0
\(411\) −78372.9 −0.0228855
\(412\) 0 0
\(413\) −558502. −0.161120
\(414\) 0 0
\(415\) 1.05560e6 0.300870
\(416\) 0 0
\(417\) 2.57137e6 0.724144
\(418\) 0 0
\(419\) −1.02457e6 −0.285105 −0.142553 0.989787i \(-0.545531\pi\)
−0.142553 + 0.989787i \(0.545531\pi\)
\(420\) 0 0
\(421\) 118203. 0.0325029 0.0162514 0.999868i \(-0.494827\pi\)
0.0162514 + 0.999868i \(0.494827\pi\)
\(422\) 0 0
\(423\) −339407. −0.0922294
\(424\) 0 0
\(425\) 1.08721e6 0.291971
\(426\) 0 0
\(427\) −151181. −0.0401261
\(428\) 0 0
\(429\) −1.38769e6 −0.364040
\(430\) 0 0
\(431\) 99057.3 0.0256858 0.0128429 0.999918i \(-0.495912\pi\)
0.0128429 + 0.999918i \(0.495912\pi\)
\(432\) 0 0
\(433\) 4.05998e6 1.04065 0.520325 0.853968i \(-0.325811\pi\)
0.520325 + 0.853968i \(0.325811\pi\)
\(434\) 0 0
\(435\) −3.46830e6 −0.878807
\(436\) 0 0
\(437\) 492365. 0.123334
\(438\) 0 0
\(439\) −1.77648e6 −0.439946 −0.219973 0.975506i \(-0.570597\pi\)
−0.219973 + 0.975506i \(0.570597\pi\)
\(440\) 0 0
\(441\) −56799.3 −0.0139074
\(442\) 0 0
\(443\) −3.49343e6 −0.845752 −0.422876 0.906188i \(-0.638979\pi\)
−0.422876 + 0.906188i \(0.638979\pi\)
\(444\) 0 0
\(445\) 4.57849e6 1.09603
\(446\) 0 0
\(447\) −5.22419e6 −1.23666
\(448\) 0 0
\(449\) −4.18634e6 −0.979983 −0.489991 0.871727i \(-0.663000\pi\)
−0.489991 + 0.871727i \(0.663000\pi\)
\(450\) 0 0
\(451\) −1.90662e6 −0.441390
\(452\) 0 0
\(453\) −7.02926e6 −1.60940
\(454\) 0 0
\(455\) −1.15869e6 −0.262384
\(456\) 0 0
\(457\) −8.42202e6 −1.88636 −0.943182 0.332275i \(-0.892184\pi\)
−0.943182 + 0.332275i \(0.892184\pi\)
\(458\) 0 0
\(459\) −2.51703e6 −0.557643
\(460\) 0 0
\(461\) 8.99005e6 1.97020 0.985099 0.171988i \(-0.0550192\pi\)
0.985099 + 0.171988i \(0.0550192\pi\)
\(462\) 0 0
\(463\) −990479. −0.214730 −0.107365 0.994220i \(-0.534241\pi\)
−0.107365 + 0.994220i \(0.534241\pi\)
\(464\) 0 0
\(465\) 3.36775e6 0.722284
\(466\) 0 0
\(467\) −5.43975e6 −1.15422 −0.577108 0.816668i \(-0.695819\pi\)
−0.577108 + 0.816668i \(0.695819\pi\)
\(468\) 0 0
\(469\) −1.72866e6 −0.362891
\(470\) 0 0
\(471\) 1.17584e6 0.244229
\(472\) 0 0
\(473\) 499637. 0.102684
\(474\) 0 0
\(475\) 2.22805e6 0.453097
\(476\) 0 0
\(477\) 108535. 0.0218410
\(478\) 0 0
\(479\) −8.32397e6 −1.65765 −0.828823 0.559512i \(-0.810989\pi\)
−0.828823 + 0.559512i \(0.810989\pi\)
\(480\) 0 0
\(481\) 2.28148e6 0.449629
\(482\) 0 0
