Properties

Label 224.3.w.a.43.4
Level 224
Weight 3
Character 224.43
Analytic conductor 6.104
Analytic rank 0
Dimension 192
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(48\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 43.4
Character \(\chi\) \(=\) 224.43
Dual form 224.3.w.a.99.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.92658 + 0.536908i) q^{2} +(-0.340996 - 0.823236i) q^{3} +(3.42346 - 2.06880i) q^{4} +(-1.83063 + 4.41953i) q^{5} +(1.09896 + 1.40295i) q^{6} +(1.87083 - 1.87083i) q^{7} +(-5.48483 + 5.82380i) q^{8} +(5.80252 - 5.80252i) q^{9} +O(q^{10})\) \(q+(-1.92658 + 0.536908i) q^{2} +(-0.340996 - 0.823236i) q^{3} +(3.42346 - 2.06880i) q^{4} +(-1.83063 + 4.41953i) q^{5} +(1.09896 + 1.40295i) q^{6} +(1.87083 - 1.87083i) q^{7} +(-5.48483 + 5.82380i) q^{8} +(5.80252 - 5.80252i) q^{9} +(1.15398 - 9.49749i) q^{10} +(-5.69950 + 13.7598i) q^{11} +(-2.87049 - 2.11286i) q^{12} +(-2.66083 - 6.42381i) q^{13} +(-2.59985 + 4.60877i) q^{14} +4.26256 q^{15} +(7.44015 - 14.1649i) q^{16} +11.3003i q^{17} +(-8.06363 + 14.2945i) q^{18} +(-4.35334 + 1.80321i) q^{19} +(2.87603 + 18.9173i) q^{20} +(-2.17808 - 0.902189i) q^{21} +(3.59282 - 29.5696i) q^{22} +(29.2047 + 29.2047i) q^{23} +(6.66466 + 2.52942i) q^{24} +(1.49661 + 1.49661i) q^{25} +(8.57531 + 10.9474i) q^{26} +(-14.1646 - 5.86717i) q^{27} +(2.53434 - 10.2751i) q^{28} +(-8.46573 + 3.50662i) q^{29} +(-8.21217 + 2.28860i) q^{30} +59.7873i q^{31} +(-6.72883 + 31.2845i) q^{32} +13.2711 q^{33} +(-6.06723 - 21.7710i) q^{34} +(4.84339 + 11.6930i) q^{35} +(7.86045 - 31.8689i) q^{36} +(-23.5684 + 56.8992i) q^{37} +(7.41891 - 5.81138i) q^{38} +(-4.38098 + 4.38098i) q^{39} +(-15.6978 - 34.9016i) q^{40} +(39.1521 - 39.1521i) q^{41} +(4.68064 + 0.568717i) q^{42} +(-14.7274 + 35.5552i) q^{43} +(8.95426 + 58.8973i) q^{44} +(15.0222 + 36.2667i) q^{45} +(-71.9456 - 40.5851i) q^{46} -59.3761 q^{47} +(-14.1981 - 1.29483i) q^{48} -7.00000i q^{49} +(-3.68688 - 2.07980i) q^{50} +(9.30283 - 3.85336i) q^{51} +(-22.3988 - 16.4869i) q^{52} +(34.7591 + 14.3977i) q^{53} +(30.4394 + 3.69851i) q^{54} +(-50.3783 - 50.3783i) q^{55} +(0.634149 + 21.1565i) q^{56} +(2.96894 + 2.96894i) q^{57} +(14.4272 - 11.3011i) q^{58} +(-5.08496 - 2.10626i) q^{59} +(14.5927 - 8.81837i) q^{60} +(105.121 - 43.5425i) q^{61} +(-32.1003 - 115.185i) q^{62} -21.7110i q^{63} +(-3.83325 - 63.8851i) q^{64} +33.2612 q^{65} +(-25.5679 + 7.12535i) q^{66} +(-27.5350 - 66.4754i) q^{67} +(23.3781 + 38.6862i) q^{68} +(14.0837 - 34.0010i) q^{69} +(-15.6093 - 19.9271i) q^{70} +(16.0855 - 16.0855i) q^{71} +(1.96686 + 65.6186i) q^{72} +(56.1508 - 56.1508i) q^{73} +(14.8569 - 122.275i) q^{74} +(0.721725 - 1.74240i) q^{75} +(-11.1730 + 15.1794i) q^{76} +(15.0795 + 36.4050i) q^{77} +(6.08815 - 10.7925i) q^{78} +74.6262 q^{79} +(48.9820 + 58.8127i) q^{80} -60.1926i q^{81} +(-54.4088 + 96.4510i) q^{82} +(-103.860 + 43.0203i) q^{83} +(-9.32301 + 1.41739i) q^{84} +(-49.9421 - 20.6867i) q^{85} +(9.28380 - 76.4074i) q^{86} +(5.77355 + 5.77355i) q^{87} +(-48.8736 - 108.663i) q^{88} +(-50.7633 - 50.7633i) q^{89} +(-48.4134 - 61.8054i) q^{90} +(-16.9958 - 7.03989i) q^{91} +(160.400 + 39.5625i) q^{92} +(49.2191 - 20.3872i) q^{93} +(114.393 - 31.8795i) q^{94} -22.5407i q^{95} +(28.0491 - 5.12847i) q^{96} -128.122 q^{97} +(3.75836 + 13.4861i) q^{98} +(46.7701 + 112.913i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192q + O(q^{10}) \) \( 192q + 80q^{10} + 96q^{12} - 20q^{16} - 60q^{18} - 260q^{22} + 64q^{23} - 144q^{24} - 200q^{26} + 192q^{27} - 40q^{30} + 40q^{32} + 120q^{34} + 464q^{36} + 504q^{38} - 384q^{39} + 360q^{40} - 96q^{43} + 52q^{44} + 64q^{46} - 104q^{48} - 312q^{50} - 384q^{51} - 320q^{52} + 160q^{53} - 576q^{54} - 512q^{55} - 196q^{56} - 360q^{58} - 872q^{60} + 128q^{61} - 408q^{62} + 832q^{66} + 160q^{67} + 856q^{68} - 384q^{69} + 336q^{70} + 1488q^{72} + 308q^{74} + 768q^{75} + 1024q^{76} - 224q^{77} - 408q^{78} + 1024q^{79} - 1040q^{80} - 240q^{82} - 1384q^{86} + 896q^{87} - 560q^{88} - 1320q^{90} - 380q^{92} - 936q^{94} - 1088q^{96} - 512q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.92658 + 0.536908i −0.963292 + 0.268454i
\(3\) −0.340996 0.823236i −0.113665 0.274412i 0.856802 0.515646i \(-0.172448\pi\)
−0.970467 + 0.241234i \(0.922448\pi\)
\(4\) 3.42346 2.06880i 0.855865 0.517200i
\(5\) −1.83063 + 4.41953i −0.366126 + 0.883907i 0.628251 + 0.778011i \(0.283771\pi\)
−0.994377 + 0.105896i \(0.966229\pi\)
\(6\) 1.09896 + 1.40295i 0.183160 + 0.233825i
\(7\) 1.87083 1.87083i 0.267261 0.267261i
\(8\) −5.48483 + 5.82380i −0.685604 + 0.727975i
\(9\) 5.80252 5.80252i 0.644725 0.644725i
\(10\) 1.15398 9.49749i 0.115398 0.949749i
\(11\) −5.69950 + 13.7598i −0.518136 + 1.25089i 0.420910 + 0.907102i \(0.361711\pi\)
−0.939047 + 0.343790i \(0.888289\pi\)
\(12\) −2.87049 2.11286i −0.239208 0.176072i
\(13\) −2.66083 6.42381i −0.204679 0.494139i 0.787891 0.615815i \(-0.211173\pi\)
−0.992570 + 0.121676i \(0.961173\pi\)
\(14\) −2.59985 + 4.60877i −0.185703 + 0.329198i
\(15\) 4.26256 0.284170
\(16\) 7.44015 14.1649i 0.465009 0.885306i
\(17\) 11.3003i 0.664725i 0.943152 + 0.332362i \(0.107846\pi\)
−0.943152 + 0.332362i \(0.892154\pi\)
\(18\) −8.06363 + 14.2945i −0.447979 + 0.794137i
\(19\) −4.35334 + 1.80321i −0.229123 + 0.0949058i −0.494291 0.869296i \(-0.664572\pi\)
0.265168 + 0.964202i \(0.414572\pi\)
\(20\) 2.87603 + 18.9173i 0.143802 + 0.945865i
\(21\) −2.17808 0.902189i −0.103718 0.0429614i
\(22\) 3.59282 29.5696i 0.163310 1.34407i
\(23\) 29.2047 + 29.2047i 1.26977 + 1.26977i 0.946207 + 0.323563i \(0.104881\pi\)
0.323563 + 0.946207i \(0.395119\pi\)
\(24\) 6.66466 + 2.52942i 0.277694 + 0.105393i
\(25\) 1.49661 + 1.49661i 0.0598643 + 0.0598643i
\(26\) 8.57531 + 10.9474i 0.329820 + 0.421054i
\(27\) −14.1646 5.86717i −0.524615 0.217303i
\(28\) 2.53434 10.2751i 0.0905121 0.366967i
\(29\) −8.46573 + 3.50662i −0.291922 + 0.120918i −0.523838 0.851818i \(-0.675500\pi\)
0.231917 + 0.972736i \(0.425500\pi\)
\(30\) −8.21217 + 2.28860i −0.273739 + 0.0762867i
\(31\) 59.7873i 1.92862i 0.264770 + 0.964312i \(0.414704\pi\)
−0.264770 + 0.964312i \(0.585296\pi\)
\(32\) −6.72883 + 31.2845i −0.210276 + 0.977642i
\(33\) 13.2711 0.402154
\(34\) −6.06723 21.7710i −0.178448 0.640324i
