Properties

Label 224.3.w.a.99.17
Level 224
Weight 3
Character 224.99
Analytic conductor 6.104
Analytic rank 0
Dimension 192
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(48\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 99.17
Character \(\chi\) \(=\) 224.99
Dual form 224.3.w.a.43.17

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.703873 + 1.87205i) q^{2} +(0.0651792 - 0.157357i) q^{3} +(-3.00913 - 2.63537i) q^{4} +(3.56366 + 8.60344i) q^{5} +(0.248701 + 0.232778i) q^{6} +(-1.87083 - 1.87083i) q^{7} +(7.05157 - 3.77827i) q^{8} +(6.34345 + 6.34345i) q^{9} +O(q^{10})\) \(q+(-0.703873 + 1.87205i) q^{2} +(0.0651792 - 0.157357i) q^{3} +(-3.00913 - 2.63537i) q^{4} +(3.56366 + 8.60344i) q^{5} +(0.248701 + 0.232778i) q^{6} +(-1.87083 - 1.87083i) q^{7} +(7.05157 - 3.77827i) q^{8} +(6.34345 + 6.34345i) q^{9} +(-18.6144 + 0.615620i) q^{10} +(0.0382251 + 0.0922835i) q^{11} +(-0.610825 + 0.301735i) q^{12} +(-0.154435 + 0.372838i) q^{13} +(4.81911 - 2.18546i) q^{14} +1.58608 q^{15} +(2.10969 + 15.8603i) q^{16} +8.50235i q^{17} +(-16.3402 + 7.41026i) q^{18} +(-24.2726 - 10.0540i) q^{19} +(11.9497 - 35.2804i) q^{20} +(-0.416326 + 0.172448i) q^{21} +(-0.199665 + 0.00660336i) q^{22} +(-17.8463 + 17.8463i) q^{23} +(-0.134919 - 1.35588i) q^{24} +(-43.6418 + 43.6418i) q^{25} +(-0.589269 - 0.551540i) q^{26} +(2.82785 - 1.17134i) q^{27} +(0.699242 + 10.5599i) q^{28} +(32.5318 + 13.4751i) q^{29} +(-1.11640 + 2.96923i) q^{30} +9.33478i q^{31} +(-31.1762 - 7.21419i) q^{32} +0.0170129 q^{33} +(-15.9168 - 5.98457i) q^{34} +(9.42856 - 22.7626i) q^{35} +(-2.37093 - 35.8056i) q^{36} +(-14.2220 - 34.3349i) q^{37} +(35.9064 - 38.3627i) q^{38} +(0.0486026 + 0.0486026i) q^{39} +(57.6355 + 47.2033i) q^{40} +(-36.4939 - 36.4939i) q^{41} +(-0.0297903 - 0.900764i) q^{42} +(10.0412 + 24.2416i) q^{43} +(0.128177 - 0.378430i) q^{44} +(-31.9696 + 77.1814i) q^{45} +(-20.8476 - 45.9707i) q^{46} +45.0631 q^{47} +(2.63323 + 0.701789i) q^{48} +7.00000i q^{49} +(-50.9813 - 112.418i) q^{50} +(1.33790 + 0.554176i) q^{51} +(1.44728 - 0.714926i) q^{52} +(39.9690 - 16.5557i) q^{53} +(0.202347 + 6.11835i) q^{54} +(-0.657735 + 0.657735i) q^{55} +(-20.2608 - 6.12379i) q^{56} +(-3.16414 + 3.16414i) q^{57} +(-48.1243 + 51.4163i) q^{58} +(49.2410 - 20.3963i) q^{59} +(-4.77273 - 4.17991i) q^{60} +(4.08974 + 1.69403i) q^{61} +(-17.4752 - 6.57050i) q^{62} -23.7350i q^{63} +(35.4494 - 53.2855i) q^{64} -3.75804 q^{65} +(-0.0119749 + 0.0318490i) q^{66} +(11.5764 - 27.9479i) q^{67} +(22.4068 - 25.5846i) q^{68} +(1.64503 + 3.97144i) q^{69} +(35.9761 + 33.6727i) q^{70} +(89.5416 + 89.5416i) q^{71} +(68.6985 + 20.7640i) q^{72} +(102.797 + 102.797i) q^{73} +(74.2870 - 2.45684i) q^{74} +(4.02279 + 9.71187i) q^{75} +(46.5432 + 94.2210i) q^{76} +(0.101134 - 0.244159i) q^{77} +(-0.125196 + 0.0567764i) q^{78} +127.708 q^{79} +(-128.935 + 74.6713i) q^{80} +80.2176i q^{81} +(94.0053 - 42.6312i) q^{82} +(-110.510 - 45.7749i) q^{83} +(1.70724 + 0.578254i) q^{84} +(-73.1494 + 30.2995i) q^{85} +(-52.4491 + 1.73461i) q^{86} +(4.24079 - 4.24079i) q^{87} +(0.618219 + 0.506319i) q^{88} +(-48.6114 + 48.6114i) q^{89} +(-121.985 - 114.174i) q^{90} +(0.986437 - 0.408596i) q^{91} +(100.733 - 6.67025i) q^{92} +(1.46889 + 0.608434i) q^{93} +(-31.7187 + 84.3603i) q^{94} -244.657i q^{95} +(-3.16724 + 4.43556i) q^{96} +63.3382 q^{97} +(-13.1043 - 4.92711i) q^{98} +(-0.342917 + 0.827875i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192q + O(q^{10}) \) \( 192q + 80q^{10} + 96q^{12} - 20q^{16} - 60q^{18} - 260q^{22} + 64q^{23} - 144q^{24} - 200q^{26} + 192q^{27} - 40q^{30} + 40q^{32} + 120q^{34} + 464q^{36} + 504q^{38} - 384q^{39} + 360q^{40} - 96q^{43} + 52q^{44} + 64q^{46} - 104q^{48} - 312q^{50} - 384q^{51} - 320q^{52} + 160q^{53} - 576q^{54} - 512q^{55} - 196q^{56} - 360q^{58} - 872q^{60} + 128q^{61} - 408q^{62} + 832q^{66} + 160q^{67} + 856q^{68} - 384q^{69} + 336q^{70} + 1488q^{72} + 308q^{74} + 768q^{75} + 1024q^{76} - 224q^{77} - 408q^{78} + 1024q^{79} - 1040q^{80} - 240q^{82} - 1384q^{86} + 896q^{87} - 560q^{88} - 1320q^{90} - 380q^{92} - 936q^{94} - 1088q^{96} - 512q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.703873 + 1.87205i −0.351936 + 0.936024i
\(3\) 0.0651792 0.157357i 0.0217264 0.0524522i −0.912644 0.408755i \(-0.865963\pi\)
0.934370 + 0.356303i \(0.115963\pi\)
\(4\) −3.00913 2.63537i −0.752282 0.658842i
\(5\) 3.56366 + 8.60344i 0.712732 + 1.72069i 0.693058 + 0.720882i \(0.256263\pi\)
0.0196740 + 0.999806i \(0.493737\pi\)
\(6\) 0.248701 + 0.232778i 0.0414502 + 0.0387963i
\(7\) −1.87083 1.87083i −0.267261 0.267261i
\(8\) 7.05157 3.77827i 0.881447 0.472283i
\(9\) 6.34345 + 6.34345i 0.704828 + 0.704828i
\(10\) −18.6144 + 0.615620i −1.86144 + 0.0615620i
\(11\) 0.0382251 + 0.0922835i 0.00347501 + 0.00838941i 0.925608 0.378485i \(-0.123555\pi\)
−0.922133 + 0.386874i \(0.873555\pi\)
\(12\) −0.610825 + 0.301735i −0.0509021 + 0.0251446i
\(13\) −0.154435 + 0.372838i −0.0118796 + 0.0286799i −0.929708 0.368297i \(-0.879941\pi\)
0.917828 + 0.396977i \(0.129941\pi\)
\(14\) 4.81911 2.18546i 0.344222 0.156104i
\(15\) 1.58608 0.105739
\(16\) 2.10969 + 15.8603i 0.131856 + 0.991269i
\(17\) 8.50235i 0.500138i 0.968228 + 0.250069i \(0.0804533\pi\)
−0.968228 + 0.250069i \(0.919547\pi\)
\(18\) −16.3402 + 7.41026i −0.907790 + 0.411681i
\(19\) −24.2726 10.0540i −1.27750 0.529160i −0.362267 0.932074i \(-0.617997\pi\)
−0.915238 + 0.402915i \(0.867997\pi\)
\(20\) 11.9497 35.2804i 0.597485 1.76402i
\(21\) −0.416326 + 0.172448i −0.0198251 + 0.00821181i
\(22\) −0.199665 + 0.00660336i −0.00907567 + 0.000300153i
\(23\) −17.8463 + 17.8463i −0.775926 + 0.775926i −0.979135 0.203209i \(-0.934863\pi\)
0.203209 + 0.979135i \(0.434863\pi\)
\(24\) −0.134919 1.35588i −0.00562163 0.0564948i
\(25\) −43.6418 + 43.6418i −1.74567 + 1.74567i
\(26\) −0.589269 0.551540i −0.0226642 0.0212131i
\(27\) 2.82785 1.17134i 0.104735 0.0433828i
\(28\) 0.699242 + 10.5599i 0.0249729 + 0.377139i
\(29\) 32.5318 + 13.4751i 1.12179 + 0.464659i 0.864981 0.501805i \(-0.167330\pi\)
0.256805 + 0.966463i \(0.417330\pi\)
