Properties

Label 224.3.w.a.43.9
Level 224
Weight 3
Character 224.43
Analytic conductor 6.104
Analytic rank 0
Dimension 192
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(48\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 43.9
Character \(\chi\) \(=\) 224.43
Dual form 224.3.w.a.99.9

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.72313 + 1.01530i) q^{2} +(0.819473 + 1.97838i) q^{3} +(1.93834 - 3.49898i) q^{4} +(1.60646 - 3.87835i) q^{5} +(-3.42071 - 2.57700i) q^{6} +(-1.87083 + 1.87083i) q^{7} +(0.212503 + 7.99718i) q^{8} +(3.12150 - 3.12150i) q^{9} +O(q^{10})\) \(q+(-1.72313 + 1.01530i) q^{2} +(0.819473 + 1.97838i) q^{3} +(1.93834 - 3.49898i) q^{4} +(1.60646 - 3.87835i) q^{5} +(-3.42071 - 2.57700i) q^{6} +(-1.87083 + 1.87083i) q^{7} +(0.212503 + 7.99718i) q^{8} +(3.12150 - 3.12150i) q^{9} +(1.16954 + 8.31393i) q^{10} +(2.19493 - 5.29904i) q^{11} +(8.51073 + 0.967457i) q^{12} +(-7.92625 - 19.1357i) q^{13} +(1.32423 - 5.12313i) q^{14} +8.98931 q^{15} +(-8.48569 - 13.5644i) q^{16} -8.66263i q^{17} +(-2.20949 + 8.54799i) q^{18} +(9.92137 - 4.10957i) q^{19} +(-10.4564 - 13.1385i) q^{20} +(-5.23431 - 2.16812i) q^{21} +(1.59796 + 11.3594i) q^{22} +(-1.21606 - 1.21606i) q^{23} +(-15.6473 + 6.97388i) q^{24} +(5.21682 + 5.21682i) q^{25} +(33.0864 + 24.9257i) q^{26} +(26.5389 + 10.9928i) q^{27} +(2.91969 + 10.1723i) q^{28} +(26.8363 - 11.1159i) q^{29} +(-15.4897 + 9.12683i) q^{30} +9.35016i q^{31} +(28.3938 + 14.7577i) q^{32} +12.2822 q^{33} +(8.79515 + 14.9268i) q^{34} +(4.25030 + 10.2611i) q^{35} +(-4.87153 - 16.9726i) q^{36} +(-10.6588 + 25.7325i) q^{37} +(-12.9234 + 17.1545i) q^{38} +(31.3623 - 31.3623i) q^{39} +(31.3572 + 12.0230i) q^{40} +(35.1006 - 35.1006i) q^{41} +(11.2207 - 1.57844i) q^{42} +(2.82656 - 6.82393i) q^{43} +(-14.2867 - 17.9514i) q^{44} +(-7.09168 - 17.1208i) q^{45} +(3.33008 + 0.860761i) q^{46} -11.2490 q^{47} +(19.8818 - 27.9036i) q^{48} -7.00000i q^{49} +(-14.2859 - 3.69261i) q^{50} +(17.1380 - 7.09879i) q^{51} +(-82.3190 - 9.35761i) q^{52} +(-29.0021 - 12.0130i) q^{53} +(-56.8910 + 8.00297i) q^{54} +(-17.0254 - 17.0254i) q^{55} +(-15.3589 - 14.5638i) q^{56} +(16.2606 + 16.2606i) q^{57} +(-34.9563 + 46.4010i) q^{58} +(53.3814 + 22.1113i) q^{59} +(17.4243 - 31.4534i) q^{60} +(-41.2892 + 17.1026i) q^{61} +(-9.49320 - 16.1115i) q^{62} +11.6796i q^{63} +(-63.9097 + 3.39885i) q^{64} -86.9480 q^{65} +(-21.1638 + 12.4701i) q^{66} +(7.34359 + 17.7290i) q^{67} +(-30.3103 - 16.7911i) q^{68} +(1.40930 - 3.40235i) q^{69} +(-17.7419 - 13.3659i) q^{70} +(61.6413 - 61.6413i) q^{71} +(25.6265 + 24.2998i) q^{72} +(-66.1257 + 66.1257i) q^{73} +(-7.75979 - 55.1622i) q^{74} +(-6.04582 + 14.5959i) q^{75} +(4.85169 - 42.6804i) q^{76} +(5.80725 + 14.0199i) q^{77} +(-22.1992 + 85.8834i) q^{78} -151.433 q^{79} +(-66.2394 + 11.1197i) q^{80} +21.7823i q^{81} +(-24.8452 + 96.1203i) q^{82} +(133.888 - 55.4584i) q^{83} +(-17.7321 + 14.1122i) q^{84} +(-33.5967 - 13.9162i) q^{85} +(2.05779 + 14.6283i) q^{86} +(43.9832 + 43.9832i) q^{87} +(42.8438 + 16.4272i) q^{88} +(-59.1122 - 59.1122i) q^{89} +(29.6026 + 22.3012i) q^{90} +(50.6282 + 20.9709i) q^{91} +(-6.61209 + 1.89783i) q^{92} +(-18.4982 + 7.66220i) q^{93} +(19.3835 - 11.4211i) q^{94} -45.0804i q^{95} +(-5.92836 + 68.2674i) q^{96} -103.155 q^{97} +(7.10709 + 12.0619i) q^{98} +(-9.68946 - 23.3924i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192q + O(q^{10}) \) \( 192q + 80q^{10} + 96q^{12} - 20q^{16} - 60q^{18} - 260q^{22} + 64q^{23} - 144q^{24} - 200q^{26} + 192q^{27} - 40q^{30} + 40q^{32} + 120q^{34} + 464q^{36} + 504q^{38} - 384q^{39} + 360q^{40} - 96q^{43} + 52q^{44} + 64q^{46} - 104q^{48} - 312q^{50} - 384q^{51} - 320q^{52} + 160q^{53} - 576q^{54} - 512q^{55} - 196q^{56} - 360q^{58} - 872q^{60} + 128q^{61} - 408q^{62} + 832q^{66} + 160q^{67} + 856q^{68} - 384q^{69} + 336q^{70} + 1488q^{72} + 308q^{74} + 768q^{75} + 1024q^{76} - 224q^{77} - 408q^{78} + 1024q^{79} - 1040q^{80} - 240q^{82} - 1384q^{86} + 896q^{87} - 560q^{88} - 1320q^{90} - 380q^{92} - 936q^{94} - 1088q^{96} - 512q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.72313 + 1.01530i −0.861564 + 0.507649i
\(3\) 0.819473 + 1.97838i 0.273158 + 0.659461i 0.999615 0.0277508i \(-0.00883447\pi\)
−0.726457 + 0.687212i \(0.758834\pi\)
\(4\) 1.93834 3.49898i 0.484584 0.874744i
\(5\) 1.60646 3.87835i 0.321293 0.775670i −0.677887 0.735167i \(-0.737104\pi\)
0.999179 0.0405030i \(-0.0128960\pi\)
\(6\) −3.42071 2.57700i −0.570118 0.429499i
\(7\) −1.87083 + 1.87083i −0.267261 + 0.267261i
\(8\) 0.212503 + 7.99718i 0.0265629 + 0.999647i
\(9\) 3.12150 3.12150i 0.346833 0.346833i
\(10\) 1.16954 + 8.31393i 0.116954 + 0.831393i
\(11\) 2.19493 5.29904i 0.199539 0.481731i −0.792159 0.610315i \(-0.791043\pi\)
0.991699 + 0.128584i \(0.0410431\pi\)
\(12\) 8.51073 + 0.967457i 0.709228 + 0.0806214i
\(13\) −7.92625 19.1357i −0.609712 1.47197i −0.863315 0.504666i \(-0.831616\pi\)
0.253603 0.967308i \(-0.418384\pi\)
\(14\) 1.32423 5.12313i 0.0945877 0.365938i
\(15\) 8.98931 0.599287
\(16\) −8.48569 13.5644i −0.530356 0.847775i
\(17\) 8.66263i 0.509566i −0.966998 0.254783i \(-0.917996\pi\)
0.966998 0.254783i \(-0.0820041\pi\)
\(18\) −2.20949 + 8.54799i −0.122749 + 0.474888i
\(19\) 9.92137 4.10957i 0.522177 0.216293i −0.105996 0.994367i \(-0.533803\pi\)
0.628173 + 0.778074i \(0.283803\pi\)
\(20\) −10.4564 13.1385i −0.522819 0.656927i
\(21\) −5.23431 2.16812i −0.249253 0.103244i
\(22\) 1.59796 + 11.3594i 0.0726343 + 0.516338i
\(23\) −1.21606 1.21606i −0.0528721 0.0528721i 0.680176 0.733048i \(-0.261903\pi\)
−0.733048 + 0.680176i \(0.761903\pi\)
\(24\) −15.6473 + 6.97388i −0.651972 + 0.290578i
\(25\) 5.21682 + 5.21682i 0.208673 + 0.208673i
\(26\) 33.0864 + 24.9257i 1.27255 + 0.958680i
\(27\) 26.5389 + 10.9928i 0.982924 + 0.407140i
\(28\) 2.91969 + 10.1723i 0.104275 + 0.363296i
\(29\) 26.8363 11.1159i 0.925388 0.383308i 0.131461 0.991321i \(-0.458033\pi\)
0.793927 + 0.608013i \(0.208033\pi\)
\(30\) −15.4897 + 9.12683i −0.516324 + 0.304228i