\(483\) −273564. −0.0533569
\(484\) 0 0
\(485\) 24343.7 0.00469929
\(486\) 0 0
\(487\) 7.77528e6 1.48557 0.742786 0.669529i \(-0.233504\pi\)
0.742786 + 0.669529i \(0.233504\pi\)
\(488\) 0 0
\(489\) 8.39342e6 1.58733
\(490\) 0 0
\(491\) −5.72471e6 −1.07164 −0.535821 0.844332i \(-0.679998\pi\)
−0.535821 + 0.844332i \(0.679998\pi\)
\(492\) 0 0
\(493\) 3.96198e6 0.734167
\(494\) 0 0
\(495\) −133028. −0.0244023
\(496\) 0 0
\(497\) −2.39625e6 −0.435153
\(498\) 0 0
\(499\) 4.43278e6 0.796938 0.398469 0.917182i \(-0.369542\pi\)
0.398469 + 0.917182i \(0.369542\pi\)
\(500\) 0 0
\(501\) 7.96790e6 1.41824
\(502\) 0 0
\(503\) 5.69126e6 1.00297 0.501485 0.865166i \(-0.332787\pi\)
0.501485 + 0.865166i \(0.332787\pi\)
\(504\) 0 0
\(505\) −2.76231e6 −0.481997
\(506\) 0 0
\(507\) −336446. −0.0581293
\(508\) 0 0
\(509\) −8.16835e6 −1.39746 −0.698731 0.715384i \(-0.746252\pi\)
−0.698731 + 0.715384i \(0.746252\pi\)
\(510\) 0 0
\(511\) −742673. −0.125819
\(512\) 0 0
\(513\) −5.15824e6 −0.865383
\(514\) 0 0
\(515\) −6.77777e6 −1.12608
\(516\) 0 0
\(517\) −2.14164e6 −0.352387
\(518\) 0 0
\(519\) 2.70286e6 0.440459
\(520\) 0 0
\(521\) −5.28498e6 −0.853000 −0.426500 0.904488i \(-0.640254\pi\)
−0.426500 + 0.904488i \(0.640254\pi\)
\(522\) 0 0
\(523\) 6.45225e6 1.03147 0.515736 0.856748i \(-0.327519\pi\)
0.515736 + 0.856748i \(0.327519\pi\)
\(524\) 0 0
\(525\) −1.23793e6 −0.196019
\(526\) 0 0
\(527\) −3.84712e6 −0.603405
\(528\) 0 0
\(529\) −6.29424e6 −0.977922
\(530\) 0 0
\(531\) −269637. −0.0414995
\(532\) 0 0
\(533\) −8.01753e6 −1.22243
\(534\) 0 0
\(535\) 8.63697e6 1.30460
\(536\) 0 0
\(537\) 4.00301e6 0.599033
\(538\) 0 0
\(539\) −358401. −0.0531370
\(540\) 0 0
\(541\) 850524. 0.124938 0.0624688 0.998047i \(-0.480103\pi\)
0.0624688 + 0.998047i \(0.480103\pi\)
\(542\) 0 0
\(543\) −5.79608e6 −0.843597
\(544\) 0 0
\(545\) 1.43384e6 0.206780
\(546\) 0 0
\(547\) 5.85068e6 0.836061 0.418030 0.908433i \(-0.362721\pi\)
0.418030 + 0.908433i \(0.362721\pi\)
\(548\) 0 0
\(549\) −72987.9 −0.0103352
\(550\) 0 0
\(551\) 8.11943e6 1.13932
\(552\) 0 0
\(553\) −1.15788e6 −0.161009
\(554\) 0 0
\(555\) −2.02788e6 −0.279453
\(556\) 0 0
\(557\) 3.50904e6 0.479238 0.239619 0.970867i \(-0.422978\pi\)
0.239619 + 0.970867i \(0.422978\pi\)
\(558\) 0 0
\(559\) 2.10103e6 0.284382
\(560\) 0 0
\(561\) −1.40901e6 −0.189019
\(562\) 0 0