\(30\) −1.11640 + 2.96923i −0.0372134 + 0.0989742i
\(31\) 9.33478i 0.301122i 0.988601 + 0.150561i \(0.0481080\pi\)
−0.988601 + 0.150561i \(0.951892\pi\)
\(32\) −31.1762 7.21419i −0.974256 0.225444i
\(33\) 0.0170129 0.000515542
\(34\) −15.9168 5.98457i −0.468141 0.176017i
\(35\) 9.42856 22.7626i 0.269387 0.650359i
\(36\) −2.37093 35.8056i −0.0658592 0.994599i
\(37\) −14.2220 34.3349i −0.384378 0.927970i −0.991108 0.133062i \(-0.957519\pi\)
0.606730 0.794908i \(-0.292481\pi\)
\(38\) 35.9064 38.3627i 0.944906 1.00954i
\(39\) 0.0486026 + 0.0486026i 0.00124622 + 0.00124622i
\(40\) 57.6355 + 47.2033i 1.44089 + 1.18008i
\(41\) −36.4939 36.4939i −0.890094 0.890094i 0.104437 0.994531i \(-0.466696\pi\)
−0.994531 + 0.104437i \(0.966696\pi\)
\(42\) −0.0297903 0.900764i −0.000709292 0.0214468i
\(43\) 10.0412 + 24.2416i 0.233516 + 0.563758i 0.996586 0.0825579i \(-0.0263089\pi\)
−0.763070 + 0.646316i \(0.776309\pi\)
\(44\) 0.128177 0.378430i 0.00291311 0.00860068i
\(45\) −31.9696 + 77.1814i −0.710435 + 1.71514i
\(46\) −20.8476 45.9707i −0.453209 0.999362i
\(47\) 45.0631 0.958789 0.479395 0.877599i \(-0.340856\pi\)
0.479395 + 0.877599i \(0.340856\pi\)
\(48\) 2.63323 + 0.701789i 0.0548590 + 0.0146206i
\(49\) 7.00000i 0.142857i
\(50\) −50.9813 112.418i −1.01963 2.24836i
\(51\) 1.33790 + 0.554176i 0.0262333 + 0.0108662i
\(52\) 1.44728 0.714926i 0.0278323 0.0137486i
\(53\) 39.9690 16.5557i 0.754132 0.312372i 0.0277056 0.999616i \(-0.491180\pi\)
0.726426 + 0.687245i \(0.241180\pi\)
\(54\) 0.202347 + 6.11835i 0.00374717 + 0.113303i
\(55\) −0.657735 + 0.657735i −0.0119588 + 0.0119588i
\(56\) −20.2608 6.12379i −0.361800 0.109353i
\(57\) −3.16414 + 3.16414i −0.0555112 + 0.0555112i
\(58\) −48.1243 + 51.4163i −0.829729 + 0.886488i
\(59\) 49.2410 20.3963i 0.834594 0.345700i 0.0758743 0.997117i \(-0.475825\pi\)
0.758720 + 0.651417i \(0.225825\pi\)
\(60\) −4.77273 4.17991i −0.0795455 0.0696652i
\(61\) 4.08974 + 1.69403i 0.0670449 + 0.0277709i 0.415954 0.909386i \(-0.363448\pi\)
−0.348909 + 0.937157i \(0.613448\pi\)
\(62\) −17.4752 6.57050i −0.281857 0.105976i
\(63\) 23.7350i 0.376746i
\(64\) 35.4494 53.2855i 0.553897 0.832585i
\(65\) −3.75804 −0.0578161
\(66\) −0.0119749 + 0.0318490i −0.000181438 + 0.000482560i
\(67\) 11.5764 27.9479i 0.172782 0.417133i −0.813639 0.581371i \(-0.802516\pi\)
0.986421 + 0.164238i \(0.0525165\pi\)
\(68\) 22.4068 25.5846i 0.329512 0.376245i
\(69\) 1.64503 + 3.97144i 0.0238409 + 0.0575571i
\(70\) 35.9761 + 33.6727i 0.513944 + 0.481038i
\(71\) 89.5416 + 89.5416i 1.26115 + 1.26115i 0.950537 + 0.310613i \(0.100534\pi\)
0.310613 + 0.950537i \(0.399466\pi\)
\(72\) 68.6985 + 20.7640i 0.954146 + 0.288390i
\(73\) 102.797 + 102.797i 1.40818 + 1.40818i 0.769356 + 0.638820i \(0.220577\pi\)
0.638820 + 0.769356i \(0.279423\pi\)
\(74\) 74.2870 2.45684i 1.00388 0.0332005i
\(75\) 4.02279 + 9.71187i 0.0536372 + 0.129492i
\(76\) 46.5432 + 94.2210i 0.612411 + 1.23975i
\(77\) 0.101134 0.244159i 0.00131343 0.00317090i
\(78\) −0.125196 + 0.0567764i −0.00160508 + 0.000727902i
\(79\) 127.708 1.61655 0.808277 0.588803i \(-0.200401\pi\)
0.808277 + 0.588803i \(0.200401\pi\)
\(80\) −128.935 + 74.6713i −1.61169 + 0.933392i
\(81\) 80.2176i 0.990341i
\(82\) 94.0053 42.6312i 1.14641 0.519893i
\(83\) −110.510 45.7749i −1.33145 0.551505i −0.400382 0.916348i \(-0.631123\pi\)
−0.931069 + 0.364843i \(0.881123\pi\)
\(84\) 1.70724 + 0.578254i 0.0203243 + 0.00688398i
\(85\) −73.1494 + 30.2995i −0.860582 + 0.356465i
\(86\) −52.4491 + 1.73461i −0.609874 + 0.0201699i
\(87\) 4.24079 4.24079i 0.0487447 0.0487447i
\(88\) 0.618219 + 0.506319i 0.00702521 + 0.00575363i
\(89\) −48.6114 + 48.6114i −0.546196 + 0.546196i −0.925338 0.379142i \(-0.876219\pi\)
0.379142 + 0.925338i \(0.376219\pi\)
\(90\) −121.985 114.174i −1.35539 1.26860i
\(91\) 0.986437 0.408596i 0.0108400 0.00449006i
\(92\) 100.733 6.67025i 1.09493 0.0725027i
\(93\) 1.46889 + 0.608434i 0.0157945 + 0.00654230i
\(94\) −31.7187 + 84.3603i −0.337433 + 0.897450i
\(95\) 244.657i 2.57534i
\(96\) −3.16724 + 4.43556i −0.0329921 + 0.0462038i
\(97\) 63.3382 0.652971 0.326486 0.945202i \(-0.394136\pi\)
0.326486 + 0.945202i \(0.394136\pi\)
\(98\) −13.1043 4.92711i −0.133718 0.0502766i
\(99\) −0.342917 + 0.827875i −0.00346381 + 0.00836237i
\(100\) 246.336 16.3116i 2.46336 0.163116i
\(101\) −18.1018 43.7016i −0.179226 0.432689i 0.808579 0.588388i \(-0.200237\pi\)
−0.987805 + 0.155699i \(0.950237\pi\)
\(102\) −1.97916 + 2.11454i −0.0194035 + 0.0207308i
\(103\) −93.6246 93.6246i −0.908977 0.908977i 0.0872127 0.996190i \(-0.472204\pi\)
−0.996190 + 0.0872127i \(0.972204\pi\)
\(104\) 0.319675 + 3.21259i 0.00307380 + 0.0308903i
\(105\) −2.96729 2.96729i −0.0282599 0.0282599i
\(106\) 2.85998 + 86.4769i 0.0269810 + 0.815820i
\(107\) 25.8655 + 62.4448i 0.241733 + 0.583596i 0.997455 0.0712968i \(-0.0227138\pi\)
−0.755722 + 0.654893i \(0.772714\pi\)
\(108\) −11.5963 3.92773i −0.107373 0.0363679i
\(109\) 51.5774 124.519i 0.473188 1.14238i −0.489559 0.871970i \(-0.662842\pi\)
0.962746 0.270406i \(-0.0871578\pi\)
\(110\) −0.768349 1.69427i −0.00698499 0.0154025i
\(111\) −6.32980 −0.0570252
\(112\) 25.7250 33.6188i 0.229688 0.300168i
\(113\) 25.7592i 0.227957i 0.993483 + 0.113979i \(0.0363595\pi\)
−0.993483 + 0.113979i \(0.963640\pi\)
\(114\) −3.69627 8.15056i −0.0324234 0.0714962i
\(115\) −217.138 89.9414i −1.88816 0.782099i
\(116\) −62.3804 126.281i −0.537762 1.08863i
\(117\) −3.34473 + 1.38543i −0.0285874 + 0.0118413i
\(118\) 3.52345 + 106.538i 0.0298597 + 0.902864i
\(119\) 15.9064 15.9064i 0.133668 0.133668i
\(120\) 11.1844 5.99265i 0.0932033 0.0499388i
\(121\) 85.5529 85.5529i 0.707048 0.707048i
\(122\) −6.04996 + 6.46381i −0.0495898 + 0.0529821i
\(123\) −8.12119 + 3.36391i −0.0660259 + 0.0273488i
\(124\) 24.6006 28.0895i 0.198392 0.226529i
\(125\) −315.909 130.854i −2.52727 1.04683i
\(126\) 44.4331 + 16.7064i 0.352643 + 0.132591i
\(127\) 166.109i 1.30794i −0.756520 0.653971i \(-0.773102\pi\)
0.756520 0.653971i \(-0.226898\pi\)
\(128\) 74.8011 + 103.869i 0.584384 + 0.811478i
\(129\) 4.46905 0.0346438
\(130\) 2.64518 7.03524i 0.0203476 0.0541172i