\(31\) 9.35016i 0.301618i 0.988563 + 0.150809i \(0.0481878\pi\)
−0.988563 + 0.150809i \(0.951812\pi\)
\(32\) 28.3938 + 14.7577i 0.887308 + 0.461178i
\(33\) 12.2822 0.372188
\(34\) 8.79515 + 14.9268i 0.258681 + 0.439024i
\(35\) 4.25030 + 10.2611i 0.121437 + 0.293176i
\(36\) −4.87153 16.9726i −0.135320 0.471460i
\(37\) −10.6588 + 25.7325i −0.288075 + 0.695473i −0.999977 0.00680503i \(-0.997834\pi\)
0.711902 + 0.702279i \(0.247834\pi\)
\(38\) −12.9234 + 17.1545i −0.340088 + 0.451433i
\(39\) 31.3623 31.3623i 0.804162 0.804162i
\(40\) 31.3572 + 12.0230i 0.783930 + 0.300575i
\(41\) 35.1006 35.1006i 0.856111 0.856111i −0.134766 0.990877i \(-0.543028\pi\)
0.990877 + 0.134766i \(0.0430283\pi\)
\(42\) 11.2207 1.57844i 0.267159 0.0375818i
\(43\) 2.82656 6.82393i 0.0657340 0.158696i −0.887599 0.460617i \(-0.847628\pi\)
0.953333 + 0.301921i \(0.0976280\pi\)
\(44\) −14.2867 17.9514i −0.324698 0.407985i
\(45\) −7.09168 17.1208i −0.157593 0.380463i
\(46\) 3.33008 + 0.860761i 0.0723931 + 0.0187122i
\(47\) −11.2490 −0.239341 −0.119670 0.992814i \(-0.538184\pi\)
−0.119670 + 0.992814i \(0.538184\pi\)
\(48\) 19.8818 27.9036i 0.414204 0.581325i
\(49\) 7.00000i 0.142857i
\(50\) −14.2859 3.69261i −0.285717 0.0738523i
\(51\) 17.1380 7.09879i 0.336039 0.139192i
\(52\) −82.3190 9.35761i −1.58306 0.179954i
\(53\) −29.0021 12.0130i −0.547209 0.226661i 0.0919128 0.995767i \(-0.470702\pi\)
−0.639121 + 0.769106i \(0.720702\pi\)
\(54\) −56.8910 + 8.00297i −1.05354 + 0.148203i
\(55\) −17.0254 17.0254i −0.309553 0.309553i
\(56\) −15.3589 14.5638i −0.274266 0.260068i
\(57\) 16.2606 + 16.2606i 0.285274 + 0.285274i
\(58\) −34.9563 + 46.4010i −0.602695 + 0.800017i
\(59\) 53.3814 + 22.1113i 0.904770 + 0.374768i 0.786052 0.618160i \(-0.212122\pi\)
0.118718 + 0.992928i \(0.462122\pi\)
\(60\) 17.4243 31.4534i 0.290405 0.524223i
\(61\) −41.2892 + 17.1026i −0.676872 + 0.280370i −0.694519 0.719475i \(-0.744383\pi\)
0.0176463 + 0.999844i \(0.494383\pi\)
\(62\) −9.49320 16.1115i −0.153116 0.259863i
\(63\) 11.6796i 0.185390i
\(64\) −63.9097 + 3.39885i −0.998589 + 0.0531071i
\(65\) −86.9480 −1.33766
\(66\) −21.1638 + 12.4701i −0.320664 + 0.188941i
\(67\) 7.34359 + 17.7290i 0.109606 + 0.264612i 0.969160 0.246433i \(-0.0792585\pi\)
−0.859554 + 0.511045i \(0.829259\pi\)
\(68\) −30.3103 16.7911i −0.445740 0.246928i
\(69\) 1.40930 3.40235i 0.0204247 0.0493095i
\(70\) −17.7419 13.3659i −0.253456 0.190942i
\(71\) 61.6413 61.6413i 0.868188 0.868188i −0.124084 0.992272i \(-0.539599\pi\)
0.992272 + 0.124084i \(0.0395992\pi\)
\(72\) 25.6265 + 24.2998i 0.355924 + 0.337498i
\(73\) −66.1257 + 66.1257i −0.905832 + 0.905832i −0.995933 0.0901009i \(-0.971281\pi\)
0.0901009 + 0.995933i \(0.471281\pi\)
\(74\) −7.75979 55.1622i −0.104862 0.745436i
\(75\) −6.04582 + 14.5959i −0.0806109 + 0.194612i
\(76\) 4.85169 42.6804i 0.0638380 0.561584i
\(77\) 5.80725 + 14.0199i 0.0754188 + 0.182077i
\(78\) −22.1992 + 85.8834i −0.284605 + 1.10107i
\(79\) −151.433 −1.91687 −0.958436 0.285307i \(-0.907904\pi\)
−0.958436 + 0.285307i \(0.907904\pi\)
\(80\) −66.2394 + 11.1197i −0.827993 + 0.138997i
\(81\) 21.7823i 0.268917i
\(82\) −24.8452 + 96.1203i −0.302990 + 1.17220i
\(83\) 133.888 55.4584i 1.61311 0.668173i 0.619921 0.784664i \(-0.287165\pi\)
0.993192 + 0.116491i \(0.0371646\pi\)
\(84\) −17.7321 + 14.1122i −0.211096 + 0.168002i
\(85\) −33.5967 13.9162i −0.395255 0.163720i
\(86\) 2.05779 + 14.6283i 0.0239278 + 0.170097i
\(87\) 43.9832 + 43.9832i 0.505554 + 0.505554i
\(88\) 42.8438 + 16.4272i 0.486861 + 0.186673i
\(89\) −59.1122 59.1122i −0.664182 0.664182i 0.292181 0.956363i \(-0.405619\pi\)
−0.956363 + 0.292181i \(0.905619\pi\)
\(90\) 29.6026 + 22.3012i 0.328918 + 0.247791i
\(91\) 50.6282 + 20.9709i 0.556354 + 0.230449i
\(92\) −6.61209 + 1.89783i −0.0718706 + 0.0206286i
\(93\) −18.4982 + 7.66220i −0.198905 + 0.0823893i
\(94\) 19.3835 11.4211i 0.206207 0.121501i
\(95\) 45.0804i 0.474530i
\(96\) −5.92836 + 68.2674i −0.0617538 + 0.711119i
\(97\) −103.155 −1.06345 −0.531724 0.846917i \(-0.678456\pi\)
−0.531724 + 0.846917i \(0.678456\pi\)
\(98\) 7.10709 + 12.0619i 0.0725213 + 0.123081i
\(99\) −9.68946 23.3924i −0.0978733 0.236287i
\(100\) 28.3655 8.14157i 0.283655 0.0814157i
\(101\) 12.2300 29.5258i 0.121089 0.292335i −0.851699 0.524031i \(-0.824428\pi\)
0.972788 + 0.231696i \(0.0744276\pi\)
\(102\) −22.3236 + 29.6323i −0.218858 + 0.290513i
\(103\) −29.6065 + 29.6065i −0.287442 + 0.287442i −0.836068 0.548626i \(-0.815151\pi\)
0.548626 + 0.836068i \(0.315151\pi\)
\(104\) 151.347 67.4540i 1.45526 0.648597i
\(105\) −16.8175 + 16.8175i −0.160166 + 0.160166i
\(106\) 62.1711 8.74574i 0.586520 0.0825069i
\(107\) −55.6693 + 134.398i −0.520274 + 1.25605i 0.417459 + 0.908696i \(0.362921\pi\)
−0.937733 + 0.347357i \(0.887079\pi\)
\(108\) 89.9050 71.5514i 0.832454 0.662513i
\(109\) −54.9789 132.731i −0.504393 1.21771i −0.947069 0.321031i \(-0.895971\pi\)
0.442675 0.896682i \(-0.354029\pi\)
\(110\) 46.6229 + 12.0511i 0.423845 + 0.109555i
\(111\) −59.6433 −0.537327
\(112\) 41.2520 + 9.50140i 0.368321 + 0.0848339i
\(113\) 89.0350i 0.787920i 0.919128 + 0.393960i \(0.128895\pi\)
−0.919128 + 0.393960i \(0.871105\pi\)
\(114\) −44.5284 11.5097i −0.390600 0.100962i
\(115\) −6.66985 + 2.76274i −0.0579987 + 0.0240238i
\(116\) 13.1233 115.446i 0.113132 0.995224i
\(117\) −84.4737 34.9902i −0.721998 0.299061i
\(118\) −114.433 + 16.0975i −0.969768 + 0.136419i
\(119\) 16.2063 + 16.2063i 0.136187 + 0.136187i
\(120\) 1.91026 + 71.8891i 0.0159188 + 0.599076i
\(121\) 62.2978 + 62.2978i 0.514858 + 0.514858i
\(122\) 53.7824 71.3908i 0.440839 0.585170i
\(123\) 98.2063 + 40.6784i 0.798425 + 0.330719i
\(124\) 32.7160 + 18.1238i 0.263839 + 0.146159i
\(125\) 125.572 52.0136i 1.00458 0.416109i
\(126\) −11.8583 20.1254i −0.0941132 0.159725i
\(127\) 35.6942i 0.281057i −0.990077 0.140528i \(-0.955120\pi\)
0.990077 0.140528i \(-0.0448801\pi\)
\(128\) 106.674 70.7441i 0.833388 0.552688i
\(129\) 15.8166 0.122610
\(130\) 149.823 88.2782i 1.15248 0.679063i