\(563\) −3.04945e6 −0.405462 −0.202731 0.979234i \(-0.564982\pi\)
−0.202731 + 0.979234i \(0.564982\pi\)
\(564\) 0 0
\(565\) −1.89956e6 −0.250341
\(566\) 0 0
\(567\) 2.58430e6 0.337587
\(568\) 0 0
\(569\) −3.30346e6 −0.427748 −0.213874 0.976861i \(-0.568608\pi\)
−0.213874 + 0.976861i \(0.568608\pi\)
\(570\) 0 0
\(571\) 1.43527e7 1.84222 0.921112 0.389297i \(-0.127282\pi\)
0.921112 + 0.389297i \(0.127282\pi\)
\(572\) 0 0
\(573\) 7.24915e6 0.922361
\(574\) 0 0
\(575\) 643040. 0.0811089
\(576\) 0 0
\(577\) −1.11546e7 −1.39481 −0.697404 0.716679i \(-0.745661\pi\)
−0.697404 + 0.716679i \(0.745661\pi\)
\(578\) 0 0
\(579\) −9.18553e6 −1.13870
\(580\) 0 0
\(581\) 1.37303e6 0.168748
\(582\) 0 0
\(583\) 684850. 0.0834496
\(584\) 0 0
\(585\) −559397. −0.0675819
\(586\) 0 0
\(587\) −8.85459e6 −1.06065 −0.530326 0.847794i \(-0.677931\pi\)
−0.530326 + 0.847794i \(0.677931\pi\)
\(588\) 0 0
\(589\) −7.88405e6 −0.936399
\(590\) 0 0
\(591\) 9.10469e6 1.07225
\(592\) 0 0
\(593\) 5.01381e6 0.585505 0.292753 0.956188i \(-0.405429\pi\)
0.292753 + 0.956188i \(0.405429\pi\)
\(594\) 0 0
\(595\) −1.17648e6 −0.136236
\(596\) 0 0
\(597\) −95433.8 −0.0109589
\(598\) 0 0
\(599\) 1.15050e6 0.131014 0.0655072 0.997852i \(-0.479133\pi\)
0.0655072 + 0.997852i \(0.479133\pi\)
\(600\) 0 0
\(601\) 1.59933e7 1.80614 0.903072 0.429489i \(-0.141306\pi\)
0.903072 + 0.429489i \(0.141306\pi\)
\(602\) 0 0
\(603\) −834570. −0.0934694
\(604\) 0 0
\(605\) 5.22767e6 0.580657
\(606\) 0 0
\(607\) 1.17435e7 1.29367 0.646836 0.762629i \(-0.276092\pi\)
0.646836 + 0.762629i \(0.276092\pi\)
\(608\) 0 0
\(609\) −4.51125e6 −0.492894
\(610\) 0 0
\(611\) −9.00582e6 −0.975934
\(612\) 0 0
\(613\) 1.45792e7 1.56705 0.783526 0.621359i \(-0.213419\pi\)
0.783526 + 0.621359i \(0.213419\pi\)
\(614\) 0 0
\(615\) 7.12632e6 0.759761
\(616\) 0 0
\(617\) −1.55808e7 −1.64769 −0.823845 0.566815i \(-0.808175\pi\)
−0.823845 + 0.566815i \(0.808175\pi\)
\(618\) 0 0
\(619\) 1.31769e7 1.38225 0.691125 0.722735i \(-0.257115\pi\)
0.691125 + 0.722735i \(0.257115\pi\)
\(620\) 0 0
\(621\) −1.48872e6 −0.154912
\(622\) 0 0
\(623\) 5.95529e6 0.614728
\(624\) 0 0
\(625\) −1.52499e6 −0.156159
\(626\) 0 0
\(627\) −2.88753e6 −0.293331
\(628\) 0 0
\(629\) 2.31652e6 0.233459
\(630\) 0 0
\(631\) 1.39854e7 1.39830 0.699150 0.714975i \(-0.253562\pi\)
0.699150 + 0.714975i \(0.253562\pi\)