\(131\) −49.9826 + 120.669i −0.381547 + 0.921136i 0.610120 + 0.792309i \(0.291121\pi\)
−0.991667 + 0.128827i \(0.958879\pi\)
\(132\) −0.0511940 0.0448352i −0.000387833 0.000339661i
\(133\) 26.6005 + 64.2192i 0.200004 + 0.482851i
\(134\) 44.1715 + 41.3434i 0.329638 + 0.308533i
\(135\) 20.1550 + 20.1550i 0.149296 + 0.149296i
\(136\) 32.1241 + 59.9549i 0.236207 + 0.440845i
\(137\) −18.1275 18.1275i −0.132317 0.132317i 0.637846 0.770164i \(-0.279826\pi\)
−0.770164 + 0.637846i \(0.779826\pi\)
\(138\) −8.59262 + 0.284177i −0.0622653 + 0.00205925i
\(139\) −16.3356 39.4377i −0.117522 0.283724i 0.854162 0.520007i \(-0.174071\pi\)
−0.971684 + 0.236283i \(0.924071\pi\)
\(140\) −88.3594 + 43.6477i −0.631139 + 0.311769i
\(141\) 2.93718 7.09097i 0.0208310 0.0502906i
\(142\) −230.652 + 104.600i −1.62431 + 0.736622i
\(143\) −0.0403101 −0.000281889
\(144\) −87.2263 + 113.992i −0.605738 + 0.791609i
\(145\) 327.906i 2.26142i
\(146\) −264.797 + 120.085i −1.81367 + 0.822498i
\(147\) 1.10150 + 0.456255i 0.00749317 + 0.00310377i
\(148\) −47.6893 + 140.798i −0.322225 + 0.951339i
\(149\) 119.382 49.4495i 0.801220 0.331876i 0.0557748 0.998443i \(-0.482237\pi\)
0.745445 + 0.666567i \(0.232237\pi\)
\(150\) −21.0126 + 0.694934i −0.140084 + 0.00463289i
\(151\) 121.727 121.727i 0.806138 0.806138i −0.177909 0.984047i \(-0.556933\pi\)
0.984047 + 0.177909i \(0.0569331\pi\)
\(152\) −209.147 + 20.8116i −1.37597 + 0.136918i
\(153\) −53.9342 + 53.9342i −0.352511 + 0.352511i
\(154\) 0.385892 + 0.361185i 0.00250579 + 0.00234536i
\(155\) −80.3112 + 33.2660i −0.518137 + 0.214619i
\(156\) −0.0181657 0.274337i −0.000116447 0.00175857i
\(157\) −82.9632 34.3645i −0.528428 0.218882i 0.102486 0.994734i \(-0.467320\pi\)
−0.630915 + 0.775852i \(0.717320\pi\)
\(158\) −89.8899 + 239.075i −0.568924 + 1.51313i
\(159\) 7.36847i 0.0463426i
\(160\) −49.0345 293.932i −0.306466 1.83707i
\(161\) 66.7748 0.414750
\(162\) −150.171 56.4630i −0.926983 0.348537i
\(163\) −66.1249 + 159.640i −0.405674 + 0.979384i 0.580588 + 0.814197i \(0.302823\pi\)
−0.986262 + 0.165187i \(0.947177\pi\)
\(164\) 13.6400 + 205.989i 0.0831705 + 1.25603i
\(165\) 0.0606282 + 0.146369i 0.000367444 + 0.000887088i
\(166\) 163.478 174.661i 0.984808 1.05218i
\(167\) 59.8620 + 59.8620i 0.358455 + 0.358455i 0.863243 0.504788i \(-0.168429\pi\)
−0.504788 + 0.863243i \(0.668429\pi\)
\(168\) −2.28420 + 2.78902i −0.0135964 + 0.0166013i
\(169\) 119.386 + 119.386i 0.706425 + 0.706425i
\(170\) −5.23421 158.266i −0.0307895 0.930978i
\(171\) −90.1946 217.749i −0.527454 1.27339i
\(172\) 33.6702 99.4082i 0.195757 0.577955i
\(173\) 27.6780 66.8206i 0.159989 0.386246i −0.823475 0.567352i \(-0.807968\pi\)
0.983464 + 0.181106i \(0.0579677\pi\)
\(174\) 4.95399 + 10.9239i 0.0284712 + 0.0627813i
\(175\) 163.293 0.933102
\(176\) −1.38300 + 0.800951i −0.00785796 + 0.00455086i
\(177\) 9.07782i 0.0512871i
\(178\) −56.7867 125.219i −0.319026 0.703479i
\(179\) 86.4555 + 35.8111i 0.482992 + 0.200062i 0.610874 0.791728i \(-0.290818\pi\)
−0.127883 + 0.991789i \(0.540818\pi\)
\(180\) 299.602 147.997i 1.66445 0.822206i
\(181\) −21.7613 + 9.01381i −0.120228 + 0.0498000i −0.441986 0.897022i \(-0.645726\pi\)
0.321759 + 0.946822i \(0.395726\pi\)
\(182\) 0.0705846 + 2.13426i 0.000387828 + 0.0117267i
\(183\) 0.533132 0.533132i 0.00291329 0.00291329i
\(184\) −58.4164 + 193.273i −0.317481 + 1.05040i
\(185\) 244.716 244.716i 1.32279 1.32279i
\(186\) −2.17293 + 2.32157i −0.0116824 + 0.0124816i
\(187\) −0.784627 + 0.325003i −0.00419586 + 0.00173798i
\(188\) −135.601 118.758i −0.721280 0.631690i
\(189\) −7.48180 3.09906i −0.0395862 0.0163972i
\(190\) 458.009 + 172.207i 2.41058 + 0.906354i
\(191\) 14.2113i 0.0744045i 0.999308 + 0.0372022i \(0.0118446\pi\)
−0.999308 + 0.0372022i \(0.988155\pi\)
\(192\) −6.07425 9.05130i −0.0316367 0.0471422i
\(193\) −337.428 −1.74833 −0.874165 0.485630i \(-0.838590\pi\)
−0.874165 + 0.485630i \(0.838590\pi\)
\(194\) −44.5820 + 118.572i −0.229804 + 0.611197i
\(195\) −0.244946 + 0.591353i −0.00125614 + 0.00303258i
\(196\) 18.4476 21.0639i 0.0941202 0.107469i
\(197\) −63.3953 153.050i −0.321803 0.776902i −0.999149 0.0412376i \(-0.986870\pi\)
0.677346 0.735665i \(-0.263130\pi\)
\(198\) −1.30845 1.22468i −0.00660834 0.00618523i
\(199\) 209.597 + 209.597i 1.05325 + 1.05325i 0.998500 + 0.0547530i \(0.0174371\pi\)
0.0547530 + 0.998500i \(0.482563\pi\)
\(200\) −142.853 + 472.634i −0.714265 + 2.36317i
\(201\) −3.64325 3.64325i −0.0181256 0.0181256i
\(202\) 94.5529 3.12707i 0.468084 0.0154806i
\(203\) −35.6518 86.0710i −0.175625 0.423995i
\(204\) −2.56545 5.19344i −0.0125758 0.0254581i
\(205\) 183.921 444.025i 0.897176 2.16597i
\(206\) 241.170 109.370i 1.17073 0.530922i
\(207\) −226.414 −1.09379
\(208\) −6.23914 1.66281i −0.0299959 0.00799427i
\(209\) 2.62428i 0.0125563i
\(210\) 7.64351 3.46632i 0.0363977 0.0165063i
\(211\) −35.4283 14.6749i −0.167907 0.0695492i 0.297147 0.954832i \(-0.403965\pi\)
−0.465053 + 0.885283i \(0.653965\pi\)
\(212\) −163.902 55.5147i −0.773123 0.261862i
\(213\) 19.9262 8.25371i 0.0935503 0.0387498i
\(214\) −135.106 + 4.46824i −0.631335 + 0.0208796i
\(215\) −172.778 + 172.778i −0.803617 + 0.803617i
\(216\) 15.5152 18.9441i 0.0718296 0.0877044i
\(217\) 17.4638 17.4638i 0.0804782 0.0804782i
\(218\) 196.802 + 184.201i 0.902759 + 0.844958i
\(219\) 22.8760 9.47554i 0.104457 0.0432673i
\(220\) 3.71258 0.245835i 0.0168754 0.00111743i
\(221\) −3.17000 1.31306i −0.0143439 0.00594143i
\(222\) 4.45537 11.8497i 0.0200692 0.0533770i
\(223\) 344.111i 1.54310i 0.636169 + 0.771550i \(0.280518\pi\)
−0.636169 + 0.771550i \(0.719482\pi\)
\(224\) 44.8288 + 71.8218i 0.200129 + 0.320633i
\(225\) −553.679 −2.46080
\(226\) −48.2224 18.1312i −0.213373 0.0802264i
\(227\) 98.1435 236.939i 0.432350 1.04379i −0.546177 0.837669i \(-0.683918\pi\)
0.978528 0.206116i \(-0.0660824\pi\)
\(228\) 17.8599 1.18263i 0.0783331 0.00518697i
\(229\) 120.179 + 290.139i 0.524801 + 1.26698i 0.934891 + 0.354936i \(0.115497\pi\)
−0.410090 + 0.912045i \(0.634503\pi\)
\(230\) 321.212 343.185i 1.39657 1.49211i
\(231\) −0.0318282 0.0318282i −0.000137784 0.000137784i