\(131\) 13.3566 + 32.2457i 0.101959 + 0.246150i 0.966624 0.256197i \(-0.0824697\pi\)
−0.864666 + 0.502348i \(0.832470\pi\)
\(132\) 23.8071 42.9752i 0.180357 0.325570i
\(133\) −10.8729 + 26.2495i −0.0817510 + 0.197364i
\(134\) −30.6542 23.0934i −0.228763 0.172339i
\(135\) 85.2677 85.2677i 0.631613 0.631613i
\(136\) 69.2766 1.84084i 0.509387 0.0135356i
\(137\) −171.296 + 171.296i −1.25033 + 1.25033i −0.294763 + 0.955571i \(0.595241\pi\)
−0.955571 + 0.294763i \(0.904759\pi\)
\(138\) 1.02600 + 7.29355i 0.00743478 + 0.0528518i
\(139\) 0.0590034 0.142447i 0.000424485 0.00102480i −0.923667 0.383196i \(-0.874823\pi\)
0.924092 + 0.382171i \(0.124823\pi\)
\(140\) 44.1420 + 5.01784i 0.315300 + 0.0358417i
\(141\) −9.21825 22.2548i −0.0653777 0.157836i
\(142\) −43.6315 + 168.800i −0.307264 + 1.18873i
\(143\) −118.798 −0.830757
\(144\) −68.8293 15.8532i −0.477981 0.110092i
\(145\) 121.938i 0.840950i
\(146\) 46.8057 181.080i 0.320587 1.24028i
\(147\) 13.8487 5.73631i 0.0942087 0.0390225i
\(148\) 69.3772 + 87.1731i 0.468765 + 0.589007i
\(149\) 259.331 + 107.419i 1.74048 + 0.720930i 0.998737 + 0.0502455i \(0.0160004\pi\)
0.741743 + 0.670685i \(0.234000\pi\)
\(150\) −4.40148 31.2889i −0.0293432 0.208593i
\(151\) 64.4337 + 64.4337i 0.426713 + 0.426713i 0.887507 0.460794i \(-0.152435\pi\)
−0.460794 + 0.887507i \(0.652435\pi\)
\(152\) 34.9733 + 78.4697i 0.230087 + 0.516248i
\(153\) −27.0404 27.0404i −0.176734 0.176734i
\(154\) −24.2411 18.2621i −0.157409 0.118585i
\(155\) 36.2632 + 15.0207i 0.233956 + 0.0969077i
\(156\) −48.9453 170.527i −0.313752 1.09312i
\(157\) 98.2618 40.7014i 0.625872 0.259244i −0.0471263 0.998889i \(-0.515006\pi\)
0.672998 + 0.739644i \(0.265006\pi\)
\(158\) 260.938 153.750i 1.65151 0.973099i
\(159\) 67.2215i 0.422777i
\(160\) 102.849 86.4135i 0.642807 0.540085i
\(161\) 4.55007 0.0282613
\(162\) −22.1155 37.5337i −0.136516 0.231690i
\(163\) 120.921 + 291.929i 0.741846 + 1.79098i 0.598201 + 0.801346i \(0.295882\pi\)
0.143645 + 0.989629i \(0.454118\pi\)
\(164\) −54.7793 190.853i −0.334020 1.16374i
\(165\) 19.7309 47.6347i 0.119581 0.288695i
\(166\) −174.400 + 231.499i −1.05060 + 1.39457i
\(167\) 110.675 110.675i 0.662726 0.662726i −0.293295 0.956022i \(-0.594752\pi\)
0.956022 + 0.293295i \(0.0947520\pi\)
\(168\) 16.2265 42.3204i 0.0965866 0.251907i
\(169\) −183.847 + 183.847i −1.08785 + 1.08785i
\(170\) 72.0205 10.1313i 0.423650 0.0595957i
\(171\) 18.1415 43.7975i 0.106091 0.256126i
\(172\) −18.3979 23.1172i −0.106965 0.134402i
\(173\) −82.6562 199.550i −0.477781 1.15347i −0.960647 0.277772i \(-0.910404\pi\)
0.482866 0.875694i \(-0.339596\pi\)
\(174\) −120.445 31.1326i −0.692211 0.178923i
\(175\) −19.5195 −0.111540
\(176\) −90.5038 + 15.1930i −0.514226 + 0.0863241i
\(177\) 123.729i 0.699031i
\(178\) 161.874 + 41.8413i 0.909407 + 0.235064i
\(179\) −121.524 + 50.3370i −0.678906 + 0.281212i −0.695369 0.718652i \(-0.744759\pi\)
0.0164635 + 0.999864i \(0.494759\pi\)
\(180\) −73.6515 8.37232i −0.409175 0.0465129i
\(181\) 228.110 + 94.4865i 1.26028 + 0.522025i 0.909995 0.414619i \(-0.136085\pi\)
0.350284 + 0.936644i \(0.386085\pi\)
\(182\) −108.531 + 15.2672i −0.596322 + 0.0838859i
\(183\) −67.6708 67.6708i −0.369786 0.369786i
\(184\) 9.46661 9.98345i 0.0514490 0.0542579i
\(185\) 82.6767 + 82.6767i 0.446901 + 0.446901i
\(186\) 24.0953 31.9841i 0.129545 0.171958i
\(187\) −45.9036 19.0139i −0.245474 0.101679i
\(188\) −21.8044 + 39.3600i −0.115981 + 0.209362i
\(189\) −70.2155 + 29.0842i −0.371510 + 0.153885i
\(190\) 45.7701 + 77.6793i 0.240895 + 0.408838i
\(191\) 203.563i 1.06577i 0.846186 + 0.532887i \(0.178893\pi\)
−0.846186 + 0.532887i \(0.821107\pi\)
\(192\) −59.0965 123.653i −0.307794 0.644024i
\(193\) 123.408 0.639419 0.319710 0.947516i \(-0.396415\pi\)
0.319710 + 0.947516i \(0.396415\pi\)
\(194\) 177.748 104.733i 0.916229 0.539859i
\(195\) −71.2516 172.016i −0.365393 0.882136i
\(196\) −24.4928 13.5684i −0.124963 0.0692264i
\(197\) −87.1234 + 210.335i −0.442251 + 1.06769i 0.532906 + 0.846174i \(0.321100\pi\)
−0.975157 + 0.221514i \(0.928900\pi\)
\(198\) 40.4465 + 30.4704i 0.204275 + 0.153891i
\(199\) −252.119 + 252.119i −1.26693 + 1.26693i −0.319266 + 0.947665i \(0.603436\pi\)
−0.947665 + 0.319266i \(0.896564\pi\)
\(200\) −40.6112 + 42.8284i −0.203056 + 0.214142i
\(201\) −29.0569 + 29.0569i −0.144562 + 0.144562i
\(202\) 8.90367 + 63.2938i 0.0440776 + 0.313336i
\(203\) −29.4100 + 71.0021i −0.144877 + 0.349764i
\(204\) 8.38072 73.7253i 0.0410819 0.361399i
\(205\) −79.7444 192.520i −0.388997 0.939122i
\(206\) 20.9563 81.0752i 0.101730 0.393569i
\(207\) −7.59185 −0.0366756
\(208\) −192.304 + 269.894i −0.924539 + 1.29757i
\(209\) 61.5940i 0.294708i
\(210\) 11.9039 46.0534i 0.0566852 0.219302i
\(211\) 48.5772 20.1213i 0.230224 0.0953618i −0.264590 0.964361i \(-0.585236\pi\)
0.494813 + 0.868999i \(0.335236\pi\)
\(212\) −98.2492 + 78.1922i −0.463440 + 0.368831i
\(213\) 172.464 + 71.4368i 0.809688 + 0.335384i
\(214\) −40.5284 288.105i −0.189385 1.34629i
\(215\) −21.9248 21.9248i −0.101976 0.101976i
\(216\) −82.2717 + 214.573i −0.380887 + 0.993392i
\(217\) −17.4925 17.4925i −0.0806108 0.0806108i
\(218\) 229.497 + 172.892i 1.05274 + 0.793083i
\(219\) −185.010 76.6337i −0.844796 0.349926i
\(220\) −92.5727 + 26.5706i −0.420785 + 0.120775i
\(221\) −165.765 + 68.6622i −0.750069 + 0.310689i
\(222\) 102.773 60.5558i 0.462942 0.272774i
\(223\) 47.2993i 0.212104i 0.994361 + 0.106052i \(0.0338211\pi\)
−0.994361 + 0.106052i \(0.966179\pi\)
\(224\) −80.7291 + 25.5109i −0.360398 + 0.113888i
\(225\) 32.5686 0.144749
\(226\) −90.3971 153.419i −0.399987 0.678844i
\(227\) −102.193 246.717i −0.450191 1.08686i −0.972249 0.233948i \(-0.924836\pi\)
0.522058 0.852910i \(-0.325164\pi\)
\(228\) 88.4140 25.3769i 0.387781 0.111302i
\(229\) 146.075 352.657i 0.637884 1.53999i −0.191610 0.981471i \(-0.561371\pi\)
0.829494 0.558516i \(-0.188629\pi\)
\(230\) 8.68799 11.5324i 0.0377739 0.0501411i
\(231\) −22.9779 + 22.9779i −0.0994715 + 0.0994715i
\(232\) 94.5990 + 212.252i 0.407754 + 0.914880i