\(35\) 4.84339 + 11.6930i 0.138383 + 0.334085i
\(36\) 7.86045 31.8689i 0.218346 0.885248i
\(37\) −23.5684 + 56.8992i −0.636985 + 1.53782i 0.193692 + 0.981062i \(0.437954\pi\)
−0.830677 + 0.556755i \(0.812046\pi\)
\(38\) 7.41891 5.81138i 0.195235 0.152931i
\(39\) −4.38098 + 4.38098i −0.112333 + 0.112333i
\(40\) −15.6978 34.9016i −0.392444 0.872540i
\(41\) 39.1521 39.1521i 0.954930 0.954930i −0.0440976 0.999027i \(-0.514041\pi\)
0.999027 + 0.0440976i \(0.0140413\pi\)
\(42\) 4.68064 + 0.568717i 0.111444 + 0.0135409i
\(43\) −14.7274 + 35.5552i −0.342499 + 0.826865i 0.654963 + 0.755661i \(0.272684\pi\)
−0.997462 + 0.0712040i \(0.977316\pi\)
\(44\) 8.95426 + 58.8973i 0.203506 + 1.33857i
\(45\) 15.0222 + 36.2667i 0.333826 + 0.805927i
\(46\) −71.9456 40.5851i −1.56403 0.882285i
\(47\) −59.3761 −1.26332 −0.631661 0.775245i \(-0.717626\pi\)
−0.631661 + 0.775245i \(0.717626\pi\)
\(48\) −14.1981 1.29483i −0.295794 0.0269757i
\(49\) 7.00000i 0.142857i
\(50\) −3.68688 2.07980i −0.0737377 0.0415960i
\(51\) 9.30283 3.85336i 0.182408 0.0755560i
\(52\) −22.3988 16.4869i −0.430746 0.317057i
\(53\) 34.7591 + 14.3977i 0.655832 + 0.271654i 0.685683 0.727900i \(-0.259504\pi\)
−0.0298517 + 0.999554i \(0.509504\pi\)
\(54\) 30.4394 + 3.69851i 0.563693 + 0.0684910i
\(55\) −50.3783 50.3783i −0.915968 0.915968i
\(56\) 0.634149 + 21.1565i 0.0113241 + 0.377795i
\(57\) 2.96894 + 2.96894i 0.0520866 + 0.0520866i
\(58\) 14.4272 11.3011i 0.248745 0.194847i
\(59\) −5.08496 2.10626i −0.0861857 0.0356993i 0.339174 0.940724i \(-0.389852\pi\)
−0.425360 + 0.905024i \(0.639852\pi\)
\(60\) 14.5927 8.81837i 0.243211 0.146973i
\(61\) 105.121 43.5425i 1.72329 0.713811i 0.723571 0.690250i \(-0.242500\pi\)
0.999722 0.0235610i \(-0.00750041\pi\)
\(62\) −32.1003 115.185i −0.517747 1.85783i
\(63\) 21.7110i 0.344620i
\(64\) −3.83325 63.8851i −0.0598946 0.998205i
\(65\) 33.2612 0.511711
\(66\) −25.5679 + 7.12535i −0.387392 + 0.107960i
\(67\) −27.5350 66.4754i −0.410970 0.992170i −0.984878 0.173250i \(-0.944573\pi\)
0.573908 0.818920i \(-0.305427\pi\)
\(68\) 23.3781 + 38.6862i 0.343795 + 0.568914i
\(69\) 14.0837 34.0010i 0.204111 0.492769i
\(70\) −15.6093 19.9271i −0.222990 0.284672i
\(71\) 16.0855 16.0855i 0.226556 0.226556i −0.584696 0.811252i \(-0.698786\pi\)
0.811252 + 0.584696i \(0.198786\pi\)
\(72\) 1.96686 + 65.6186i 0.0273176 + 0.911369i
\(73\) 56.1508 56.1508i 0.769189 0.769189i −0.208775 0.977964i \(-0.566948\pi\)
0.977964 + 0.208775i \(0.0669476\pi\)
\(74\) 14.8569 122.275i 0.200769 1.65237i
\(75\) 0.721725 1.74240i 0.00962300 0.0232320i
\(76\) −11.1730 + 15.1794i −0.147013 + 0.199729i
\(77\) 15.0795 + 36.4050i 0.195837 + 0.472793i
\(78\) 6.08815 10.7925i 0.0780532 0.138366i
\(79\) 74.6262 0.944635 0.472317 0.881429i \(-0.343418\pi\)
0.472317 + 0.881429i \(0.343418\pi\)
\(80\) 48.9820 + 58.8127i 0.612276 + 0.735158i
\(81\) 60.1926i 0.743118i
\(82\) −54.4088 + 96.4510i −0.663522 + 1.17623i
\(83\) −103.860 + 43.0203i −1.25133 + 0.518317i −0.907237 0.420620i \(-0.861813\pi\)
−0.344090 + 0.938937i \(0.611813\pi\)
\(84\) −9.32301 + 1.41739i −0.110988 + 0.0168737i