\(232\) 280.313 27.8931i 1.20824 0.120229i
\(233\) −85.6389 85.6389i −0.367549 0.367549i 0.499034 0.866583i \(-0.333688\pi\)
−0.866583 + 0.499034i \(0.833688\pi\)
\(234\) −0.239332 7.23666i −0.00102279 0.0309259i
\(235\) 160.590 + 387.698i 0.683360 + 1.64978i
\(236\) −201.924 68.3931i −0.855611 0.289801i
\(237\) 8.32389 20.0956i 0.0351219 0.0847917i
\(238\) 18.5815 + 40.9737i 0.0780735 + 0.172158i
\(239\) 61.9306 0.259124 0.129562 0.991571i \(-0.458643\pi\)
0.129562 + 0.991571i \(0.458643\pi\)
\(240\) 3.34614 + 25.1558i 0.0139423 + 0.104816i
\(241\) 173.892i 0.721545i −0.932654 0.360772i \(-0.882513\pi\)
0.932654 0.360772i \(-0.117487\pi\)
\(242\) 99.9408 + 220.377i 0.412978 + 0.910650i
\(243\) 38.0734 + 15.7705i 0.156681 + 0.0648993i
\(244\) −7.84217 15.8755i −0.0321400 0.0650636i
\(245\) −60.2241 + 24.9456i −0.245813 + 0.101819i
\(246\) −0.581113 17.5710i −0.00236225 0.0714269i
\(247\) 7.49706 7.49706i 0.0303525 0.0303525i
\(248\) 35.2693 + 65.8249i 0.142215 + 0.265423i
\(249\) −14.4060 + 14.4060i −0.0578553 + 0.0578553i
\(250\) 467.324 499.292i 1.86929 1.99717i
\(251\) 124.198 51.4444i 0.494812 0.204958i −0.121301 0.992616i \(-0.538707\pi\)
0.616113 + 0.787658i \(0.288707\pi\)
\(252\) −62.5504 + 71.4217i −0.248216 + 0.283419i
\(253\) −2.32910 0.964743i −0.00920592 0.00381322i
\(254\) 310.963 + 116.919i 1.22426 + 0.460312i
\(255\) 13.4854i 0.0528841i
\(256\) −247.098 + 66.9206i −0.965228 + 0.261409i
\(257\) −210.549 −0.819257 −0.409629 0.912252i \(-0.634342\pi\)
−0.409629 + 0.912252i \(0.634342\pi\)
\(258\) −3.14564 + 8.36627i −0.0121924 + 0.0324274i
\(259\) −37.6278 + 90.8416i −0.145281 + 0.350740i
\(260\) 11.3084 + 9.90382i 0.0434940 + 0.0380916i
\(261\) 120.885 + 291.842i 0.463161 + 1.11817i
\(262\) −190.716 178.505i −0.727925 0.681318i
\(263\) −72.0954 72.0954i −0.274127 0.274127i 0.556632 0.830759i \(-0.312093\pi\)
−0.830759 + 0.556632i \(0.812093\pi\)
\(264\) 0.119968 0.0642793i 0.000454423 0.000243482i
\(265\) 284.872 + 284.872i 1.07499 + 1.07499i
\(266\) −138.945 + 4.59521i −0.522349 + 0.0172752i
\(267\) 4.48087 + 10.8178i 0.0167823 + 0.0405161i
\(268\) −108.488 + 53.5908i −0.404806 + 0.199966i
\(269\) 183.169 442.208i 0.680924 1.64390i −0.0813844 0.996683i \(-0.525934\pi\)
0.762309 0.647214i \(-0.224066\pi\)
\(270\) −51.9177 + 23.5446i −0.192288 + 0.0872022i
\(271\) 141.360 0.521624 0.260812 0.965390i \(-0.416010\pi\)
0.260812 + 0.965390i \(0.416010\pi\)
\(272\) −134.850 + 17.9373i −0.495771 + 0.0659460i
\(273\) 0.181854i 0.000666133i
\(274\) 46.6950 21.1761i 0.170420 0.0772850i
\(275\) −5.69563 2.35921i −0.0207114 0.00857894i
\(276\) 5.51611 16.2858i 0.0199859 0.0590066i
\(277\) 299.933 124.236i 1.08279 0.448506i 0.231302 0.972882i \(-0.425701\pi\)
0.851487 + 0.524376i \(0.175701\pi\)
\(278\) 85.3274 2.82197i 0.306933 0.0101510i
\(279\) −59.2147 + 59.2147i −0.212239 + 0.212239i
\(280\) −19.5169 196.136i −0.0697030 0.700484i
\(281\) 378.456 378.456i 1.34682 1.34682i 0.457723 0.889095i \(-0.348665\pi\)
0.889095 0.457723i \(-0.151335\pi\)
\(282\) 11.2072 + 10.4897i 0.0397420 + 0.0371974i
\(283\) −489.001 + 202.551i −1.72792 + 0.715727i −0.728386 + 0.685167i \(0.759729\pi\)
−0.999533 + 0.0305598i \(0.990271\pi\)
\(284\) −33.4671 505.417i −0.117842 1.77964i
\(285\) −38.4984 15.9465i −0.135082 0.0559528i
\(286\) 0.0283732 0.0754625i 9.92069e−5 0.000263855i
\(287\) 136.548i 0.475775i
\(288\) −152.002 243.527i −0.527784 0.845581i
\(289\) 216.710 0.749862
\(290\) −613.856 230.804i −2.11674 0.795876i
\(291\) 4.12834 9.96668i 0.0141867 0.0342498i
\(292\) −38.4214 580.236i −0.131580 1.98711i
\(293\) 129.250 + 312.036i 0.441125 + 1.06497i 0.975555 + 0.219757i \(0.0705263\pi\)
−0.534430 + 0.845213i \(0.679474\pi\)
\(294\) −1.62944 + 1.74091i −0.00554232 + 0.00592146i
\(295\) 350.957 + 350.957i 1.18968 + 1.18968i
\(296\) −230.014 188.381i −0.777074 0.636421i
\(297\) 0.216190 + 0.216190i 0.000727912 + 0.000727912i
\(298\) 8.54237 + 258.294i 0.0286657 + 0.866760i
\(299\) −3.89770 9.40988i −0.0130358 0.0314712i
\(300\) 13.4893 39.8258i 0.0449642 0.132753i
\(301\) 26.5665 64.1372i 0.0882608 0.213080i
\(302\) 142.198 + 313.559i 0.470856 + 1.03827i
\(303\) −8.05660 −0.0265894
\(304\) 108.252 406.181i 0.356093 1.33612i
\(305\) 41.2228i 0.135157i
\(306\) −63.0046 138.930i −0.205897 0.454020i
\(307\) −396.113 164.075i −1.29027 0.534447i −0.371203 0.928552i \(-0.621055\pi\)
−0.919066 + 0.394105i \(0.871055\pi\)
\(308\) −0.947774 + 0.468181i −0.00307719 + 0.00152007i
\(309\) −20.8348 + 8.63007i −0.0674266 + 0.0279290i
\(310\) −5.74668 173.762i −0.0185377 0.560521i
\(311\) −207.080 + 207.080i −0.665852 + 0.665852i −0.956753 0.290901i \(-0.906045\pi\)
0.290901 + 0.956753i \(0.406045\pi\)
\(312\) 0.526359 + 0.159091i 0.00168705 + 0.000509908i
\(313\) −67.1290 + 67.1290i −0.214470 + 0.214470i −0.806163 0.591693i \(-0.798460\pi\)
0.591693 + 0.806163i \(0.298460\pi\)
\(314\) 122.728 131.123i 0.390852 0.417589i
\(315\) 204.203 84.5835i 0.648263 0.268519i
\(316\) −384.289 336.557i −1.21610 1.06505i
\(317\) 22.4302 + 9.29091i 0.0707579 + 0.0293089i 0.417782 0.908547i \(-0.362808\pi\)
−0.347024 + 0.937856i \(0.612808\pi\)
\(318\) 13.7941 + 5.18646i 0.0433778 + 0.0163096i
\(319\) 3.51723i 0.0110258i
\(320\) 584.768 + 115.095i 1.82740 + 0.359673i
\(321\) 11.5120 0.0358629
\(322\) −47.0009 + 125.006i −0.145966 + 0.388216i
\(323\) 85.4829 206.374i 0.264653 0.638929i
\(324\) 211.403 241.385i 0.652478 0.745015i
\(325\) −9.53153 23.0112i −0.0293278 0.0708036i
\(326\) −252.310 236.155i −0.773956 0.724402i
\(327\) −16.2321 16.2321i −0.0496394 0.0496394i
\(328\) −395.223 119.456i −1.20495 0.364194i
\(329\) −84.3053 84.3053i −0.256247 0.256247i
\(330\) −0.316685 + 0.0104735i −0.000959652 + 3.17378e-5i
\(331\) −63.1542 152.468i −0.190798 0.460628i 0.799312 0.600916i \(-0.205197\pi\)
−0.990111 + 0.140288i \(0.955197\pi\)
\(332\) 211.906 + 428.978i 0.638272 + 1.29210i
\(333\) 127.585 308.018i 0.383139 0.924979i
\(334\) −154.200 + 69.9294i −0.461676 + 0.209369i
\(335\) 281.703 0.840903
\(336\) −3.61340 6.23925i −0.0107542 0.0185692i
