Defining parameters
Level: | \( N \) | = | \( 224 = 2^{5} \cdot 7 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(18432\) | ||
Trace bound: | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(224))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7872 | 4190 | 3682 |
Cusp forms | 7488 | 4090 | 3398 |
Eisenstein series | 384 | 100 | 284 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(224))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
224.6.a | \(\chi_{224}(1, \cdot)\) | 224.6.a.a | 1 | 1 |
224.6.a.b | 1 | |||
224.6.a.c | 2 | |||
224.6.a.d | 2 | |||
224.6.a.e | 3 | |||
224.6.a.f | 3 | |||
224.6.a.g | 4 | |||
224.6.a.h | 4 | |||
224.6.a.i | 5 | |||
224.6.a.j | 5 | |||
224.6.b | \(\chi_{224}(113, \cdot)\) | 224.6.b.a | 14 | 1 |
224.6.b.b | 16 | |||
224.6.e | \(\chi_{224}(111, \cdot)\) | 224.6.e.a | 2 | 1 |
224.6.e.b | 36 | |||
224.6.f | \(\chi_{224}(223, \cdot)\) | 224.6.f.a | 40 | 1 |
224.6.i | \(\chi_{224}(65, \cdot)\) | 224.6.i.a | 20 | 2 |
224.6.i.b | 20 | |||
224.6.i.c | 20 | |||
224.6.i.d | 20 | |||
224.6.j | \(\chi_{224}(55, \cdot)\) | None | 0 | 2 |
224.6.m | \(\chi_{224}(57, \cdot)\) | None | 0 | 2 |
224.6.p | \(\chi_{224}(31, \cdot)\) | 224.6.p.a | 80 | 2 |
224.6.q | \(\chi_{224}(47, \cdot)\) | 224.6.q.a | 76 | 2 |
224.6.t | \(\chi_{224}(81, \cdot)\) | 224.6.t.a | 76 | 2 |
224.6.u | \(\chi_{224}(29, \cdot)\) | n/a | 480 | 4 |
224.6.x | \(\chi_{224}(27, \cdot)\) | n/a | 632 | 4 |
224.6.z | \(\chi_{224}(87, \cdot)\) | None | 0 | 4 |
224.6.ba | \(\chi_{224}(9, \cdot)\) | None | 0 | 4 |
224.6.bd | \(\chi_{224}(37, \cdot)\) | n/a | 1264 | 8 |
224.6.be | \(\chi_{224}(3, \cdot)\) | n/a | 1264 | 8 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(224))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(224)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(224))\)\(^{\oplus 1}\)