\(85\) −49.9421 20.6867i −0.587554 0.243373i
\(86\) 9.28380 76.4074i 0.107951 0.888458i
\(87\) 5.77355 + 5.77355i 0.0663627 + 0.0663627i
\(88\) −48.8736 108.663i −0.555381 1.23481i
\(89\) −50.7633 50.7633i −0.570374 0.570374i 0.361859 0.932233i \(-0.382142\pi\)
−0.932233 + 0.361859i \(0.882142\pi\)
\(90\) −48.4134 61.8054i −0.537926 0.686726i
\(91\) −16.9958 7.03989i −0.186767 0.0773615i
\(92\) 160.400 + 39.5625i 1.74348 + 0.430027i
\(93\) 49.2191 20.3872i 0.529237 0.219217i
\(94\) 114.393 31.8795i 1.21695 0.339144i
\(95\) 22.5407i 0.237271i
\(96\) 28.0491 5.12847i 0.292178 0.0534216i
\(97\) −128.122 −1.32085 −0.660425 0.750892i \(-0.729624\pi\)
−0.660425 + 0.750892i \(0.729624\pi\)
\(98\) 3.75836 + 13.4861i 0.0383506 + 0.137613i
\(99\) 46.7701 + 112.913i 0.472426 + 1.14054i
\(100\) 8.21976 + 2.02740i 0.0821976 + 0.0202740i
\(101\) 7.43952 17.9606i 0.0736586 0.177828i −0.882762 0.469821i \(-0.844318\pi\)
0.956420 + 0.291993i \(0.0943185\pi\)
\(102\) −15.8538 + 12.4186i −0.155429 + 0.121751i
\(103\) −60.9612 + 60.9612i −0.591856 + 0.591856i −0.938133 0.346276i \(-0.887446\pi\)
0.346276 + 0.938133i \(0.387446\pi\)
\(104\) 52.0052 + 19.7374i 0.500050 + 0.189783i
\(105\) 7.97451 7.97451i 0.0759477 0.0759477i
\(106\) −74.6965 9.07593i −0.704684 0.0856219i
\(107\) 8.44509 20.3883i 0.0789261 0.190544i −0.879491 0.475915i \(-0.842117\pi\)
0.958417 + 0.285371i \(0.0921168\pi\)
\(108\) −60.6299 + 9.21768i −0.561388 + 0.0853489i
\(109\) 23.6702 + 57.1449i 0.217158 + 0.524265i 0.994491 0.104824i \(-0.0334280\pi\)
−0.777333 + 0.629089i \(0.783428\pi\)
\(110\) 124.106 + 70.0095i 1.12824 + 0.636450i
\(111\) 54.8782 0.494399
\(112\) −12.5808 40.4193i −0.112329 0.360887i
\(113\) 40.9800i 0.362655i 0.983423 + 0.181327i \(0.0580394\pi\)
−0.983423 + 0.181327i \(0.941961\pi\)
\(114\) −7.31395 4.12586i −0.0641575 0.0361918i
\(115\) −182.534 + 75.6081i −1.58725 + 0.657462i
\(116\) −21.7276 + 29.5187i −0.187307 + 0.254471i
\(117\) −52.7138 21.8348i −0.450546 0.186622i
\(118\) 10.9275 + 1.32773i 0.0926056 + 0.0112520i
\(119\) 21.1410 + 21.1410i 0.177655 + 0.177655i
\(120\) −23.3794 + 24.8243i −0.194828 + 0.206869i
\(121\) −71.2882 71.2882i −0.589158 0.589158i
\(122\) −179.146 + 140.329i −1.46841 + 1.15023i
\(123\) −45.5821 18.8807i −0.370586 0.153502i
\(124\) 123.688 + 204.679i 0.997483 + 1.65064i
\(125\) −119.842 + 49.6403i −0.958739 + 0.397123i
\(126\) 11.6568 + 41.8282i 0.0925146 + 0.331970i
\(127\) 96.0732i 0.756482i −0.925707 0.378241i \(-0.876529\pi\)
0.925707 0.378241i \(-0.123471\pi\)
\(128\) 41.6855 + 121.022i 0.325668 + 0.945484i
\(129\) 34.2923 0.265832
\(130\) −64.0806 + 17.8582i −0.492928 + 0.137371i
\(131\) 4.85689 + 11.7256i 0.0370755 + 0.0895082i 0.941333 0.337480i \(-0.109575\pi\)
−0.904257 + 0.426988i \(0.859575\pi\)
\(132\) 45.4330 27.4552i 0.344189 0.207994i
\(133\) −4.77085 + 11.5178i −0.0358710 + 0.0866003i
\(134\) 88.7397 + 113.287i 0.662236 + 0.845423i
\(135\) 51.8603 51.8603i 0.384150 0.384150i
\(136\) −65.8108 61.9803i −0.483903 0.455738i
\(137\) 110.208 110.208i 0.804439 0.804439i −0.179347 0.983786i \(-0.557399\pi\)
0.983786 + 0.179347i \(0.0573985\pi\)
