Defining parameters
| Level: | \( N \) | \(=\) | \( 224 = 2^{5} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 224.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 10 \) | ||
| Sturm bound: | \(192\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(224))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 168 | 30 | 138 |
| Cusp forms | 152 | 30 | 122 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(39\) | \(7\) | \(32\) | \(35\) | \(7\) | \(28\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(45\) | \(9\) | \(36\) | \(41\) | \(9\) | \(32\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(43\) | \(8\) | \(35\) | \(39\) | \(8\) | \(31\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(41\) | \(6\) | \(35\) | \(37\) | \(6\) | \(31\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(80\) | \(13\) | \(67\) | \(72\) | \(13\) | \(59\) | \(8\) | \(0\) | \(8\) | ||||
| Minus space | \(-\) | \(88\) | \(17\) | \(71\) | \(80\) | \(17\) | \(63\) | \(8\) | \(0\) | \(8\) | ||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(224))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(224))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(224)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 2}\)