\(632\) 0 0
\(633\) 7.89541e6 0.783187
\(634\) 0 0
\(635\) 6.14582e6 0.604847
\(636\) 0 0
\(637\) −1.50711e6 −0.147163
\(638\) 0 0
\(639\) −1.15688e6 −0.112082
\(640\) 0 0
\(641\) 1.99947e7 1.92208 0.961038 0.276416i \(-0.0891467\pi\)
0.961038 + 0.276416i \(0.0891467\pi\)
\(642\) 0 0
\(643\) −1.12846e7 −1.07637 −0.538183 0.842828i \(-0.680889\pi\)
−0.538183 + 0.842828i \(0.680889\pi\)
\(644\) 0 0
\(645\) −1.86748e6 −0.176749
\(646\) 0 0
\(647\) 6.66736e6 0.626172 0.313086 0.949725i \(-0.398637\pi\)
0.313086 + 0.949725i \(0.398637\pi\)
\(648\) 0 0
\(649\) −1.70140e6 −0.158560
\(650\) 0 0
\(651\) 4.38047e6 0.405106
\(652\) 0 0
\(653\) −4.11346e6 −0.377506 −0.188753 0.982025i \(-0.560445\pi\)
−0.188753 + 0.982025i \(0.560445\pi\)
\(654\) 0 0
\(655\) 5.53780e6 0.504353
\(656\) 0 0
\(657\) −358552. −0.0324070
\(658\) 0 0
\(659\) −1.01860e7 −0.913673 −0.456836 0.889551i \(-0.651018\pi\)
−0.456836 + 0.889551i \(0.651018\pi\)
\(660\) 0 0
\(661\) 8.38745e6 0.746666 0.373333 0.927697i \(-0.378215\pi\)
0.373333 + 0.927697i \(0.378215\pi\)
\(662\) 0 0
\(663\) −5.92502e6 −0.523487
\(664\) 0 0
\(665\) −2.41101e6 −0.211419
\(666\) 0 0
\(667\) 2.34336e6 0.203950
\(668\) 0 0
\(669\) 999255. 0.0863199
\(670\) 0 0
\(671\) −460550. −0.0394885
\(672\) 0 0
\(673\) 1.98643e7 1.69058 0.845290 0.534308i \(-0.179428\pi\)
0.845290 + 0.534308i \(0.179428\pi\)
\(674\) 0 0
\(675\) −6.73679e6 −0.569106
\(676\) 0 0
\(677\) −5.35862e6 −0.449346 −0.224673 0.974434i \(-0.572131\pi\)
−0.224673 + 0.974434i \(0.572131\pi\)
\(678\) 0 0
\(679\) 31664.1 0.00263568
\(680\) 0 0
\(681\) −7.25288e6 −0.599298
\(682\) 0 0
\(683\) 1.18486e7 0.971889 0.485945 0.873990i \(-0.338476\pi\)
0.485945 + 0.873990i \(0.338476\pi\)
\(684\) 0 0
\(685\) −199351. −0.0162328
\(686\) 0 0
\(687\) −5.53860e6 −0.447722
\(688\) 0 0
\(689\) 2.87987e6 0.231113
\(690\) 0 0
\(691\) 1.79391e7 1.42924 0.714619 0.699513i \(-0.246600\pi\)
0.714619 + 0.699513i \(0.246600\pi\)
\(692\) 0 0
\(693\) −173031. −0.0136864
\(694\) 0 0
\(695\) 6.54062e6 0.513638
\(696\) 0 0
\(697\) −8.14068e6 −0.634715
\(698\) 0 0
\(699\) 8.57834e6 0.664065
\(700\) 0 0
\(701\) −1.47768e7 −1.13575 −0.567877 0.823114i \(-0.692235\pi\)
−0.567877 + 0.823114i \(0.692235\pi\)
\(702\) 0 0
\(703\) 4.74734e6 0.362295
\(704\) 0 0
\(705\) 8.00475e6 0.606562
\(706\) 0 0