\(138\) −8.87799 + 73.0675i −0.0643333 + 0.529475i
\(139\) 48.8300 117.886i 0.351295 0.848102i −0.645166 0.764043i \(-0.723212\pi\)
0.996461 0.0840590i \(-0.0267884\pi\)
\(140\) 40.7716 + 30.0105i 0.291226 + 0.214360i
\(141\) 20.2470 + 48.8805i 0.143596 + 0.346671i
\(142\) −22.3536 + 39.6265i −0.157420 + 0.279060i
\(143\) 103.556 0.724167
\(144\) −39.0205 125.364i −0.270975 0.870581i
\(145\) 43.8339i 0.302303i
\(146\) −78.0314 + 138.327i −0.534462 + 0.947446i
\(147\) −5.76265 + 2.38697i −0.0392017 + 0.0162379i
\(148\) 37.0275 + 243.551i 0.250185 + 1.64561i
\(149\) 45.0347 + 18.6540i 0.302247 + 0.125195i 0.528652 0.848838i \(-0.322698\pi\)
−0.226406 + 0.974033i \(0.572698\pi\)
\(150\) −0.454957 + 3.74438i −0.00303305 + 0.0249625i
\(151\) 62.3618 + 62.3618i 0.412992 + 0.412992i 0.882779 0.469788i \(-0.155670\pi\)
−0.469788 + 0.882779i \(0.655670\pi\)
\(152\) 13.3758 35.2433i 0.0879985 0.231864i
\(153\) 65.5703 + 65.5703i 0.428564 + 0.428564i
\(154\) −48.5980 62.0411i −0.315572 0.402864i
\(155\) −264.232 109.448i −1.70472 0.706119i
\(156\) −5.93475 + 24.0615i −0.0380433 + 0.154240i
\(157\) 185.890 76.9981i 1.18401 0.490434i 0.298211 0.954500i \(-0.403610\pi\)
0.885800 + 0.464066i \(0.153610\pi\)
\(158\) −143.774 + 40.0674i −0.909960 + 0.253591i
\(159\) 33.5245i 0.210846i
\(160\) −125.945 87.0087i −0.787157 0.543805i
\(161\) 109.274 0.678720
\(162\) 32.3179 + 115.966i 0.199493 + 0.715840i
\(163\) 53.7823 + 129.842i 0.329953 + 0.796576i 0.998595 + 0.0529921i \(0.0168758\pi\)
−0.668642 + 0.743584i \(0.733124\pi\)
\(164\) 53.0379 215.033i 0.323402 1.31118i
\(165\) −24.2944 + 58.6520i −0.147239 + 0.355466i
\(166\) 176.998 138.646i 1.06625 0.835215i
\(167\) −1.93299 + 1.93299i −0.0115748 + 0.0115748i −0.712870 0.701296i \(-0.752605\pi\)
0.701296 + 0.712870i \(0.252605\pi\)
\(168\) 17.2006 7.73633i 0.102384 0.0460496i
\(169\) 85.3157 85.3157i 0.504827 0.504827i
\(170\) 107.325 + 13.0404i 0.631321 + 0.0767080i
\(171\) −14.7972 + 35.7235i −0.0865331 + 0.208909i
\(172\) 23.1377 + 152.190i 0.134522 + 0.884825i
\(173\) 42.2027 + 101.886i 0.243946 + 0.588938i 0.997668 0.0682555i \(-0.0217433\pi\)
−0.753722 + 0.657194i \(0.771743\pi\)
\(174\) −14.2231 8.02337i −0.0817420 0.0461113i
\(175\) 5.59979 0.0319988
\(176\) 152.501 + 183.108i 0.866484 + 1.04039i
\(177\) 4.90434i 0.0277081i
\(178\) 125.055 + 70.5446i 0.702557 + 0.396318i
\(179\) −4.43508 + 1.83707i −0.0247770 + 0.0102630i −0.395038 0.918665i \(-0.629268\pi\)
0.370261 + 0.928928i \(0.379268\pi\)
\(180\) 126.456 + 93.0798i 0.702535 + 0.517110i
\(181\) −171.957 71.2270i −0.950039 0.393519i −0.146794 0.989167i \(-0.546895\pi\)
−0.803246 + 0.595648i \(0.796895\pi\)
\(182\) 36.5236 + 4.43777i 0.200679 + 0.0243833i
\(183\) −71.6915 71.6915i −0.391757 0.391757i
\(184\) −330.265 + 9.89943i −1.79492 + 0.0538013i
\(185\) −208.323 208.323i −1.12607 1.12607i
\(186\) −83.8787 + 65.7038i −0.450961 + 0.353246i
\(187\) −155.490 64.4062i −0.831499 0.344418i
\(188\) −203.272 + 122.837i −1.08123 + 0.653389i
\(189\) −37.4760 + 15.5231i −0.198286 + 0.0821327i
\(190\) 12.1023 + 43.4266i 0.0636963 + 0.228561i