\(337\) 507.688i 1.50649i 0.657739 + 0.753246i \(0.271513\pi\)
−0.657739 + 0.753246i \(0.728487\pi\)
\(338\) −307.529 + 139.464i −0.909848 + 0.412614i
\(339\) 4.05337 + 1.67896i 0.0119569 + 0.00495269i
\(340\) 299.966 + 101.601i 0.882253 + 0.298825i
\(341\) −0.861447 + 0.356823i −0.00252624 + 0.00104640i
\(342\) 471.122 15.5811i 1.37755 0.0455586i
\(343\) 13.0958 13.0958i 0.0381802 0.0381802i
\(344\) 162.397 + 133.003i 0.472085 + 0.386637i
\(345\) −28.3057 + 28.3057i −0.0820456 + 0.0820456i
\(346\) 105.610 + 98.8478i 0.305230 + 0.285687i
\(347\) 571.227 236.610i 1.64619 0.681874i 0.649288 0.760543i \(-0.275067\pi\)
0.996901 + 0.0786695i \(0.0250672\pi\)
\(348\) −23.9371 + 1.58504i −0.0687848 + 0.00455472i
\(349\) −335.611 139.015i −0.961635 0.398322i −0.154043 0.988064i \(-0.549230\pi\)
−0.807592 + 0.589742i \(0.799230\pi\)
\(350\) −114.937 + 305.692i −0.328392 + 0.873405i
\(351\) 1.23523i 0.00351916i
\(352\) −0.525962 3.15281i −0.00149421 0.00895685i
\(353\) 397.367 1.12569 0.562843 0.826564i \(-0.309708\pi\)
0.562843 + 0.826564i \(0.309708\pi\)
\(354\) 16.9941 + 6.38963i 0.0480060 + 0.0180498i
\(355\) −451.270 + 1089.46i −1.27118 + 3.06891i
\(356\) 274.387 18.1690i 0.770750 0.0510366i
\(357\) −1.46621 3.53975i −0.00410704 0.00991527i
\(358\) −127.894 + 136.643i −0.357245 + 0.381683i
\(359\) −256.640 256.640i −0.714875 0.714875i 0.252676 0.967551i \(-0.418689\pi\)
−0.967551 + 0.252676i \(0.918689\pi\)
\(360\) 66.1761 + 665.040i 0.183823 + 1.84733i
\(361\) 232.809 + 232.809i 0.644901 + 0.644901i
\(362\) −1.55713 47.0827i −0.00430146 0.130063i
\(363\) −7.88604 19.0386i −0.0217246 0.0524479i
\(364\) −4.04511 1.37011i −0.0111130 0.00376403i
\(365\) −518.073 + 1250.74i −1.41938 + 3.42668i
\(366\) 0.622792 + 1.37331i 0.00170162 + 0.00375220i
\(367\) −666.614 −1.81639 −0.908194 0.418550i \(-0.862538\pi\)
−0.908194 + 0.418550i \(0.862538\pi\)
\(368\) −320.698 245.398i −0.871462 0.666842i
\(369\) 462.994i 1.25473i
\(370\) 285.871 + 630.369i 0.772625 + 1.70370i
\(371\) −105.748 43.8022i −0.285035 0.118065i
\(372\) −2.81663 5.70192i −0.00757158 0.0153277i
\(373\) 81.8545 33.9052i 0.219449 0.0908988i −0.270250 0.962790i \(-0.587107\pi\)
0.489699 + 0.871891i \(0.337107\pi\)
\(374\) −0.0561440 1.69762i −0.000150118 0.00453909i
\(375\) −41.1813 + 41.1813i −0.109817 + 0.109817i
\(376\) 317.766 170.260i 0.845122 0.452820i
\(377\) −10.0481 + 10.0481i −0.0266527 + 0.0266527i
\(378\) 11.0678 11.8249i 0.0292800 0.0312829i
\(379\) −385.435 + 159.653i −1.01698 + 0.421247i −0.827996 0.560734i \(-0.810519\pi\)
−0.188983 + 0.981980i \(0.560519\pi\)
\(380\) −644.761 + 736.204i −1.69674 + 1.93738i
\(381\) −26.1383 10.8268i −0.0686044 0.0284169i
\(382\) −26.6041 10.0029i −0.0696444 0.0261856i
\(383\) 19.7092i 0.0514601i −0.999669 0.0257300i \(-0.991809\pi\)
0.999669 0.0257300i \(-0.00819103\pi\)
\(384\) 21.2200 5.00033i 0.0552603 0.0130217i
\(385\) 2.46102 0.00639225
\(386\) 237.506 631.681i 0.615301 1.63648i
\(387\) −90.0794 + 217.471i −0.232763 + 0.561941i
\(388\) −190.593 166.919i −0.491218 0.430205i
\(389\) −62.2195 150.211i −0.159947 0.386147i 0.823506 0.567307i \(-0.192015\pi\)
−0.983454 + 0.181160i \(0.942015\pi\)
\(390\) −0.934630 0.874789i −0.00239649 0.00224305i
\(391\) −151.735 151.735i −0.388070 0.388070i
\(392\) 26.4479 + 49.3610i 0.0674691 + 0.125921i
\(393\) 15.7302 + 15.7302i 0.0400259 + 0.0400259i
\(394\) 331.139 10.9515i 0.840453 0.0277957i
\(395\) 455.107 + 1098.73i 1.15217 + 2.78158i
\(396\) 3.21363 1.58747i 0.00811524 0.00400876i
\(397\) 152.196 367.435i 0.383366 0.925528i −0.607944 0.793980i \(-0.708005\pi\)
0.991310 0.131548i \(-0.0419947\pi\)
\(398\) −539.906 + 244.846i −1.35655 + 0.615192i
\(399\) 11.8391 0.0296720
\(400\) −784.243 600.102i −1.96061 1.50025i
\(401\) 329.941i 0.822795i 0.911456 + 0.411398i \(0.134959\pi\)
−0.911456 + 0.411398i \(0.865041\pi\)
\(402\) 9.38471 4.25595i 0.0233451 0.0105869i
\(403\) −3.48036 1.44161i −0.00863614 0.00357721i
\(404\) −60.6992 + 179.209i −0.150245 + 0.443586i
\(405\) −690.147 + 285.868i −1.70407 + 0.705848i
\(406\) 186.223 6.15882i 0.458678 0.0151695i
\(407\) 2.62491 2.62491i 0.00644941 0.00644941i
\(408\) 11.5281 1.14713i 0.0282552 0.00281159i
\(409\) 397.897 397.897i 0.972855 0.972855i −0.0267867 0.999641i \(-0.508527\pi\)
0.999641 + 0.0267867i \(0.00852748\pi\)
\(410\) 701.778 + 656.846i 1.71165 + 1.60206i
\(411\) −4.03401 + 1.67094i −0.00981512 + 0.00406556i
\(412\) 34.9932 + 528.464i 0.0849349 + 1.28268i
\(413\) −130.280 53.9636i −0.315447 0.130662i
\(414\) 159.367 423.858i 0.384944 1.02381i
\(415\) 1113.90i 2.68409i
\(416\) 7.50441 10.5096i 0.0180395 0.0252634i
\(417\) −7.27052 −0.0174353
\(418\) 4.91277 + 1.84716i 0.0117530 + 0.00441903i
\(419\) 111.965 270.309i 0.267221 0.645128i −0.732130 0.681165i \(-0.761474\pi\)
0.999350 + 0.0360374i \(0.0114735\pi\)
\(420\) 1.10906 + 16.7489i 0.00264061 + 0.0398782i
\(421\) −126.899 306.360i −0.301422 0.727697i −0.999927 0.0120917i \(-0.996151\pi\)
0.698505 0.715605i \(-0.253849\pi\)
\(422\) 52.4091 55.9942i 0.124192 0.132688i
\(423\) 285.855 + 285.855i 0.675781 + 0.675781i
\(424\) 219.292 267.757i 0.517199 0.631503i
\(425\) −371.058 371.058i −0.873078 0.873078i
\(426\) 1.42582 + 43.1124i 0.00334700 + 0.101203i
\(427\) −4.48197 10.8204i −0.0104964 0.0253406i
\(428\) 86.7324 256.069i 0.202646 0.598293i
\(429\) −0.00262738 + 0.00634306i −6.12443e−6 + 1.47857e-5i
\(430\) −201.835 445.061i −0.469383 1.03503i
\(431\) 538.282 1.24891 0.624457 0.781059i \(-0.285320\pi\)
0.624457 + 0.781059i \(0.285320\pi\)
\(432\) 24.5436 + 42.3795i 0.0568139 + 0.0981006i
\(433\) 134.001i 0.309472i −0.987956 0.154736i \(-0.950547\pi\)
0.987956 0.154736i \(-0.0494527\pi\)
\(434\) 20.4008 + 44.9853i 0.0470064 + 0.103653i
\(435\) 51.5982 + 21.3727i 0.118616 + 0.0491325i
\(436\) −483.356 + 238.768i −1.10862 + 0.547633i
\(437\) 612.603 253.749i 1.40184 0.580660i
\(438\) 1.63689 + 49.4945i 0.00373720 + 0.113001i
\(439\) −342.405 + 342.405i −0.779966 + 0.779966i −0.979825 0.199859i \(-0.935952\pi\)
0.199859 + 0.979825i \(0.435952\pi\)
\(440\) −2.15297 + 7.12316i −0.00489311 + 0.0161890i