\(707\) −3.59297e6 −0.270336
\(708\) 0 0
\(709\) −2.09017e6 −0.156159 −0.0780794 0.996947i \(-0.524879\pi\)
−0.0780794 + 0.996947i \(0.524879\pi\)
\(710\) 0 0
\(711\) −559009. −0.0414710
\(712\) 0 0
\(713\) −2.27542e6 −0.167625
\(714\) 0 0
\(715\) −3.52977e6 −0.258215
\(716\) 0 0
\(717\) −2.45359e6 −0.178240
\(718\) 0 0
\(719\) 1.23653e6 0.0892037 0.0446019 0.999005i \(-0.485798\pi\)
0.0446019 + 0.999005i \(0.485798\pi\)
\(720\) 0 0
\(721\) −8.81591e6 −0.631581
\(722\) 0 0
\(723\) −8.50438e6 −0.605058
\(724\) 0 0
\(725\) 1.06042e7 0.749259
\(726\) 0 0
\(727\) 7.50721e6 0.526796 0.263398 0.964687i \(-0.415157\pi\)
0.263398 + 0.964687i \(0.415157\pi\)
\(728\) 0 0
\(729\) 1.54606e7 1.07747
\(730\) 0 0
\(731\) 2.13330e6 0.147658
\(732\) 0 0
\(733\) −2.22220e7 −1.52765 −0.763823 0.645425i \(-0.776680\pi\)
−0.763823 + 0.645425i \(0.776680\pi\)
\(734\) 0 0
\(735\) 1.33959e6 0.0914644
\(736\) 0 0
\(737\) −5.26610e6 −0.357125
\(738\) 0 0
\(739\) 1.52607e7 1.02793 0.513964 0.857812i \(-0.328176\pi\)
0.513964 + 0.857812i \(0.328176\pi\)
\(740\) 0 0
\(741\) −1.21424e7 −0.812377
\(742\) 0 0
\(743\) −5.74605e6 −0.381854 −0.190927 0.981604i \(-0.561149\pi\)
−0.190927 + 0.981604i \(0.561149\pi\)
\(744\) 0 0
\(745\) −1.32884e7 −0.877165
\(746\) 0 0
\(747\) 662879. 0.0434643
\(748\) 0 0
\(749\) 1.12342e7 0.731707
\(750\) 0 0
\(751\) −2.64874e7 −1.71372 −0.856858 0.515553i \(-0.827587\pi\)
−0.856858 + 0.515553i \(0.827587\pi\)
\(752\) 0 0
\(753\) −1.39230e7 −0.894842
\(754\) 0 0
\(755\) −1.78798e7 −1.14155
\(756\) 0 0
\(757\) −3.06970e6 −0.194695 −0.0973477 0.995250i \(-0.531036\pi\)
−0.0973477 + 0.995250i \(0.531036\pi\)
\(758\) 0 0
\(759\) −833372. −0.0525091
\(760\) 0 0
\(761\) 2.03017e7 1.27078 0.635390 0.772191i \(-0.280839\pi\)
0.635390 + 0.772191i \(0.280839\pi\)
\(762\) 0 0
\(763\) 1.86501e6 0.115976
\(764\) 0 0
\(765\) −567989. −0.0350902
\(766\) 0 0
\(767\) −7.15455e6 −0.439131
\(768\) 0 0
\(769\) 1.07950e7 0.658274 0.329137 0.944282i \(-0.393242\pi\)
0.329137 + 0.944282i \(0.393242\pi\)
\(770\) 0 0
\(771\) −1.91918e6 −0.116273
\(772\) 0 0
\(773\) 1.21883e6 0.0733662 0.0366831 0.999327i \(-0.488321\pi\)
0.0366831 + 0.999327i \(0.488321\pi\)
\(774\) 0 0
\(775\) −1.02968e7 −0.615809
\(776\) 0 0
\(777\) −2.63768e6 −0.156736
\(778\) 0 0
\(779\) −1.66830e7 −0.984986
\(780\) 0 0
\(781\) −7.29984e6 −0.428239