\(191\) 339.500i 1.77749i 0.458403 + 0.888744i \(0.348421\pi\)
−0.458403 + 0.888744i \(0.651579\pi\)
\(192\) −51.2854 + 24.9402i −0.267111 + 0.129897i
\(193\) −302.299 −1.56632 −0.783158 0.621823i \(-0.786392\pi\)
−0.783158 + 0.621823i \(0.786392\pi\)
\(194\) 246.839 68.7900i 1.27236 0.354588i
\(195\) −11.3419 27.3819i −0.0581638 0.140420i
\(196\) −14.4816 23.9642i −0.0738856 0.122266i
\(197\) 5.74651 13.8733i 0.0291701 0.0704229i −0.908623 0.417617i \(-0.862865\pi\)
0.937793 + 0.347194i \(0.112865\pi\)
\(198\) −150.731 192.425i −0.761265 0.971845i
\(199\) 9.69266 9.69266i 0.0487068 0.0487068i −0.682334 0.731041i \(-0.739035\pi\)
0.731041 + 0.682334i \(0.239035\pi\)
\(200\) −16.9246 + 0.507301i −0.0846229 + 0.00253650i
\(201\) −45.3356 + 45.3356i −0.225550 + 0.225550i
\(202\) −4.68968 + 38.5969i −0.0232163 + 0.191074i
\(203\) −9.27764 + 22.3982i −0.0457027 + 0.110336i
\(204\) 23.8760 32.4375i 0.117039 0.159007i
\(205\) 101.361 + 244.707i 0.494444 + 1.19369i
\(206\) 84.7164 150.177i 0.411244 0.729017i
\(207\) 338.922 1.63730
\(208\) −110.790 10.1037i −0.532642 0.0485757i
\(209\) 70.1785i 0.335782i
\(210\) −11.0820 + 19.6452i −0.0527714 + 0.0935483i
\(211\) 344.460 142.680i 1.63251 0.676208i 0.637001 0.770863i \(-0.280175\pi\)
0.995510 + 0.0946549i \(0.0301748\pi\)
\(212\) 148.782 22.6196i 0.701803 0.106696i
\(213\) −18.7272 7.75707i −0.0879212 0.0364182i
\(214\) −5.32357 + 43.8139i −0.0248765 + 0.204738i
\(215\) −130.177 130.177i −0.605474 0.605474i
\(216\) 111.860 50.3113i 0.517869 0.232923i
\(217\) 111.852 + 111.852i 0.515446 + 0.515446i
\(218\) −76.2842 97.3857i −0.349927 0.446724i
\(219\) −65.3725 27.0782i −0.298505 0.123645i
\(220\) −276.690 68.2455i −1.25768 0.310207i
\(221\) 72.5911 30.0682i 0.328467 0.136055i
\(222\) −105.728 + 29.4646i −0.476250 + 0.132723i
\(223\) 424.813i 1.90499i −0.304552 0.952496i \(-0.598507\pi\)
0.304552 0.952496i \(-0.401493\pi\)
\(224\) 45.9395 + 71.1165i 0.205087 + 0.317484i
\(225\) 17.3682 0.0771920
\(226\) −22.0025 78.9514i −0.0973561 0.349343i
\(227\) 38.2599 + 92.3675i 0.168546 + 0.406905i 0.985472 0.169836i \(-0.0543239\pi\)
−0.816927 + 0.576742i \(0.804324\pi\)
\(228\) 16.3062 + 4.02190i 0.0715183 + 0.0176399i
\(229\) −17.6660 + 42.6495i −0.0771440 + 0.186242i −0.957747 0.287613i \(-0.907138\pi\)
0.880603 + 0.473856i \(0.157138\pi\)
\(230\) 311.073 243.670i 1.35249 1.05943i
\(231\) 24.8279 24.8279i 0.107480 0.107480i
\(232\) 26.0112 68.5359i 0.112117 0.295413i
\(233\) 188.021 188.021i 0.806959 0.806959i −0.177214 0.984172i \(-0.556708\pi\)
0.984172 + 0.177214i \(0.0567084\pi\)
\(234\) 113.281 + 13.7641i 0.484107 + 0.0588209i
\(235\) 108.696 262.415i 0.462535 1.11666i
\(236\) −21.7656 + 3.30906i −0.0922269 + 0.0140214i
\(237\) −25.4472 61.4349i −0.107372 0.259219i
\(238\) −52.0806 29.3791i −0.218826 0.123442i
\(239\) 308.302 1.28997 0.644983 0.764197i \(-0.276865\pi\)
0.644983 + 0.764197i \(0.276865\pi\)
\(240\) 31.7140 60.3786i 0.132142 0.251578i
\(241\) 89.0600i 0.369544i 0.982781 + 0.184772i \(0.0591546\pi\)
−0.982781 + 0.184772i \(0.940845\pi\)
\(242\) 175.618 + 99.0675i 0.725694 + 0.409370i