\(233\) −76.5866 + 76.5866i −0.328698 + 0.328698i −0.852091 0.523393i \(-0.824666\pi\)
0.523393 + 0.852091i \(0.324666\pi\)
\(234\) 181.085 25.4735i 0.773865 0.108861i
\(235\) −18.0711 + 43.6275i −0.0768984 + 0.185649i
\(236\) 180.838 143.921i 0.766264 0.609836i
\(237\) −124.095 299.592i −0.523608 1.26410i
\(238\) −44.3797 11.4713i −0.186469 0.0481987i
\(239\) −423.059 −1.77012 −0.885061 0.465475i \(-0.845884\pi\)
−0.885061 + 0.465475i \(0.845884\pi\)
\(240\) −76.2805 121.935i −0.317836 0.508061i
\(241\) 248.004i 1.02906i −0.857472 0.514530i \(-0.827966\pi\)
0.857472 0.514530i \(-0.172034\pi\)
\(242\) −170.598 44.0962i −0.704950 0.182216i
\(243\) 195.757 81.0851i 0.805583 0.333684i
\(244\) −20.1910 + 177.621i −0.0827500 + 0.727953i
\(245\) −27.1484 11.2452i −0.110810 0.0458990i
\(246\) −210.523 + 29.6147i −0.855783 + 0.120385i
\(247\) −157.279 157.279i −0.636755 0.636755i
\(248\) −74.7749 + 1.98694i −0.301512 + 0.00801185i
\(249\) 219.436 + 219.436i 0.881268 + 0.881268i
\(250\) −163.567 + 217.119i −0.654269 + 0.868476i
\(251\) 3.93106 + 1.62830i 0.0156616 + 0.00648725i 0.390500 0.920603i \(-0.372302\pi\)
−0.374839 + 0.927090i \(0.622302\pi\)
\(252\) 40.8666 + 22.6390i 0.162169 + 0.0898372i
\(253\) −9.11311 + 3.77477i −0.0360202 + 0.0149200i
\(254\) 36.2402 + 61.5056i 0.142678 + 0.242148i
\(255\) 77.8711i 0.305377i
\(256\) −111.986 + 230.207i −0.437446 + 0.899245i
\(257\) 328.650 1.27879 0.639397 0.768877i \(-0.279184\pi\)
0.639397 + 0.768877i \(0.279184\pi\)
\(258\) −27.2541 + 16.0586i −0.105636 + 0.0622426i
\(259\) −28.2004 68.0818i −0.108882 0.262864i
\(260\) −168.535 + 304.229i −0.648210 + 1.17011i
\(261\) 49.0709 118.468i 0.188011 0.453899i
\(262\) −55.7542 42.0025i −0.212802 0.160315i
\(263\) −54.3548 + 54.3548i −0.206672 + 0.206672i −0.802851 0.596179i \(-0.796685\pi\)
0.596179 + 0.802851i \(0.296685\pi\)
\(264\) 2.61001 + 98.2231i 0.00988641 + 0.372057i
\(265\) −93.1815 + 93.1815i −0.351628 + 0.351628i
\(266\) −7.91568 56.2704i −0.0297582 0.211543i
\(267\) 68.5057 165.387i 0.256576 0.619428i
\(268\) 76.2678 + 8.66973i 0.284581 + 0.0323497i
\(269\) 81.3377 + 196.366i 0.302370 + 0.729987i 0.999910 + 0.0134403i \(0.00427829\pi\)
−0.697539 + 0.716547i \(0.745722\pi\)
\(270\) −60.3550 + 233.499i −0.223537 + 0.864813i
\(271\) −55.9797 −0.206567 −0.103284 0.994652i \(-0.532935\pi\)
−0.103284 + 0.994652i \(0.532935\pi\)
\(272\) −117.503 + 73.5084i −0.431998 + 0.270251i
\(273\) 117.347i 0.429843i
\(274\) 121.248 469.080i 0.442511 1.71197i
\(275\) 39.0947 16.1935i 0.142162 0.0588856i
\(276\) −9.17306 11.5260i −0.0332357 0.0417610i
\(277\) 234.982 + 97.3327i 0.848310 + 0.351382i 0.764125 0.645068i \(-0.223171\pi\)
0.0841856 + 0.996450i \(0.473171\pi\)
\(278\) 0.0429556 + 0.305360i 0.000154517 + 0.00109842i
\(279\) 29.1865 + 29.1865i 0.104611 + 0.104611i
\(280\) −81.1570 + 36.1710i −0.289846 + 0.129182i
\(281\) −77.2032 77.2032i −0.274744 0.274744i 0.556262 0.831007i \(-0.312235\pi\)
−0.831007 + 0.556262i \(0.812235\pi\)
\(282\) 38.4795 + 28.9886i 0.136452 + 0.102797i
\(283\) 134.816 + 55.8427i 0.476382 + 0.197324i 0.607937 0.793985i \(-0.291997\pi\)
−0.131555 + 0.991309i \(0.541997\pi\)
\(284\) −96.1999 335.163i −0.338732 1.18015i
\(285\) 89.1863 36.9422i 0.312934 0.129622i
\(286\) 204.705 120.616i 0.715750 0.421733i
\(287\) 131.334i 0.457611i
\(288\) 134.697 42.5653i 0.467699 0.147796i
\(289\) 213.959 0.740342
\(290\) 123.803 + 210.114i 0.426908 + 0.724532i
\(291\) −84.5324 204.079i −0.290489 0.701303i
\(292\) 103.198 + 359.546i 0.353419 + 1.23132i
\(293\) 4.70697 11.3636i 0.0160647 0.0387837i −0.915644 0.401991i \(-0.868318\pi\)
0.931708 + 0.363207i \(0.118318\pi\)
\(294\) −18.0390 + 23.9449i −0.0613571 + 0.0814454i
\(295\) 171.511 171.511i 0.581392 0.581392i
\(296\) −208.053 79.7717i −0.702880 0.269499i
\(297\) 116.502 116.502i 0.392264 0.392264i
\(298\) −555.923 + 78.2029i −1.86551 + 0.262426i
\(299\) −13.6313 + 32.9089i −0.0455896 + 0.110063i
\(300\) 39.3519 + 49.4460i 0.131173 + 0.164820i
\(301\) 7.47838 + 18.0544i 0.0248451 + 0.0599814i
\(302\) −176.447 45.6080i −0.584261 0.151020i
\(303\) 68.4355 0.225860
\(304\) −139.933 99.7049i −0.460308 0.327977i
\(305\) 187.609i 0.615110i
\(306\) 74.0481 + 19.1400i 0.241987 + 0.0625489i
\(307\) −0.506747 + 0.209902i −0.00165064 + 0.000683718i −0.383509 0.923537i \(-0.625284\pi\)
0.381858 + 0.924221i \(0.375284\pi\)
\(308\) 60.3119 + 6.85595i 0.195818 + 0.0222596i
\(309\) −82.8347 34.3112i −0.268073 0.111040i
\(310\) −77.7366 + 10.9354i −0.250763 + 0.0352754i
\(311\) 120.370 + 120.370i 0.387040 + 0.387040i 0.873630 0.486590i \(-0.161759\pi\)
−0.486590 + 0.873630i \(0.661759\pi\)
\(312\) 257.475 + 244.145i 0.825239 + 0.782518i
\(313\) 188.546 + 188.546i 0.602383 + 0.602383i 0.940944 0.338562i \(-0.109940\pi\)
−0.338562 + 0.940944i \(0.609940\pi\)
\(314\) −127.994 + 169.899i −0.407623 + 0.541079i
\(315\) 45.2975 + 18.7628i 0.143801 + 0.0595645i
\(316\) −293.528 + 529.860i −0.928886 + 1.67677i
\(317\) −79.6039 + 32.9730i −0.251116 + 0.104016i −0.504691 0.863300i \(-0.668394\pi\)
0.253575 + 0.967316i \(0.418394\pi\)
\(318\) 68.2499 + 115.831i 0.214622 + 0.364249i
\(319\) 166.605i 0.522273i
\(320\) −89.4867 + 253.324i −0.279646 + 0.791638i
\(321\) −311.509 −0.970434
\(322\) −7.84035 + 4.61968i −0.0243489 + 0.0143468i
\(323\) −35.5996 85.9451i −0.110216 0.266084i
\(324\) 76.2158 + 42.2215i 0.235234 + 0.130313i
\(325\) 58.4774 141.177i 0.179931 0.434391i
\(326\) −504.757 380.260i −1.54834 1.16644i
\(327\) 217.539 217.539i 0.665255 0.665255i
\(328\) 288.164 + 273.246i 0.878550 + 0.833068i
\(329\) 21.0450 21.0450i 0.0639664 0.0639664i
\(330\) 14.3645 + 102.113i 0.0435288 + 0.309435i
\(331\) −213.255 + 514.844i −0.644276 + 1.55542i 0.176580 + 0.984286i \(0.443497\pi\)
−0.820856 + 0.571135i \(0.806503\pi\)
\(332\) 65.4733 575.969i 0.197209 1.73485i
\(333\) 47.0527 + 113.595i 0.141299 + 0.341127i
\(334\) −78.3392 + 303.076i −0.234549 + 0.907414i
\(335\) 80.5565 0.240467
\(336\) 15.0075 + 89.3983i 0.0446651 + 0.266066i