\(441\) −44.4041 + 44.4041i −0.100690 + 0.100690i
\(442\) 4.68938 5.01017i 0.0106095 0.0113352i
\(443\) 199.715 82.7248i 0.450824 0.186738i −0.145706 0.989328i \(-0.546545\pi\)
0.596531 + 0.802590i \(0.296545\pi\)
\(444\) 19.0472 + 16.6813i 0.0428990 + 0.0375706i
\(445\) −591.460 244.991i −1.32912 0.550541i
\(446\) −644.193 242.210i −1.44438 0.543073i
\(447\) 22.0086i 0.0492362i
\(448\) −166.008 + 33.3683i −0.370553 + 0.0744827i
\(449\) −760.002 −1.69265 −0.846327 0.532663i \(-0.821191\pi\)
−0.846327 + 0.532663i \(0.821191\pi\)
\(450\) 389.720 1036.51i 0.866044 2.30337i
\(451\) 1.97280 4.76276i 0.00437428 0.0105605i
\(452\) 67.8848 77.5126i 0.150188 0.171488i
\(453\) −11.2205 27.0886i −0.0247692 0.0597982i
\(454\) 374.481 + 350.504i 0.824848 + 0.772036i
\(455\) 7.03066 + 7.03066i 0.0154520 + 0.0154520i
\(456\) −10.3572 + 34.2671i −0.0227131 + 0.0751471i
\(457\) −248.115 248.115i −0.542920 0.542920i 0.381464 0.924384i \(-0.375420\pi\)
−0.924384 + 0.381464i \(0.875420\pi\)
\(458\) −627.745 + 20.7609i −1.37062 + 0.0453295i
\(459\) 9.95910 + 24.0434i 0.0216974 + 0.0523821i
\(460\) 416.367 + 842.883i 0.905145 + 1.83235i
\(461\) 73.9655 178.568i 0.160446 0.387350i −0.823128 0.567855i \(-0.807773\pi\)
0.983574 + 0.180505i \(0.0577733\pi\)
\(462\) 0.0819870 0.0371809i 0.000177461 8.04782e-5i
\(463\) −188.362 −0.406830 −0.203415 0.979093i \(-0.565204\pi\)
−0.203415 + 0.979093i \(0.565204\pi\)
\(464\) −145.087 + 544.392i −0.312688 + 1.17326i
\(465\) 14.8058i 0.0318403i
\(466\) 220.599 100.041i 0.473389 0.214681i
\(467\) −567.646 235.127i −1.21552 0.503484i −0.319535 0.947574i \(-0.603527\pi\)
−0.895982 + 0.444091i \(0.853527\pi\)
\(468\) 13.7158 + 4.64564i 0.0293073 + 0.00992659i
\(469\) −73.9432 + 30.6283i −0.157662 + 0.0653055i
\(470\) −838.823 + 27.7417i −1.78473 + 0.0590250i
\(471\) −10.8150 + 10.8150i −0.0229617 + 0.0229617i
\(472\) 270.164 329.872i 0.572382 0.698881i
\(473\) −1.85327 + 1.85327i −0.00391813 + 0.00391813i
\(474\) 31.7610 + 29.7275i 0.0670064 + 0.0627162i
\(475\) 1498.08 620.524i 3.15384 1.30637i
\(476\) −89.7838 + 5.94520i −0.188621 + 0.0124899i
\(477\) 358.561 + 148.521i 0.751701 + 0.311365i
\(478\) −43.5913 + 115.937i −0.0911952 + 0.242546i
\(479\) 436.505i 0.911285i −0.890163 0.455642i \(-0.849410\pi\)
0.890163 0.455642i \(-0.150590\pi\)
\(480\) −49.4481 11.4423i −0.103017 0.0238382i
\(481\) 14.9977 0.0311803
\(482\) 325.535 + 122.398i 0.675383 + 0.253938i
\(483\) 4.35233 10.5074i 0.00901103 0.0217545i
\(484\) −482.903 + 31.9763i −0.997733 + 0.0660667i
\(485\) 225.716 + 544.927i 0.465394 + 1.12356i
\(486\) −56.3220 + 60.1749i −0.115889 + 0.123817i
\(487\) 382.257 + 382.257i 0.784921 + 0.784921i 0.980657 0.195735i \(-0.0627094\pi\)
−0.195735 + 0.980657i \(0.562709\pi\)
\(488\) 35.2396 3.50659i 0.0722123 0.00718563i
\(489\) 20.8104 + 20.8104i 0.0425570 + 0.0425570i
\(490\) −4.30934 130.301i −0.00879457 0.265920i
\(491\) 225.780 + 545.081i 0.459837 + 1.11014i 0.968463 + 0.249157i \(0.0801536\pi\)
−0.508626 + 0.860988i \(0.669846\pi\)
\(492\) 33.3028 + 11.2799i 0.0676887 + 0.0229266i
\(493\) −114.570 + 276.596i −0.232394 + 0.561048i
\(494\) 8.75788 + 19.3118i 0.0177285 + 0.0390928i
\(495\) −8.34461 −0.0168578
\(496\) −148.052 + 19.6935i −0.298493 + 0.0397046i
\(497\) 335.034i 0.674113i
\(498\) −16.8287 37.1086i −0.0337926 0.0745153i
\(499\) −648.589 268.654i −1.29978 0.538386i −0.377893 0.925849i \(-0.623351\pi\)
−0.921885 + 0.387464i \(0.873351\pi\)
\(500\) 605.762 + 1226.29i 1.21152 + 2.45258i
\(501\) 13.3214 5.51792i 0.0265897 0.0110138i
\(502\) 8.88698 + 268.715i 0.0177032 + 0.535288i
\(503\) −466.704 + 466.704i −0.927840 + 0.927840i −0.997566 0.0697258i \(-0.977788\pi\)
0.0697258 + 0.997566i \(0.477788\pi\)
\(504\) −89.6772 167.369i −0.177931 0.332082i
\(505\) 311.476 311.476i 0.616783 0.616783i
\(506\) 3.44543 3.68112i 0.00680916 0.00727495i
\(507\) 26.5676 11.0047i 0.0524016 0.0217055i
\(508\) −437.757 + 499.842i −0.861726 + 0.983940i
\(509\) −22.2831 9.22997i −0.0437782 0.0181335i 0.360687 0.932687i \(-0.382542\pi\)
−0.404465 + 0.914553i \(0.632542\pi\)
\(510\) −25.2454 9.49203i −0.0495008 0.0186118i
\(511\) 384.631i 0.752702i
\(512\) 48.6472 509.684i 0.0950141 0.995476i
\(513\) −80.4159 −0.156756
\(514\) 148.200 394.158i 0.288326 0.766844i
\(515\) 471.847 1139.14i 0.916209 2.21192i
\(516\) −13.4479 11.7776i −0.0260619 0.0228248i
\(517\) 1.72254 + 4.15858i 0.00333180 + 0.00804368i
\(518\) −143.575 134.382i −0.277171 0.259425i
\(519\) −8.71063 8.71063i −0.0167835 0.0167835i
\(520\) −26.5001 + 14.1989i −0.0509618 + 0.0273056i
\(521\) −64.9029 64.9029i −0.124574 0.124574i 0.642071 0.766645i \(-0.278075\pi\)
−0.766645 + 0.642071i \(0.778075\pi\)
\(522\) −631.430 + 20.8828i −1.20964 + 0.0400054i
\(523\) 17.6201 + 42.5386i 0.0336904 + 0.0813357i 0.939829 0.341645i \(-0.110984\pi\)
−0.906139 + 0.422980i \(0.860984\pi\)
\(524\) 468.411 231.385i 0.893913 0.441575i
\(525\) 10.6433 25.6952i 0.0202729 0.0489432i
\(526\) 185.712 84.2200i 0.353064 0.160114i
\(527\) −79.3676 −0.150603
\(528\) 0.0358919 + 0.269830i 6.79771e−5 + 0.000511041i
\(529\) 107.981i 0.204124i
\(530\) −733.807 + 332.780i −1.38454 + 0.627887i
\(531\) 441.741 + 182.975i 0.831904 + 0.344586i
\(532\) 89.1970 263.346i 0.167663 0.495011i
\(533\) 19.2422 7.97039i 0.0361017 0.0149538i
\(534\) −23.4054 + 0.774068i −0.0438303 + 0.00144956i
\(535\) −445.064 + 445.064i −0.831895 + 0.831895i
\(536\) −23.9628 240.816i −0.0447068 0.449283i
\(537\) 11.2702 11.2702i 0.0209874 0.0209874i
\(538\) 698.907 + 654.159i 1.29908 + 1.21591i
\(539\) −0.645985 + 0.267576i −0.00119849 + 0.000496430i
\(540\) −7.53315 113.765i −0.0139503 0.210676i
\(541\) 424.524 + 175.844i 0.784703 + 0.325035i 0.738812 0.673912i \(-0.235387\pi\)
0.0458913 + 0.998946i \(0.485387\pi\)
\(542\) −99.4995 + 264.633i −0.183579 + 0.488253i
\(543\) 4.01179i 0.00738819i
\(544\) 61.3376 265.071i 0.112753 0.487263i
\(545\) 1255.10 2.30293
\(546\) 0.340440 + 0.128002i 0.000623517 + 0.000234436i
\(547\) 361.613 873.011i 0.661084 1.59600i −0.135023 0.990842i \(-0.543111\pi\)