\(243\) −177.034 + 73.3299i −0.728535 + 0.301769i
\(244\) 269.796 366.540i 1.10572 1.50221i
\(245\) 30.9367 + 12.8144i 0.126272 + 0.0523037i
\(246\) 97.9551 + 11.9019i 0.398191 + 0.0483818i
\(247\) 23.1670 + 23.1670i 0.0937934 + 0.0937934i
\(248\) −348.189 327.923i −1.40399 1.32227i
\(249\) 70.8317 + 70.8317i 0.284465 + 0.284465i
\(250\) 204.234 159.981i 0.816937 0.639923i
\(251\) −324.029 134.217i −1.29095 0.534729i −0.371682 0.928360i \(-0.621219\pi\)
−0.919269 + 0.393631i \(0.871219\pi\)
\(252\) −44.9158 74.3269i −0.178237 0.294948i
\(253\) −568.303 + 235.399i −2.24626 + 0.930431i
\(254\) 51.5825 + 185.093i 0.203081 + 0.728713i
\(255\) 48.1682i 0.188895i
\(256\) −145.288 210.778i −0.567533 0.823351i
\(257\) −243.331 −0.946813 −0.473406 0.880844i \(-0.656976\pi\)
−0.473406 + 0.880844i \(0.656976\pi\)
\(258\) −66.0670 + 18.4118i −0.256074 + 0.0713636i
\(259\) 62.3562 + 150.541i 0.240758 + 0.581240i
\(260\) 113.869 68.8108i 0.437956 0.264657i
\(261\) −28.7753 + 69.4698i −0.110250 + 0.266168i
\(262\) −15.6528 19.9826i −0.0597434 0.0762695i
\(263\) −226.301 + 226.301i −0.860459 + 0.860459i −0.991391 0.130933i \(-0.958203\pi\)
0.130933 + 0.991391i \(0.458203\pi\)
\(264\) −72.7896 + 77.2881i −0.275718 + 0.292758i
\(265\) −127.262 + 127.262i −0.480234 + 0.480234i
\(266\) 3.00742 24.7516i 0.0113061 0.0930512i
\(267\) −24.4801 + 59.1003i −0.0916859 + 0.221349i
\(268\) −231.789 170.611i −0.864885 0.636610i
\(269\) −147.598 356.334i −0.548693 1.32466i −0.918451 0.395535i \(-0.870559\pi\)
0.369758 0.929128i \(-0.379441\pi\)
\(270\) −72.0691 + 127.757i −0.266922 + 0.473176i
\(271\) 130.758 0.482500 0.241250 0.970463i \(-0.422443\pi\)
0.241250 + 0.970463i \(0.422443\pi\)
\(272\) 160.068 + 84.0761i 0.588485 + 0.309103i
\(273\) 16.3921i 0.0600444i
\(274\) −153.154 + 271.497i −0.558955 + 0.990865i
\(275\) −29.1230 + 12.0631i −0.105902 + 0.0438659i
\(276\) −22.1263 145.537i −0.0801679 0.527310i
\(277\) 239.704 + 99.2886i 0.865357 + 0.358443i 0.770800 0.637077i \(-0.219857\pi\)
0.0945566 + 0.995519i \(0.469857\pi\)
\(278\) −30.7812 + 253.335i −0.110724 + 0.911277i
\(279\) 346.917 + 346.917i 1.24343 + 1.24343i
\(280\) −94.6628 35.9271i −0.338081 0.128311i
\(281\) −118.037 118.037i −0.420062 0.420062i 0.465163 0.885225i \(-0.345996\pi\)
−0.885225 + 0.465163i \(0.845996\pi\)
\(282\) −65.2519 83.3018i −0.231390 0.295396i
\(283\) 208.068 + 86.1846i 0.735223 + 0.304539i 0.718696 0.695324i \(-0.244739\pi\)
0.0165264 + 0.999863i \(0.494739\pi\)
\(284\) 21.7904 88.3456i 0.0767267 0.311076i
\(285\) −18.5563 + 7.68629i −0.0651100 + 0.0269694i
\(286\) −199.509 + 55.6000i −0.697584 + 0.194405i
\(287\) 146.494i 0.510431i
\(288\) 142.485 + 220.573i 0.494740 + 0.765880i
\(289\) 161.303 0.558141
\(290\) 23.5348 + 84.4497i 0.0811544 + 0.291206i
\(291\) 43.6892 + 105.475i 0.150135 + 0.362457i
\(292\) 76.0653 308.395i 0.260498 1.05615i
\(293\) −149.175 + 360.141i −0.509131 + 1.22915i 0.435254 + 0.900308i \(0.356659\pi\)
−0.944385 + 0.328843i \(0.893341\pi\)
\(294\) 9.82066 7.69271i 0.0334036 0.0261657i
\(295\) 18.6173 18.6173i 0.0631096 0.0631096i