\(337\) 618.277i 1.83465i −0.398140 0.917325i \(-0.630344\pi\)
0.398140 0.917325i \(-0.369656\pi\)
\(338\) 130.132 503.452i 0.385007 1.48950i
\(339\) −176.145 + 72.9618i −0.519603 + 0.215226i
\(340\) −113.814 + 90.5797i −0.334748 + 0.266411i
\(341\) 49.5469 + 20.5230i 0.145299 + 0.0601847i
\(342\) 13.2074 + 93.8878i 0.0386181 + 0.274526i
\(343\) 13.0958 + 13.0958i 0.0381802 + 0.0381802i
\(344\) 55.1728 + 21.1544i 0.160386 + 0.0614954i
\(345\) −10.9315 10.9315i −0.0316856 0.0316856i
\(346\) 345.030 + 259.929i 0.997195 + 0.751239i
\(347\) 101.100 + 41.8772i 0.291356 + 0.120683i 0.523574 0.851980i \(-0.324598\pi\)
−0.232218 + 0.972664i \(0.574598\pi\)
\(348\) 239.150 68.6419i 0.687214 0.197247i
\(349\) 120.493 49.9099i 0.345252 0.143008i −0.203318 0.979113i \(-0.565172\pi\)
0.548570 + 0.836105i \(0.315172\pi\)
\(350\) 33.6347 19.8182i 0.0960990 0.0566233i
\(351\) 594.972i 1.69508i
\(352\) 140.524 118.068i 0.399216 0.335420i
\(353\) 595.396 1.68667 0.843337 0.537384i \(-0.180588\pi\)
0.843337 + 0.537384i \(0.180588\pi\)
\(354\) −125.621 213.200i −0.354863 0.602260i
\(355\) −140.042 338.091i −0.394484 0.952369i
\(356\) −321.412 + 92.2528i −0.902842 + 0.259137i
\(357\) −18.7816 + 45.3429i −0.0526096 + 0.127011i
\(358\) 158.295 210.120i 0.442164 0.586928i
\(359\) 0.0485624 0.0485624i 0.000135271 0.000135271i −0.707039 0.707174i \(-0.749970\pi\)
0.707174 + 0.707039i \(0.249970\pi\)
\(360\) 135.411 60.3517i 0.376143 0.167643i
\(361\) −173.721 + 173.721i −0.481220 + 0.481220i
\(362\) −488.995 + 68.7880i −1.35082 + 0.190022i
\(363\) −72.1976 + 174.300i −0.198891 + 0.480166i
\(364\) 171.511 136.498i 0.471185 0.374995i
\(365\) 150.230 + 362.687i 0.411589 + 0.993663i
\(366\) 185.312 + 47.8994i 0.506316 + 0.130873i
\(367\) −611.483 −1.66617 −0.833083 0.553148i \(-0.813427\pi\)
−0.833083 + 0.553148i \(0.813427\pi\)
\(368\) −6.17601 + 26.8142i −0.0167826 + 0.0728647i
\(369\) 219.133i 0.593856i
\(370\) −226.404 58.5210i −0.611903 0.158165i
\(371\) 76.7322 31.7835i 0.206825 0.0856699i
\(372\) −9.04587 + 79.5767i −0.0243169 + 0.213916i
\(373\) 385.354 + 159.619i 1.03312 + 0.427932i 0.833838 0.552010i \(-0.186139\pi\)
0.199282 + 0.979942i \(0.436139\pi\)
\(374\) 98.4026 13.8425i 0.263108 0.0370120i
\(375\) 205.806 + 205.806i 0.548815 + 0.548815i
\(376\) −2.39045 89.9603i −0.00635758 0.239256i
\(377\) −425.422 425.422i −1.12844 1.12844i
\(378\) 91.4611 121.405i 0.241960 0.321178i
\(379\) 529.081 + 219.152i 1.39599 + 0.578239i 0.948708 0.316153i \(-0.102391\pi\)
0.447284 + 0.894392i \(0.352391\pi\)
\(380\) −157.735 87.3810i −0.415093 0.229950i
\(381\) 70.6168 29.2504i 0.185346 0.0767728i
\(382\) −206.677 350.765i −0.541039 0.918232i
\(383\) 22.9825i 0.0600065i 0.999550 + 0.0300032i \(0.00955176\pi\)
−0.999550 + 0.0300032i \(0.990448\pi\)
\(384\) 227.375 + 153.069i 0.592123 + 0.398616i
\(385\) 63.7033 0.165463
\(386\) −212.648 + 125.296i −0.550900 + 0.324601i
\(387\) −12.4778 30.1240i −0.0322423 0.0778398i
\(388\) −199.948 + 360.935i −0.515331 + 0.930246i
\(389\) −221.493 + 534.732i −0.569392 + 1.37463i 0.332677 + 0.943041i \(0.392048\pi\)
−0.902069 + 0.431593i \(0.857952\pi\)
\(390\) 297.424 + 224.065i 0.762625 + 0.574525i
\(391\) −10.5343 + 10.5343i −0.0269418 + 0.0269418i
\(392\) 55.9802 1.48752i 0.142807 0.00379470i
\(393\) −52.8490 + 52.8490i −0.134476 + 0.134476i
\(394\) −63.4276 450.890i −0.160984 1.14439i
\(395\) −243.272 + 587.309i −0.615877 + 1.48686i
\(396\) −100.631 11.4392i −0.254119 0.0288869i
\(397\) −100.290 242.122i −0.252621 0.609880i 0.745793 0.666177i \(-0.232071\pi\)
−0.998414 + 0.0562971i \(0.982071\pi\)
\(398\) 178.457 690.410i 0.448385 1.73470i
\(399\) −60.8416 −0.152485
\(400\) 26.4947 115.031i 0.0662367 0.287578i
\(401\) 313.535i 0.781883i −0.920416 0.390941i \(-0.872150\pi\)
0.920416 0.390941i \(-0.127850\pi\)
\(402\) 20.5673 79.5701i 0.0511625 0.197936i
\(403\) 178.922 74.1117i 0.443974 0.183900i
\(404\) −79.6043 100.023i −0.197040 0.247583i
\(405\) 84.4794 + 34.9925i 0.208591 + 0.0864012i
\(406\) −21.4111 152.206i −0.0527366 0.374891i
\(407\) 112.962 + 112.962i 0.277549 + 0.277549i
\(408\) 60.4122 + 135.547i 0.148069 + 0.332223i
\(409\) 73.0580 + 73.0580i 0.178626 + 0.178626i 0.790757 0.612131i \(-0.209687\pi\)
−0.612131 + 0.790757i \(0.709687\pi\)
\(410\) 332.875 + 250.772i 0.811890 + 0.611639i
\(411\) −479.260 198.516i −1.16608 0.483008i
\(412\) 46.2051 + 160.980i 0.112148 + 0.390728i
\(413\) −141.234 + 58.5011i −0.341971 + 0.141649i
\(414\) 13.0817 7.70799i 0.0315984 0.0186183i
\(415\) 608.358i 1.46592i
\(416\) 57.3414 660.308i 0.137840 1.58728i
\(417\) 0.330166 0.000791765
\(418\) 62.5363 + 106.134i 0.149608 + 0.253910i
\(419\) −198.670 479.631i −0.474152 1.14470i −0.962311 0.271950i \(-0.912332\pi\)
0.488159 0.872754i \(-0.337668\pi\)
\(420\) 26.2460 + 91.4418i 0.0624905 + 0.217719i
\(421\) 61.5597 148.618i 0.146223 0.353013i −0.833751 0.552141i \(-0.813811\pi\)
0.979973 + 0.199128i \(0.0638111\pi\)
\(422\) −63.2755 + 83.9920i −0.149942 + 0.199033i
\(423\) −35.1137 + 35.1137i −0.0830112 + 0.0830112i
\(424\) 89.9074 234.487i 0.212046 0.553036i
\(425\) 45.1913 45.1913i 0.106333 0.106333i
\(426\) −369.706 + 52.0074i −0.867855 + 0.122083i
\(427\) 45.2491 109.241i 0.105970 0.255834i
\(428\) 362.348 + 455.294i 0.846608 + 1.06377i
\(429\) −97.3520 235.028i −0.226928 0.547852i
\(430\) 60.0394 + 15.5190i 0.139627 + 0.0360907i
\(431\) 607.699 1.40998 0.704988 0.709220i \(-0.250953\pi\)
0.704988 + 0.709220i \(0.250953\pi\)
\(432\) −76.0907 453.266i −0.176136 1.04923i
\(433\) 464.600i 1.07298i 0.843907 + 0.536489i \(0.180250\pi\)
−0.843907 + 0.536489i \(0.819750\pi\)
\(434\) 47.9020 + 12.3817i 0.110373 + 0.0285293i
\(435\) 241.240 99.9247i 0.554574 0.229712i
\(436\) −570.990 64.9072i −1.30961 0.148870i
\(437\) −17.0624 7.06749i −0.0390445 0.0161727i
\(438\) 396.602 55.7909i 0.905485 0.127376i
\(439\) −458.960 458.960i −1.04547 1.04547i −0.998916 0.0465501i \(-0.985177\pi\)
−0.0465501 0.998916i \(-0.514823\pi\)
\(440\) 132.537 139.773i 0.301222 0.317667i