0.796107 0.605155i \(-0.206889\pi\)
\(548\) 6.77534 + 102.320i 0.0123638 + 0.186716i
\(549\) 15.1971 + 36.6890i 0.0276814 + 0.0668288i
\(550\) 8.42555 9.00192i 0.0153192 0.0163671i
\(551\) −654.151 654.151i −1.18721 1.18721i
\(552\) 26.6052 + 21.7896i 0.0481978 + 0.0394739i
\(553\) −238.919 238.919i −0.432042 0.432042i
\(554\) 21.4617 + 648.935i 0.0387395 + 1.17136i
\(555\) −22.5573 54.4580i −0.0406437 0.0981226i
\(556\) −54.7768 + 161.723i −0.0985193 + 0.290869i
\(557\) −403.479 + 974.086i −0.724380 + 1.74881i −0.0639082 + 0.997956i \(0.520356\pi\)
−0.660471 + 0.750851i \(0.729644\pi\)
\(558\) −69.1732 152.532i −0.123966 0.273356i
\(559\) −10.5889 −0.0189426
\(560\) 380.912 + 101.518i 0.680201 + 0.181282i
\(561\) 0.144650i 0.000257842i
\(562\) 442.103 + 974.872i 0.786660 + 1.73465i
\(563\) 46.6758 + 19.3337i 0.0829055 + 0.0343406i 0.423751 0.905779i \(-0.360713\pi\)
−0.340845 + 0.940119i \(0.610713\pi\)
\(564\) −27.5257 + 13.5971i −0.0488044 + 0.0241083i
\(565\) −221.617 + 91.7970i −0.392243 + 0.162473i
\(566\) −34.9905 1058.00i −0.0618207 1.86926i
\(567\) 150.073 150.073i 0.264680 0.264680i
\(568\) 969.721 + 293.097i 1.70726 + 0.516016i
\(569\) −181.861 + 181.861i −0.319614 + 0.319614i −0.848619 0.529005i \(-0.822565\pi\)
0.529005 + 0.848619i \(0.322565\pi\)
\(570\) 56.9506 60.8464i 0.0999134 0.106748i
\(571\) −224.456 + 92.9728i −0.393093 + 0.162825i −0.570470 0.821319i \(-0.693239\pi\)
0.177377 + 0.984143i \(0.443239\pi\)
\(572\) 0.121298 + 0.106232i 0.000212060 + 0.000185720i
\(573\) 2.23623 + 0.926278i 0.00390268 + 0.00161654i
\(574\) −255.624 96.1121i −0.445337 0.167443i
\(575\) 1557.69i 2.70903i
\(576\) 562.885 113.142i 0.977231 0.196428i
\(577\) −436.774 −0.756975 −0.378487 0.925606i \(-0.623556\pi\)
−0.378487 + 0.925606i \(0.623556\pi\)
\(578\) −152.536 + 405.692i −0.263904 + 0.701889i
\(579\) −21.9933 + 53.0964i −0.0379849 + 0.0917037i
\(580\) 864.152 986.711i 1.48992 1.70123i
\(581\) 121.109 + 292.383i 0.208449 + 0.503241i
\(582\) 15.7523 + 14.7437i 0.0270658 + 0.0253328i
\(583\) 3.05564 + 3.05564i 0.00524123 + 0.00524123i
\(584\) 1113.27 + 336.486i 1.90629 + 0.576174i
\(585\) −23.8390 23.8390i −0.0407504 0.0407504i
\(586\) −675.122 + 22.3278i −1.15208 + 0.0381020i
\(587\) −318.530 768.998i −0.542640 1.31005i −0.922854 0.385150i \(-0.874150\pi\)
0.380214 0.924898i \(-0.375850\pi\)
\(588\) −2.11214 4.27577i −0.00359208 0.00727172i
\(589\) 93.8522 226.579i 0.159342 0.384685i
\(590\) −904.037 + 409.979i −1.53227 + 0.694880i
\(591\) −28.2154 −0.0477419
\(592\) 514.558 298.001i 0.869186 0.503380i
\(593\) 382.333i 0.644744i 0.946613 + 0.322372i \(0.104480\pi\)
−0.946613 + 0.322372i \(0.895520\pi\)
\(594\) −0.556888 + 0.252548i −0.000937522 + 0.000425164i
\(595\) 193.535 + 80.1649i 0.325269 + 0.134731i
\(596\) −489.552 165.815i −0.821397 0.278212i
\(597\) 46.6429 19.3201i 0.0781288 0.0323620i
\(598\) 20.3592 0.673324i 0.0340455 0.00112596i
\(599\) 170.237 170.237i 0.284202 0.284202i −0.550580 0.834782i \(-0.685593\pi\)
0.834782 + 0.550580i \(0.185593\pi\)
\(600\) 65.0610 + 53.2848i 0.108435 + 0.0888080i
\(601\) −304.003 + 304.003i −0.505829 + 0.505829i −0.913243 0.407415i \(-0.866430\pi\)
0.407415 + 0.913243i \(0.366430\pi\)
\(602\) 101.368 + 94.8782i 0.168386 + 0.157605i
\(603\) 250.721 103.852i 0.415789 0.172225i
\(604\) −687.087 + 45.4967i −1.13756 + 0.0753257i
\(605\) 1040.93 + 431.167i 1.72055 + 0.712674i
\(606\) 5.67082 15.0823i 0.00935779 0.0248883i
\(607\) 666.699i 1.09835i 0.835707 + 0.549175i \(0.185058\pi\)
−0.835707 + 0.549175i \(0.814942\pi\)
\(608\) 684.195 + 488.554i 1.12532 + 0.803542i
\(609\) −15.8676 −0.0260552
\(610\) −77.1710 29.0156i −0.126510 0.0475665i
\(611\) −6.95931 + 16.8012i −0.0113900 + 0.0274980i
\(612\) 304.431 20.1585i 0.497437 0.0329387i
\(613\) 161.210 + 389.194i 0.262985 + 0.634901i 0.999120 0.0419329i \(-0.0133516\pi\)
−0.736136 + 0.676834i \(0.763352\pi\)
\(614\) 585.969 626.054i 0.954348 1.01963i
\(615\) −57.8823 57.8823i −0.0941176 0.0941176i
\(616\) −0.209345 2.10382i −0.000339845 0.00341529i
\(617\) −414.487 414.487i −0.671778 0.671778i 0.286348 0.958126i \(-0.407559\pi\)
−0.958126 + 0.286348i \(0.907559\pi\)
\(618\) −1.49084 45.0783i −0.00241236 0.0729422i
\(619\) −253.392 611.742i −0.409357 0.988275i −0.985307 0.170791i \(-0.945368\pi\)
0.575950 0.817485i \(-0.304632\pi\)
\(620\) 329.335 + 111.548i 0.531185 + 0.179916i
\(621\) −29.5627 + 71.3707i −0.0476050 + 0.114929i
\(622\) −241.906 533.422i −0.388916 0.857591i
\(623\) 181.887 0.291954
\(624\) −0.668316 + 0.873389i −0.00107102 + 0.00139966i
\(625\) 1641.25i 2.62599i
\(626\) −78.4185 172.919i −0.125269 0.276228i
\(627\) −0.412947 0.171048i −0.000658608 0.000272804i
\(628\) 159.084 + 322.046i 0.253318 + 0.512811i
\(629\) 291.927 120.920i 0.464113 0.192242i
\(630\) 14.6117 + 441.813i 0.0231932 + 0.701291i
\(631\) 25.8734 25.8734i 0.0410038 0.0410038i −0.686308 0.727311i \(-0.740770\pi\)
0.727311 + 0.686308i \(0.240770\pi\)
\(632\) 900.540 482.514i 1.42491 0.763471i
\(633\) −4.61837 + 4.61837i −0.00729601 + 0.00729601i
\(634\) −33.1811 + 35.4509i −0.0523361 + 0.0559162i
\(635\) 1429.11 591.955i 2.25056 0.932212i
\(636\) −19.4186 + 22.1727i −0.0305324 + 0.0348627i
\(637\) −2.60987 1.08104i −0.00409712 0.00169708i
\(638\) −6.58443 2.47568i −0.0103204 0.00388038i
\(639\) 1136.01i 1.77779i
\(640\) −627.066 + 1013.70i −0.979791 + 1.58391i
\(641\) 490.321 0.764931 0.382466 0.923970i \(-0.375075\pi\)
0.382466 + 0.923970i \(0.375075\pi\)
\(642\) −8.10297 + 21.5510i −0.0126214 + 0.0335685i
\(643\) −61.6356 + 148.801i −0.0958563 + 0.231418i −0.964533 0.263961i \(-0.914971\pi\)
0.868677 + 0.495379i \(0.164971\pi\)
\(644\) −200.934 175.976i −0.312009 0.273255i
\(645\) 15.9262 + 38.4492i 0.0246918 + 0.0596112i
\(646\) 326.173 + 305.289i 0.504911 + 0.472584i
\(647\) −613.329 613.329i −0.947959 0.947959i 0.0507525 0.998711i \(-0.483838\pi\)
−0.998711 + 0.0507525i \(0.983838\pi\)
\(648\) 303.084 + 565.660i 0.467721 + 0.872932i
\(649\) 3.76449 + 3.76449i 0.00580044 + 0.00580044i
\(650\) 49.7870 1.64657i 0.0765953 0.00253318i