\(782\) 0 0
\(783\) −2.45501e7 −1.43103
\(784\) 0 0
\(785\) 2.99091e6 0.173232
\(786\) 0 0
\(787\) −8.06011e6 −0.463878 −0.231939 0.972730i \(-0.574507\pi\)
−0.231939 + 0.972730i \(0.574507\pi\)
\(788\) 0 0
\(789\) −2.11298e7 −1.20838
\(790\) 0 0
\(791\) −2.47078e6 −0.140408
\(792\) 0 0
\(793\) −1.93666e6 −0.109363
\(794\) 0 0
\(795\) −2.55975e6 −0.143641
\(796\) 0 0
\(797\) 8.16016e6 0.455043 0.227522 0.973773i \(-0.426938\pi\)
0.227522 + 0.973773i \(0.426938\pi\)
\(798\) 0 0
\(799\) −9.14415e6 −0.506730
\(800\) 0 0
\(801\) 2.87513e6 0.158335
\(802\) 0 0
\(803\) −2.26245e6 −0.123820
\(804\) 0 0
\(805\) −695844. −0.0378462
\(806\) 0 0
\(807\) −1.49083e7 −0.805831
\(808\) 0 0
\(809\) −2.78986e7 −1.49869 −0.749343 0.662182i \(-0.769631\pi\)
−0.749343 + 0.662182i \(0.769631\pi\)
\(810\) 0 0
\(811\) 4.61578e6 0.246429 0.123215 0.992380i \(-0.460680\pi\)
0.123215 + 0.992380i \(0.460680\pi\)
\(812\) 0 0
\(813\) −1.68991e7 −0.896677
\(814\) 0 0
\(815\) 2.13497e7 1.12590
\(816\) 0 0
\(817\) 4.37185e6 0.229145
\(818\) 0 0
\(819\) −727613. −0.0379045
\(820\) 0 0
\(821\) 2.87016e7 1.48610 0.743050 0.669236i \(-0.233378\pi\)
0.743050 + 0.669236i \(0.233378\pi\)
\(822\) 0 0
\(823\) −2.90189e7 −1.49342 −0.746710 0.665150i \(-0.768367\pi\)
−0.746710 + 0.665150i \(0.768367\pi\)
\(824\) 0 0
\(825\) −3.77118e6 −0.192905
\(826\) 0 0
\(827\) 4.18186e6 0.212621 0.106310 0.994333i \(-0.466096\pi\)
0.106310 + 0.994333i \(0.466096\pi\)
\(828\) 0 0
\(829\) 4.54599e6 0.229743 0.114871 0.993380i \(-0.463354\pi\)
0.114871 + 0.993380i \(0.463354\pi\)
\(830\) 0 0
\(831\) −3.26004e7 −1.63765
\(832\) 0 0
\(833\) −1.53026e6 −0.0764105
\(834\) 0 0
\(835\) 2.02674e7 1.00596
\(836\) 0 0
\(837\) 2.38384e7 1.17615
\(838\) 0 0
\(839\) −544689. −0.0267143 −0.0133571 0.999911i \(-0.504252\pi\)
−0.0133571 + 0.999911i \(0.504252\pi\)
\(840\) 0 0
\(841\) 1.81324e7 0.884028
\(842\) 0 0
\(843\) −5.33041e6 −0.258340
\(844\) 0 0
\(845\) −855793. −0.0412313
\(846\) 0 0
\(847\) 6.79968e6 0.325672
\(848\) 0 0
\(849\) −3.11884e7 −1.48499
\(850\) 0 0
\(851\) 1.37013e6 0.0648544
\(852\) 0 0
\(853\) 8.73893e6 0.411231 0.205615 0.978633i \(-0.434080\pi\)
0.205615 + 0.978633i \(0.434080\pi\)
\(854\) 0 0
\(855\) −1.16400e6 −0.0544550
\(856\) 0 0
\(857\) −1.09388e6 −0.0508768 −0.0254384 0.999676i \(-0.508098\pi\)
−0.0254384 + 0.999676i \(0.508098\pi\)