\(441\) −21.8505 21.8505i −0.0495476 0.0495476i
\(442\) 215.922 286.615i 0.488511 0.648450i
\(443\) 679.713 + 281.546i 1.53434 + 0.635544i 0.980401 0.197013i \(-0.0631241\pi\)
0.553939 + 0.832557i \(0.313124\pi\)
\(444\) −115.609 + 208.691i −0.260381 + 0.470024i
\(445\) −324.219 + 134.296i −0.728583 + 0.301789i
\(446\) −48.0229 81.5027i −0.107675 0.182741i
\(447\) 601.084i 1.34471i
\(448\) 113.205 125.923i 0.252691 0.281078i
\(449\) 227.489 0.506657 0.253328 0.967380i \(-0.418475\pi\)
0.253328 + 0.967380i \(0.418475\pi\)
\(450\) −56.1198 + 33.0668i −0.124711 + 0.0734818i
\(451\) −108.956 263.043i −0.241587 0.583243i
\(452\) 311.531 + 172.580i 0.689229 + 0.381814i
\(453\) −74.6728 + 180.276i −0.164841 + 0.397961i
\(454\) 426.583 + 321.368i 0.939611 + 0.707858i
\(455\) 162.665 162.665i 0.357505 0.357505i
\(456\) −126.583 + 133.494i −0.277595 + 0.292751i
\(457\) 180.745 180.745i 0.395504 0.395504i −0.481140 0.876644i \(-0.659777\pi\)
0.876644 + 0.481140i \(0.159777\pi\)
\(458\) 106.346 + 755.983i 0.232196 + 1.65062i
\(459\) 95.2265 229.897i 0.207465 0.500865i
\(460\) −3.26165 + 28.6928i −0.00709054 + 0.0623756i
\(461\) 156.103 + 376.865i 0.338618 + 0.817495i 0.997849 + 0.0655552i \(0.0208818\pi\)
−0.659231 + 0.751940i \(0.729118\pi\)
\(462\) 16.2644 62.9234i 0.0352044 0.136198i
\(463\) 112.633 0.243267 0.121634 0.992575i \(-0.461187\pi\)
0.121634 + 0.992575i \(0.461187\pi\)
\(464\) −378.505 269.691i −0.815744 0.581231i
\(465\) 84.0515i 0.180756i
\(466\) 54.2102 209.727i 0.116331 0.450058i
\(467\) −26.6319 + 11.0313i −0.0570276 + 0.0236216i −0.411015 0.911629i \(-0.634826\pi\)
0.353987 + 0.935250i \(0.384826\pi\)
\(468\) −286.168 + 227.749i −0.611471 + 0.486643i
\(469\) −46.9065 19.4293i −0.100014 0.0414271i
\(470\) −13.1561 93.5234i −0.0279918 0.198986i
\(471\) 161.046 + 161.046i 0.341923 + 0.341923i
\(472\) −165.484 + 431.600i −0.350603 + 0.914406i
\(473\) −29.9561 29.9561i −0.0633322 0.0633322i
\(474\) 518.007 + 390.242i 1.09284 + 0.823295i
\(475\) 73.1968 + 30.3191i 0.154099 + 0.0638297i
\(476\) 88.1187 25.2922i 0.185123 0.0531348i
\(477\) −128.029 + 53.0312i −0.268404 + 0.111176i
\(478\) 728.985 429.531i 1.52507 0.898601i
\(479\) 708.778i 1.47970i 0.672770 + 0.739852i \(0.265104\pi\)
−0.672770 + 0.739852i \(0.734896\pi\)
\(480\) 255.241 + 132.661i 0.531752 + 0.276378i
\(481\) 576.893 1.19936
\(482\) 251.798 + 427.342i 0.522402 + 0.886601i
\(483\) 3.72866 + 9.00178i 0.00771980 + 0.0186372i
\(484\) 338.733 97.2245i 0.699862 0.200877i
\(485\) −165.714 + 400.069i −0.341678 + 0.824885i
\(486\) −254.988 + 338.472i −0.524667 + 0.696444i
\(487\) −246.756 + 246.756i −0.506686 + 0.506686i −0.913508 0.406822i \(-0.866637\pi\)
0.406822 + 0.913508i \(0.366637\pi\)
\(488\) −145.546 326.563i −0.298251 0.669186i
\(489\) −478.456 + 478.456i −0.978437 + 0.978437i
\(490\) 58.1975 8.18676i 0.118770 0.0167077i
\(491\) −22.4270 + 54.1436i −0.0456762 + 0.110272i −0.945071 0.326865i \(-0.894008\pi\)
0.899395 + 0.437137i \(0.144008\pi\)
\(492\) 332.690 264.773i 0.676199 0.538157i
\(493\) −96.2933 232.473i −0.195321 0.471547i
\(494\) 430.696 + 111.326i 0.871854 + 0.225357i
\(495\) −106.290 −0.214727
\(496\) 126.829 79.3426i 0.255704 0.159965i
\(497\) 230.641i 0.464066i
\(498\) −600.909 155.323i −1.20664 0.311894i
\(499\) −790.484 + 327.429i −1.58414 + 0.656171i −0.989062 0.147500i \(-0.952877\pi\)
−0.595074 + 0.803671i \(0.702877\pi\)
\(500\) 61.4064 540.193i 0.122813 1.08039i
\(501\) 309.654 + 128.263i 0.618071 + 0.256013i
\(502\) −8.42694 + 1.18543i −0.0167867 + 0.00236142i
\(503\) 212.220 + 212.220i 0.421908 + 0.421908i 0.885860 0.463952i \(-0.153569\pi\)
−0.463952 + 0.885860i \(0.653569\pi\)
\(504\) −93.4036 + 2.48195i −0.185325 + 0.00492450i
\(505\) −94.8643 94.8643i −0.187850 0.187850i
\(506\) 11.8705 15.7569i 0.0234595 0.0311402i
\(507\) −514.378 213.062i −1.01455 0.420241i
\(508\) −124.893 69.1874i −0.245853 0.136196i
\(509\) −605.640 + 250.864i −1.18986 + 0.492857i −0.887710 0.460403i \(-0.847705\pi\)
−0.302152 + 0.953260i \(0.597705\pi\)
\(510\) 79.0624 + 134.182i 0.155024 + 0.263101i
\(511\) 247.420i 0.484187i
\(512\) −40.7622 510.375i −0.0796138 0.996826i
\(513\) 308.478 0.601322
\(514\) −566.306 + 333.678i −1.10176 + 0.649179i
\(515\) 67.2625 + 162.386i 0.130607 + 0.315313i
\(516\) 30.6580 55.3420i 0.0594147 0.107252i
\(517\) −24.6908 + 59.6089i −0.0477579 + 0.115298i
\(518\) 117.716 + 88.6819i 0.227252 + 0.171201i
\(519\) 327.051 327.051i 0.630156 0.630156i
\(520\) −18.4767 695.339i −0.0355322 1.33719i
\(521\) 267.635 267.635i 0.513695 0.513695i −0.401962 0.915657i \(-0.631671\pi\)
0.915657 + 0.401962i \(0.131671\pi\)
\(522\) 35.7246 + 253.957i 0.0684380 + 0.486507i
\(523\) −233.003 + 562.519i −0.445512 + 1.07556i 0.528473 + 0.848950i \(0.322765\pi\)
−0.973985 + 0.226612i \(0.927235\pi\)
\(524\) 138.717 + 15.7686i 0.264726 + 0.0300927i
\(525\) −15.9957 38.6171i −0.0304681 0.0735564i
\(526\) 38.4739 148.847i 0.0731444 0.282979i
\(527\) 80.9969 0.153694
\(528\) −104.223 166.601i −0.197392 0.315532i
\(529\) 526.042i 0.994409i
\(530\) 65.9566 255.171i 0.124446 0.481454i
\(531\) 235.651 97.6097i 0.443786 0.183822i
\(532\) 70.7710 + 88.9244i 0.133028 + 0.167151i
\(533\) −949.889 393.457i −1.78216 0.738193i
\(534\) 49.8735 + 354.537i 0.0933961 + 0.663928i
\(535\) 431.810 + 431.810i 0.807121 + 0.807121i
\(536\) −140.221 + 62.4955i −0.261607 + 0.116596i
\(537\) −199.172 199.172i −0.370897 0.370897i
\(538\) −339.526 255.782i −0.631089 0.475432i
\(539\) −37.0933 15.3645i −0.0688187 0.0285056i
\(540\) −133.072 463.628i −0.246430 0.858570i
\(541\) −122.630 + 50.7952i −0.226674 + 0.0938913i −0.493130 0.869956i \(-0.664147\pi\)
0.266456 + 0.963847i \(0.414147\pi\)
\(542\) 96.4602 56.8361i 0.177971 0.104864i
\(543\) 528.719i 0.973700i
\(544\) 127.840 245.965i 0.235001 0.452142i
\(545\) −603.098 −1.10660
\(546\) −119.142 202.204i −0.218209 0.370337i
\(547\) −89.7367 216.643i −0.164052 0.396058i 0.820381 0.571818i \(-0.193762\pi\)
−0.984433 + 0.175760i \(0.943762\pi\)