\(651\) −1.60976 3.88632i −0.00247276 0.00596976i
\(652\) 619.687 306.113i 0.950440 0.469498i
\(653\) −247.397 + 597.269i −0.378862 + 0.914653i 0.613318 + 0.789836i \(0.289834\pi\)
−0.992180 + 0.124817i \(0.960166\pi\)
\(654\) 41.8126 18.9619i 0.0639336 0.0289938i
\(655\) −1216.29 −1.85693
\(656\) 501.813 655.794i 0.764959 0.999687i
\(657\) 1304.17i 1.98504i
\(658\) 217.164 98.4834i 0.330036 0.149671i
\(659\) 277.461 + 114.928i 0.421034 + 0.174398i 0.583133 0.812377i \(-0.301827\pi\)
−0.162099 + 0.986774i \(0.551827\pi\)
\(660\) 0.203299 0.600222i 0.000308029 0.000909427i
\(661\) 499.053 206.715i 0.754998 0.312730i 0.0282187 0.999602i \(-0.491017\pi\)
0.726779 + 0.686872i \(0.241017\pi\)
\(662\) 329.880 10.9098i 0.498307 0.0164801i
\(663\) −0.413236 + 0.413236i −0.000623282 + 0.000623282i
\(664\) −952.223 + 94.7528i −1.43407 + 0.142700i
\(665\) −457.711 + 457.711i −0.688287 + 0.688287i
\(666\) 486.821 + 455.651i 0.730962 + 0.684161i
\(667\) −821.053 + 340.091i −1.23096 + 0.509882i
\(668\) −22.3741 337.891i −0.0334941 0.505825i
\(669\) 54.1481 + 22.4289i 0.0809389 + 0.0335260i
\(670\) −198.283 + 527.361i −0.295944 + 0.787106i
\(671\) 0.442170i 0.000658972i
\(672\) 14.2235 2.37281i 0.0211660 0.00353097i
\(673\) −924.022 −1.37299 −0.686495 0.727134i \(-0.740852\pi\)
−0.686495 + 0.727134i \(0.740852\pi\)
\(674\) −950.416 357.347i −1.41011 0.530189i
\(675\) −72.2935 + 174.532i −0.107101 + 0.258566i
\(676\) −44.6217 673.873i −0.0660085 0.996853i
\(677\) 144.883 + 349.779i 0.214008 + 0.516660i 0.994032 0.109089i \(-0.0347934\pi\)
−0.780024 + 0.625749i \(0.784793\pi\)
\(678\) −5.99616 + 6.40634i −0.00884389 + 0.00944887i
\(679\) −118.495 118.495i −0.174514 0.174514i
\(680\) −401.339 + 490.037i −0.590204 + 0.720643i
\(681\) −30.8870 30.8870i −0.0453554 0.0453554i
\(682\) −0.0616409 1.86383i −9.03825e−5 0.00273288i
\(683\) −196.348 474.027i −0.287479 0.694037i 0.712491 0.701681i \(-0.247567\pi\)
−0.999971 + 0.00764411i \(0.997567\pi\)
\(684\) −302.442 + 892.931i −0.442166 + 1.30545i
\(685\) 91.3585 220.559i 0.133370 0.321984i
\(686\) 15.2982 + 33.7337i 0.0223006 + 0.0491746i
\(687\) 53.4884 0.0778580
\(688\) −363.295 + 210.399i −0.528045 + 0.305812i
\(689\) 17.4587i 0.0253392i
\(690\) −33.0661 72.9134i −0.0479219 0.105672i
\(691\) 265.897 + 110.138i 0.384800 + 0.159389i 0.566693 0.823929i \(-0.308223\pi\)
−0.181893 + 0.983318i \(0.558223\pi\)
\(692\) −259.384 + 128.130i −0.374832 + 0.185159i
\(693\) 2.19035 0.907273i 0.00316068 0.00130920i
\(694\) 40.8742 + 1235.91i 0.0588966 + 1.78085i
\(695\) 281.085 281.085i 0.404439 0.404439i
\(696\) 13.8814 45.9271i 0.0199446 0.0659872i
\(697\) 310.283 310.283i 0.445170 0.445170i
\(698\) 496.469 530.431i 0.711274 0.759930i
\(699\) −19.0577 + 7.89397i −0.0272643 + 0.0112932i
\(700\) −491.369 430.336i −0.701955 0.614766i
\(701\) −137.499 56.9538i −0.196147 0.0812465i 0.282448 0.959283i \(-0.408854\pi\)
−0.478594 + 0.878036i \(0.658854\pi\)
\(702\) −2.31240 0.869442i −0.00329402 0.00123852i
\(703\) 976.385i 1.38888i
\(704\) 6.27243 + 1.23455i 0.00890970 + 0.00175363i
\(705\) 71.4739 0.101381
\(706\) −279.696 + 743.890i −0.396170 + 1.05367i
\(707\) −47.8929 + 115.624i −0.0677410 + 0.163541i
\(708\) −23.9234 + 27.3163i −0.0337901 + 0.0385823i
\(709\) 218.850 + 528.351i 0.308674 + 0.745206i 0.999749 + 0.0224222i \(0.00713779\pi\)
−0.691074 + 0.722784i \(0.742862\pi\)
\(710\) −1721.89 1611.64i −2.42519 2.26992i
\(711\) 810.107 + 810.107i 1.13939 + 1.13939i
\(712\) −159.120 + 526.454i −0.223483 + 0.739402i
\(713\) −166.591 166.591i −0.233649 0.233649i
\(714\) 7.65861 0.253287i 0.0107263 0.000354744i
\(715\) −0.143652 0.346806i −0.000200911 0.000485043i
\(716\) −165.780 335.602i −0.231537 0.468718i
\(717\) 4.03659 9.74519i 0.00562983 0.0135916i
\(718\) 661.085 299.801i 0.920731 0.417550i
\(719\) 1193.60 1.66009 0.830044 0.557699i \(-0.188315\pi\)
0.830044 + 0.557699i \(0.188315\pi\)
\(720\) −1291.57 344.218i −1.79384 0.478081i
\(721\) 350.311i 0.485869i
\(722\) −599.698 + 271.962i −0.830607 + 0.376679i
\(723\) −27.3631 11.3342i −0.0378466 0.0156766i
\(724\) 89.2371 + 30.2252i 0.123256 + 0.0417475i
\(725\) −2007.82 + 831.668i −2.76941 + 1.14713i
\(726\) 41.1919 1.36231i 0.0567381 0.00187646i
\(727\) −169.751 + 169.751i −0.233496 + 0.233496i −0.814150 0.580654i \(-0.802797\pi\)
0.580654 + 0.814150i \(0.302797\pi\)
\(728\) 5.41215 6.60827i 0.00743427 0.00907729i
\(729\) −505.538 + 505.538i −0.693468 + 0.693468i
\(730\) −1976.79 1850.22i −2.70793 2.53455i
\(731\) −206.110 + 85.3737i −0.281957 + 0.116790i
\(732\) −3.00926 + 0.199264i −0.00411101 + 0.000272218i
\(733\) 966.104 + 400.174i 1.31801 + 0.545939i 0.927213 0.374536i \(-0.122198\pi\)
0.390802 + 0.920475i \(0.372198\pi\)
\(734\) 469.211 1247.93i 0.639253 1.70018i
\(735\) 11.1026i 0.0151056i
\(736\) 685.127 427.633i 0.930879 0.581024i
\(737\) 3.02164 0.00409992
\(738\) 866.747 + 325.889i 1.17445 + 0.441584i
\(739\) 332.394 802.469i 0.449788 1.08588i −0.522613 0.852570i \(-0.675043\pi\)
0.972401 0.233315i \(-0.0749573\pi\)
\(740\) −1381.30 + 91.4652i −1.86662 + 0.123602i
\(741\) −0.691059 1.66836i −0.000932603 0.00225150i
\(742\) 156.433 167.134i 0.210826 0.225248i
\(743\) −6.47220 6.47220i −0.00871091 0.00871091i 0.702738 0.711449i \(-0.251961\pi\)
−0.711449 + 0.702738i \(0.751961\pi\)
\(744\) 12.6568 1.25944i 0.0170118 0.00169280i
\(745\) 850.872 + 850.872i 1.14211 + 1.14211i
\(746\) 5.85710 + 177.100i 0.00785135 + 0.237400i
\(747\) −410.646 991.388i −0.549728 1.32716i
\(748\) 3.21754 + 1.08980i 0.00430153 + 0.00145696i
\(749\) 68.4336 165.213i 0.0913666 0.220579i
\(750\) −48.1070 106.080i −0.0641427 0.141440i
\(751\) −341.096 −0.454190 −0.227095 0.973873i \(-0.572923\pi\)
−0.227095 + 0.973873i \(0.572923\pi\)
\(752\) 95.0691 + 714.714i 0.126422 + 0.950418i
\(753\) 22.8964i 0.0304070i
\(754\) −11.7379 25.8830i −0.0155675 0.0343276i
\(755\) 1481.06 + 613.477i 1.96167 + 0.812552i
\(756\) 14.3465 + 29.0427i 0.0189769 + 0.0384163i
\(757\) −380.129 + 157.455i −0.502152 + 0.207998i −0.619357 0.785109i \(-0.712607\pi\)
0.117205 + 0.993108i \(0.462607\pi\)
\(758\) −27.5799