\(858\) 0 0
\(859\) 1.98806e7 0.919276 0.459638 0.888106i \(-0.347979\pi\)
0.459638 + 0.888106i \(0.347979\pi\)
\(860\) 0 0
\(861\) 9.26927e6 0.426125
\(862\) 0 0
\(863\) −1.53027e7 −0.699424 −0.349712 0.936857i \(-0.613721\pi\)
−0.349712 + 0.936857i \(0.613721\pi\)
\(864\) 0 0
\(865\) 6.87507e6 0.312419
\(866\) 0 0
\(867\) 1.50124e7 0.678270
\(868\) 0 0
\(869\) −3.52732e6 −0.158451
\(870\) 0 0
\(871\) −2.21445e7 −0.989055
\(872\) 0 0
\(873\) 15287.0 0.000678868 0
\(874\) 0 0
\(875\) −8.91732e6 −0.393744
\(876\) 0 0
\(877\) 3.51846e7 1.54474 0.772368 0.635176i \(-0.219072\pi\)
0.772368 + 0.635176i \(0.219072\pi\)
\(878\) 0 0
\(879\) −3.66066e7 −1.59804
\(880\) 0 0
\(881\) 1.04493e7 0.453572 0.226786 0.973945i \(-0.427178\pi\)
0.226786 + 0.973945i \(0.427178\pi\)
\(882\) 0 0
\(883\) −2.42290e6 −0.104577 −0.0522883 0.998632i \(-0.516651\pi\)
−0.0522883 + 0.998632i \(0.516651\pi\)
\(884\) 0 0
\(885\) 6.35926e6 0.272928
\(886\) 0 0
\(887\) 8.69859e6 0.371227 0.185614 0.982623i \(-0.440573\pi\)
0.185614 + 0.982623i \(0.440573\pi\)
\(888\) 0 0
\(889\) 7.99392e6 0.339239
\(890\) 0 0
\(891\) 7.87270e6 0.332223
\(892\) 0 0
\(893\) −1.87394e7 −0.786372
\(894\) 0 0
\(895\) 1.01822e7 0.424896
\(896\) 0 0
\(897\) −3.50442e6 −0.145424
\(898\) 0 0
\(899\) −3.75233e7 −1.54847
\(900\) 0 0
\(901\) 2.92410e6 0.120000
\(902\) 0 0
\(903\) −2.42905e6 −0.0991327
\(904\) 0 0
\(905\) −1.47431e7 −0.598365
\(906\) 0 0
\(907\) 1.66178e7 0.670743 0.335372 0.942086i \(-0.391138\pi\)
0.335372 + 0.942086i \(0.391138\pi\)
\(908\) 0 0
\(909\) −1.73463e6 −0.0696302
\(910\) 0 0
\(911\) 7.78722e6 0.310876 0.155438 0.987846i \(-0.450321\pi\)
0.155438 + 0.987846i \(0.450321\pi\)
\(912\) 0 0
\(913\) 4.18274e6 0.166067
\(914\) 0 0
\(915\) 1.72139e6 0.0679713
\(916\) 0 0
\(917\) 7.20307e6 0.282875
\(918\) 0 0
\(919\) 3.61606e7 1.41236 0.706181 0.708031i \(-0.250416\pi\)
0.706181 + 0.708031i \(0.250416\pi\)
\(920\) 0 0
\(921\) −3.64826e7 −1.41722
\(922\) 0 0
\(923\) −3.06966e7 −1.18600
\(924\) 0 0
\(925\) 6.20014e6 0.238258
\(926\) 0 0
\(927\) −4.25620e6 −0.162676
\(928\) 0 0
\(929\) 4.64147e7 1.76448 0.882240 0.470801i \(-0.156035\pi\)
0.882240 + 0.470801i \(0.156035\pi\)
\(930\) 0 0
\(931\) −3.13602e6 −0.118578
\(932\) 0 0
\(933\) 2.77392e7 1.04325
\(934\) 0 0
\(935\) −3.58398e6 −0.134072
\(936\) 0 0