\(548\) 267.331 + 931.388i 0.487830 + 1.69961i
\(549\) −75.4986 + 182.270i −0.137520 + 0.332003i
\(550\) −50.9238 + 67.5963i −0.0925888 + 0.122902i
\(551\) 220.571 220.571i 0.400310 0.400310i
\(552\) 27.5087 + 10.5474i 0.0498346 + 0.0191076i
\(553\) 283.305 283.305i 0.512306 0.512306i
\(554\) −503.726 + 70.8601i −0.909252 + 0.127906i
\(555\) −95.8149 + 231.318i −0.172639 + 0.416789i
\(556\) −0.384050 0.482562i −0.000690737 0.000867917i
\(557\) −225.718 544.931i −0.405238 0.978332i −0.986373 0.164524i \(-0.947391\pi\)
0.581135 0.813807i \(-0.302609\pi\)
\(558\) −79.9251 20.6591i −0.143235 0.0370234i
\(559\) −152.984 −0.273675
\(560\) 103.120 144.726i 0.184142 0.258439i
\(561\) 106.396i 0.189655i
\(562\) 211.415 + 54.6467i 0.376184 + 0.0972361i
\(563\) −724.075 + 299.922i −1.28610 + 0.532721i −0.917821 0.396994i \(-0.870053\pi\)
−0.368280 + 0.929715i \(0.620053\pi\)
\(564\) −95.7373 10.8829i −0.169747 0.0192960i
\(565\) 345.309 + 143.032i 0.611166 + 0.253153i
\(566\) −289.002 + 40.6546i −0.510605 + 0.0718278i
\(567\) −40.7510 40.7510i −0.0718712 0.0718712i
\(568\) 506.056 + 479.858i 0.890943 + 0.844820i
\(569\) −474.755 474.755i −0.834367 0.834367i 0.153744 0.988111i \(-0.450867\pi\)
−0.988111 + 0.153744i \(0.950867\pi\)
\(570\) −116.172 + 154.207i −0.203811 + 0.270538i
\(571\) −480.443 199.006i −0.841406 0.348522i −0.0799979 0.996795i \(-0.525491\pi\)
−0.761408 + 0.648273i \(0.775491\pi\)
\(572\) −230.271 + 415.673i −0.402572 + 0.726700i
\(573\) −402.725 + 166.814i −0.702836 + 0.291124i
\(574\) −133.343 226.306i −0.232306 0.394261i
\(575\) 12.6879i 0.0220659i
\(576\) −188.884 + 210.103i −0.327924 + 0.364763i
\(577\) −226.938 −0.393306 −0.196653 0.980473i \(-0.563007\pi\)
−0.196653 + 0.980473i \(0.563007\pi\)
\(578\) −368.678 + 217.232i −0.637852 + 0.375834i
\(579\) 101.129 + 244.148i 0.174662 + 0.421672i
\(580\) −426.657 236.357i −0.735616 0.407511i
\(581\) −146.729 + 354.235i −0.252546 + 0.609699i
\(582\) 352.861 + 265.829i 0.606291 + 0.456751i
\(583\) −127.315 + 127.315i −0.218379 + 0.218379i
\(584\) −542.871 514.767i −0.929574 0.881451i
\(585\) −271.408 + 271.408i −0.463945 + 0.463945i
\(586\) 3.42676 + 24.3599i 0.00584772 + 0.0415699i
\(587\) 15.0818 36.4106i 0.0256930 0.0620283i −0.910512 0.413482i \(-0.864312\pi\)
0.936205 + 0.351454i \(0.114312\pi\)
\(588\) 6.77220 59.5751i 0.0115173 0.101318i
\(589\) 38.4251 + 92.7664i 0.0652378 + 0.157498i
\(590\) −121.400 + 469.670i −0.205763 + 0.796050i
\(591\) −487.518 −0.824903
\(592\) 439.493 73.7785i 0.742387 0.124626i
\(593\) 653.847i 1.10261i −0.834304 0.551304i \(-0.814130\pi\)
0.834304 0.551304i \(-0.185870\pi\)
\(594\) −82.4639 + 319.033i −0.138828 + 0.537093i
\(595\) 88.8885 36.8188i 0.149392 0.0618803i
\(596\) 878.527 699.181i 1.47404 1.17312i
\(597\) −705.394 292.184i −1.18156 0.489420i
\(598\) −9.92385 70.5460i −0.0165951 0.117970i
\(599\) 639.281 + 639.281i 1.06725 + 1.06725i 0.997570 + 0.0696767i \(0.0221968\pi\)
0.0696767 + 0.997570i \(0.477803\pi\)
\(600\) −118.011 45.2478i −0.196685 0.0754130i
\(601\) 0.494897 + 0.494897i 0.000823457 + 0.000823457i 0.707518 0.706695i \(-0.249815\pi\)
−0.706695 + 0.707518i \(0.749815\pi\)
\(602\) −31.2168 23.5173i −0.0518552 0.0390652i
\(603\) 78.2641 + 32.4180i 0.129791 + 0.0537613i
\(604\) 350.346 100.558i 0.580043 0.166486i
\(605\) 341.692 141.533i 0.564780 0.233940i
\(606\) −117.923 + 69.4825i −0.194593 + 0.114658i
\(607\) 973.678i 1.60408i 0.597269 + 0.802041i \(0.296252\pi\)
−0.597269 + 0.802041i \(0.703748\pi\)
\(608\) 342.354 + 29.7301i 0.563082 + 0.0488982i
\(609\) −164.570 −0.270230
\(610\) −190.479 323.274i −0.312260 0.529957i
\(611\) 89.1624 + 215.257i 0.145929 + 0.352303i
\(612\) −147.027 + 42.2003i −0.240240 + 0.0689547i
\(613\) 28.1023 67.8448i 0.0458438 0.110677i −0.899299 0.437335i \(-0.855923\pi\)
0.945143 + 0.326658i \(0.105923\pi\)
\(614\) 0.660077 0.876187i 0.00107504 0.00142701i
\(615\) 315.530 315.530i 0.513057 0.513057i
\(616\) −110.886 + 49.4209i −0.180010 + 0.0802287i
\(617\) −257.190 + 257.190i −0.416840 + 0.416840i −0.884113 0.467273i \(-0.845237\pi\)
0.467273 + 0.884113i \(0.345237\pi\)
\(618\) 177.571 24.9793i 0.287332 0.0404195i
\(619\) 104.274 251.741i 0.168456 0.406689i −0.816996 0.576644i \(-0.804362\pi\)
0.985452 + 0.169955i \(0.0543621\pi\)
\(620\) 122.847 97.7688i 0.198141 0.157692i
\(621\) −18.9050 45.6408i −0.0304429 0.0734956i
\(622\) −329.623 85.2011i −0.529941 0.136979i
\(623\) 221.178 0.355020
\(624\) −691.542 159.280i −1.10824 0.255257i
\(625\) 386.127i 0.617804i
\(626\) −516.319 133.458i −0.824790 0.213192i
\(627\) 121.856 50.4746i 0.194348 0.0805017i
\(628\) 48.0514 422.709i 0.0765150 0.673104i
\(629\) 222.911 + 92.3329i 0.354390 + 0.146793i
\(630\) −97.1032 + 13.6597i −0.154132 + 0.0216821i
\(631\) 550.270 + 550.270i 0.872061 + 0.872061i 0.992697 0.120636i \(-0.0384934\pi\)
−0.120636 + 0.992697i \(0.538493\pi\)
\(632\) −32.1800 1211.04i −0.0509177 1.91620i
\(633\) 79.6154 + 79.6154i 0.125775 + 0.125775i
\(634\) 103.690 137.638i 0.163549 0.217095i
\(635\) −138.434 57.3414i −0.218007 0.0903015i
\(636\) −235.207 130.298i −0.369822 0.204871i
\(637\) −133.950 + 55.4838i −0.210282 + 0.0871017i
\(638\) 169.154 + 287.082i 0.265132 + 0.449972i
\(639\) 384.827i 0.602233i
\(640\) −103.003 527.366i −0.160942 0.824009i
\(641\) −1000.57 −1.56096 −0.780480 0.625181i \(-0.785025\pi\)
−0.780480 + 0.625181i \(0.785025\pi\)
\(642\) 536.770 316.275i 0.836091 0.492640i
\(643\) −312.476 754.383i −0.485965 1.17322i −0.956733 0.290967i \(-0.906023\pi\)
0.470768 0.882257i \(-0.343977\pi\)
\(644\) 8.81958 15.9206i 0.0136950 0.0247214i
\(645\) 25.4089 61.3424i 0.0393936 0.0951045i
\(646\) 148.603 + 111.950i 0.230035 + 0.173297i
\(647\) −51.8944 + 51.8944i −0.0802077 + 0.0802077i −0.746072 0.665865i \(-0.768063\pi\)
0.665865 + 0.746072i \(0.268063\pi\)
\(648\) −174.197 + 4.62881i −0.268823 + 0.00714323i
\(649\) 234.338 234.338i 0.361075 0.361075i
\(650\) 42.5727 + 302.638i 0.0654965 + 0.465597i
\(651\) 20.2723 48.9416i 0.0311402 0.0751791i
\(652\) 1255.84 + 142.757i 1.92613 + 0.218953i
\(653\) 440.155 + 1062.63i 0.674051 + 1.62730i 0.774660 + 0.632378i \(0.217921\pi\)
−0.100609 + 0.994926i \(0.532079\pi\)
\(654\) −153.980 + 595.713i −0.235444 + 0.910876i
\(655\) 146.517 0.223690
\(656\) −773.971 178.266i −1.17983 0.271746i
\(657\) 412.823i 0.628345i
\(658\) −14.8962 + 57.6301i −0.0226387 + 0.0875837i
\(659\) −246.623 + 102.155i −0.374239 + 0.155015i −0.561872 0.827224i \(-0.689918\pi\)
0.187633 + 0.982239i \(0.439918\pi\)
\(660\) −128.428 161.370i −0.194587 0.244500i
\(661\) −234.890 97.2947i −0.355356 0.147193i 0.197862 0.980230i \(-0.436600\pi\)
−0.553218 + 0.833037i \(0.686600\pi\)
\(662\) −155.254 1103.66i −0.234523 1.66716i
\(663\) −271.680 271.680i −0.409774 0.409774i
\(664\) 471.962 + 1058.94i 0.710786 + 1.59479i
\(665\) 84.3377 + 84.3377i 0.126824 + 0.126824i
\(666\) −196.411 147.967i −0.294911 0.222172i
\(667\) −46.1521 19.1168i −0.0691935 0.0286609i
\(668\) −172.724 601.777i −0.258569 0.900863i
\(669\) −93.5761 + 38.7605i −0.139875 + 0.0579379i
\(670\) −138.809 + 81.7889i −0.207178 + 0.122073i
\(671\) 256.332i 0.382015i
\(672\) −116.626 138.808i −0.173550 0.206559i
\(673\) 178.759 0.265615 0.132807 0.991142i \(-0.457601\pi\)
0.132807 + 0.991142i \(0.457601\pi\)
\(674\) 627.736 + 1065.37i 0.931358 + 1.58067i
\(675\) 81.1014 + 195.796i 0.120150 + 0.290068i
\(676\) 286.919 + 999.636i 0.424437 + 1.47875i
\(677\) −247.393 + 597.261i −0.365426 + 0.882217i 0.629061 + 0.777356i \(0.283440\pi\)
−0.994487 + 0.104861i \(0.966560\pi\)
\(678\) 229.443 304.563i 0.338411 0.449207i
\(679\) 192.984 192.984i 0.284219 0.284219i
\(680\) 104.151 271.636i 0.153163 0.399464i
\(681\) 404.355 404.355i 0.593767 0.593767i
\(682\) −106.213 + 14.9411i −0.155737 + 0.0219078i
\(683\) 493.311 1190.96i 0.722271 1.74372i 0.0554925 0.998459i \(-0.482327\pi\)
0.666778 0.745256i \(-0.267673\pi\)
\(684\) −118.082 148.371i −0.172635 0.216917i
\(685\) 389.164 + 939.524i 0.568122 + 1.37157i
\(686\) −35.8619 9.26959i −0.0522768 0.0135125i
\(687\) 817.396 1.18980
\(688\) −116.548 + 19.5651i −0.169401 + 0.0284376i
\(689\) 650.192i 0.943675i
\(690\) 29.9352 + 7.73765i 0.0433843 + 0.0112140i
\(691\) 1190.00 492.914i 1.72214 0.713334i 0.722380 0.691496i \(-0.243048\pi\)
0.999762 0.0218384i \(-0.00695192\pi\)
\(692\) −858.435 97.5825i −1.24051 0.141015i
\(693\) 61.8905 + 25.6359i 0.0893081 + 0.0369926i
\(694\) −216.727 + 30.4874i −0.312286 + 0.0439300i
\(695\) −0.457671 0.457671i −0.000658520 0.000658520i
\(696\) −342.395 + 361.088i −0.491946 + 0.518804i
\(697\) −304.063 304.063i −0.436245 0.436245i
\(698\) −156.952 + 208.338i −0.224859 + 0.298478i
\(699\) −214.278 88.7570i −0.306550 0.126977i
\(700\) −37.8355 + 68.2984i −0.0540507 + 0.0975692i
\(701\) −281.010 + 116.398i −0.400871 + 0.166046i −0.574004 0.818852i \(-0.694611\pi\)
0.173134 + 0.984898i \(0.444611\pi\)
\(702\) 604.074 + 1025.21i 0.860505 + 1.46042i
\(703\) 299.105i 0.425469i
\(704\) −122.267 + 346.120i −0.173675 + 0.491648i
\(705\) −101.121 −0.143434
\(706\) −1025.94 + 604.505i −1.45318 + 0.856239i
\(707\) 32.3575 + 78.1179i 0.0457673 + 0.110492i
\(708\) 432.924 + 239.828i 0.611474 + 0.338740i
\(709\) 219.418 529.722i 0.309476 0.747140i −0.690247 0.723574i \(-0.742498\pi\)
0.999722 0.0235660i \(-0.00750198\pi\)
\(710\) 584.574 + 440.390i 0.823343 + 0.620267i
\(711\) −472.698 + 472.698i −0.664835 + 0.664835i
\(712\) 460.169 485.292i 0.646305 0.681590i
\(713\) 11.3703 11.3703i 0.0159472 0.0159472i
\(714\) −13.6734 97.2005i −0.0191504 0.136135i
\(715\) −190.845 + 460.741i −0.266916 + 0.644393i
\(716\) −59.4270 + 522.780i −0.0829986 + 0.730140i
\(717\) −346.686 836.973i −0.483522 1.16733i
\(718\) −0.0343739 + 0.132984i −4.78745e−5 + 0.000185215i
\(719\) 528.842 0.735525 0.367762 0.929920i \(-0.380124\pi\)
0.367762 + 0.929920i \(0.380124\pi\)
\(720\) −172.056 + 241.477i −0.238967 + 0.335384i
\(721\) 110.777i 0.153644i
\(722\) 122.964 475.721i 0.170311 0.658893i
\(723\) 490.646 203.232i 0.678625 0.281096i
\(724\) 772.761 615.007i 1.06735 0.849457i
\(725\) 197.990 + 82.0100i 0.273089 + 0.113117i
\(726\) −52.5613 373.644i −0.0723984 0.514661i
\(727\) 689.078 + 689.078i 0.947838 + 0.947838i 0.998705 0.0508675i \(-0.0161986\pi\)
−0.0508675 + 0.998705i \(0.516199\pi\)
\(728\) −156.949 + 409.339i −0.215590 + 0.562279i
\(729\) 459.457 + 459.457i 0.630256 + 0.630256i
\(730\) −627.101 472.428i −0.859043 0.647162i
\(731\) −59.1131 24.4855i −0.0808661 0.0334958i
\(732\) −367.948 + 105.610i −0.502661 + 0.144276i
\(733\) −269.119 + 111.473i −0.367148 + 0.152078i −0.558627 0.829419i \(-0.688672\pi\)
0.191479 + 0.981497i \(0.438672\pi\)
\(734\) 1053.66 620.838i 1.43551 0.845828i
\(735\) 62.9252i 0.0856125i
\(736\) −16.5824 52.4748i −0.0225304 0.0712972i
\(737\) 110.065 0.149342
\(738\) 222.485 + 377.594i 0.301470 + 0.511644i
\(739\) −68.3919 165.113i −0.0925466 0.223427i 0.870827 0.491589i \(-0.163584\pi\)
−0.963374 + 0.268162i \(0.913584\pi\)
\(740\) 449.540 129.029i 0.607486 0.174363i
\(741\) 182.272 440.043i 0.245981 0.593850i
\(742\) −99.9497 + 132.673i −0.134703 + 0.178805i
\(743\) 698.165 698.165i 0.939657 0.939657i −0.0586236 0.998280i \(-0.518671\pi\)
0.998280 + 0.0586236i \(0.0186712\pi\)
\(744\) −65.2069 146.305i −0.0876437 0.196647i
\(745\) 833.213 833.213i 1.11841 1.11841i
\(746\) −826.074 + 116.206i −1.10734 + 0.155772i
\(747\) 244.819 591.046i 0.327736 0.791226i
\(748\) −155.506 + 123.760i −0.207896 + 0.165455i
\(749\) −147.287 355.583i −0.196645 0.474743i
\(750\) −563.584 145.675i −0.751445 0.194234i
\(751\) −478.635 −0.637330 −0.318665 0.947867i \(-0.603235\pi\)
−0.318665 + 0.947867i \(0.603235\pi\)
\(752\) 95.4556 + 152.586i 0.126936 + 0.202907i
\(753\) 9.11150i 0.0121003i
\(754\) 1164.99 + 301.126i 1.54508 + 0.399371i
\(755\) 353.407 146.386i 0.468088 0.193888i
\(756\) −34.3363 + 302.057i −0.0454184 + 0.399547i
\(757\) −534.494 221.395i −0.706069 0.292463i 0.000607955 1.00000i \(-0.499806\pi\)
−0.706677 + 0.707537i \(0.749806\pi\)