\(937\) −2.63671e7 −0.981100 −0.490550 0.871413i \(-0.663204\pi\)
−0.490550 + 0.871413i \(0.663204\pi\)
\(938\) 0 0
\(939\) 7.14247e6 0.264353
\(940\) 0 0
\(941\) −3.40567e6 −0.125380 −0.0626900 0.998033i \(-0.519968\pi\)
−0.0626900 + 0.998033i \(0.519968\pi\)
\(942\) 0 0
\(943\) −4.81489e6 −0.176322
\(944\) 0 0
\(945\) 7.28998e6 0.265550
\(946\) 0 0
\(947\) 4.15081e7 1.50403 0.752017 0.659144i \(-0.229081\pi\)
0.752017 + 0.659144i \(0.229081\pi\)
\(948\) 0 0
\(949\) −9.51382e6 −0.342917
\(950\) 0 0
\(951\) 1.17004e7 0.419516
\(952\) 0 0
\(953\) 3.02395e7 1.07855 0.539277 0.842128i \(-0.318697\pi\)
0.539277 + 0.842128i \(0.318697\pi\)
\(954\) 0 0
\(955\) 1.84391e7 0.654233
\(956\) 0 0
\(957\) −1.37429e7 −0.485063
\(958\) 0 0
\(959\) −259298. −0.00910444
\(960\) 0 0
\(961\) 7.80632e6 0.272670
\(962\) 0 0
\(963\) 5.42371e6 0.188465
\(964\) 0 0
\(965\) −2.33646e7 −0.807680
\(966\) 0 0
\(967\) −6.09163e6 −0.209492 −0.104746 0.994499i \(-0.533403\pi\)
−0.104746 + 0.994499i \(0.533403\pi\)
\(968\) 0 0
\(969\) −1.23289e7 −0.421807
\(970\) 0 0
\(971\) −2.12760e7 −0.724171 −0.362086 0.932145i \(-0.617935\pi\)
−0.362086 + 0.932145i \(0.617935\pi\)
\(972\) 0 0
\(973\) 8.50744e6 0.288083
\(974\) 0 0
\(975\) −1.58582e7 −0.534248
\(976\) 0 0
\(977\) −1.66948e7 −0.559559 −0.279779 0.960064i \(-0.590261\pi\)
−0.279779 + 0.960064i \(0.590261\pi\)
\(978\) 0 0
\(979\) 1.81419e7 0.604960
\(980\) 0 0
\(981\) 900399. 0.0298719
\(982\) 0 0
\(983\) −3.55038e7 −1.17190 −0.585951 0.810347i \(-0.699279\pi\)
−0.585951 + 0.810347i \(0.699279\pi\)
\(984\) 0 0
\(985\) 2.31589e7 0.760551
\(986\) 0 0
\(987\) 1.04119e7 0.340201
\(988\) 0 0
\(989\) 1.26176e6 0.0410192
\(990\) 0 0
\(991\) 2.44851e7 0.791988 0.395994 0.918253i \(-0.370400\pi\)
0.395994 + 0.918253i \(0.370400\pi\)
\(992\) 0 0
\(993\) −5.25392e7 −1.69087
\(994\) 0 0
\(995\) −242748. −0.00777316
\(996\) 0 0
\(997\) −7.11209e6 −0.226600 −0.113300 0.993561i \(-0.536142\pi\)
−0.113300 + 0.993561i \(0.536142\pi\)
\(998\) 0 0
\(999\) −1.43542e7 −0.455055
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 224.6.a.c.1.1 2
4.3 odd 2 224.6.a.d.1.2 yes 2
8.3 odd 2 448.6.a.s.1.1 2
8.5 even 2 448.6.a.y.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.6.a.c.1.1 2 1.1 even 1 trivial
224.6.a.d.1.2 yes 2 4.3 odd 2
448.6.a.s.1.1 2 8.3 odd 2
448.6.a.y.1.2 2 8.5 even 2