\(296\) −202.101 449.341i −0.682773 1.51804i
\(297\) 161.462 161.462i 0.543644 0.543644i
\(298\) −96.7788 11.7590i −0.324761 0.0394597i
\(299\) 109.897 265.314i 0.367548 0.887339i
\(300\) −1.13387 7.45813i −0.00377958 0.0248604i
\(301\) 38.9651 + 94.0702i 0.129452 + 0.312526i
\(302\) −153.628 86.6627i −0.508701 0.286963i
\(303\) −17.3226 −0.0571705
\(304\) −6.84718 + 75.0807i −0.0225236 + 0.246976i
\(305\) 544.295i 1.78457i
\(306\) −161.532 91.1216i −0.527883 0.297783i
\(307\) −34.4318 + 14.2621i −0.112156 + 0.0464564i −0.438056 0.898948i \(-0.644333\pi\)
0.325900 + 0.945404i \(0.394333\pi\)
\(308\) 126.939 + 93.4348i 0.412138 + 0.303360i
\(309\) 70.9729 + 29.3980i 0.229686 + 0.0951390i
\(310\) 567.829 + 68.9935i 1.83171 + 0.222560i
\(311\) −40.9908 40.9908i −0.131803 0.131803i 0.638128 0.769931i \(-0.279709\pi\)
−0.769931 + 0.638128i \(0.779709\pi\)
\(312\) −1.48501 49.5429i −0.00475964 0.158791i
\(313\) −193.016 193.016i −0.616664 0.616664i 0.328010 0.944674i \(-0.393622\pi\)
−0.944674 + 0.328010i \(0.893622\pi\)
\(314\) −316.792 + 248.149i −1.00889 + 0.790284i
\(315\) 95.9527 + 39.7449i 0.304612 + 0.126174i
\(316\) 255.480 154.386i 0.808480 0.488565i
\(317\) 132.220 54.7674i 0.417099 0.172768i −0.164257 0.986418i \(-0.552523\pi\)
0.581356 + 0.813650i \(0.302523\pi\)
\(318\) 17.9996 + 64.5877i 0.0566024 + 0.203106i
\(319\) 136.473i 0.427814i
\(320\) 289.360 + 100.009i 0.904249 + 0.312528i
\(321\) −19.6641 −0.0612588
\(322\) −210.526 + 58.6701i −0.653806 + 0.182205i
\(323\) −20.3769 49.1941i −0.0630862 0.152304i
\(324\) −124.526 206.067i −0.384340 0.636009i
\(325\) 5.63171 13.5961i 0.0173283 0.0418343i
\(326\) −173.329 221.275i −0.531685 0.678759i
\(327\) 38.9723 38.9723i 0.119181 0.119181i
\(328\) 13.2713 + 442.757i 0.0404612 + 1.34987i
\(329\) −111.083 + 111.083i −0.337637 + 0.337637i
\(330\) 15.3146 126.042i 0.0464078 0.381945i
\(331\) 90.5653 218.644i 0.273611 0.660556i −0.726021 0.687672i \(-0.758633\pi\)
0.999632 + 0.0271166i \(0.00863253\pi\)
\(332\) −266.561 + 362.144i −0.802894 + 1.09080i
\(333\) 193.403 + 466.915i 0.580789 + 1.40215i
\(334\) 2.68624 4.76191i 0.00804262 0.0142572i
\(335\) 344.197 1.02745
\(336\) −28.9846 + 24.1398i −0.0862638 + 0.0718447i
\(337\) 166.520i 0.494124i 0.969000 + 0.247062i \(0.0794651\pi\)
−0.969000 + 0.247062i \(0.920535\pi\)
\(338\) −118.561 + 210.175i −0.350773 + 0.621818i
\(339\) 33.7362 13.9740i 0.0995168 0.0412212i
\(340\) −213.771 + 32.5001i −0.628740 + 0.0955885i
\(341\) −822.662 340.758i −2.41250 0.999290i
\(342\) 9.32775 76.7691i 0.0272741 0.224471i
\(343\) −13.0958 13.0958i −0.0381802 0.0381802i
\(344\) −126.289 280.784i −0.367118 0.816232i
\(345\) 124.487 + 124.487i 0.360831 + 0.360831i
\(346\) −136.011 173.634i −0.393094 0.501831i
\(347\) 173.116 + 71.7069i 0.498893 + 0.206648i 0.617917 0.786243i \(-0.287977\pi\)
−0.119025 + 0.992891i \(0.537977\pi\)
\(348\) 31.7098 + 7.82121i 0.0911202 + 0.0224747i
\(349\) 554.189 229.553i 1.58793 0.657744i 0.598290 0.801280i \(-0.295847\pi\)
0.989645 + 0.143536i \(0.0458473\pi\)
\(350\) −10.7885 + 3.00657i −0.0308242 + 0.00859021i
\(351\) 106.602i 0.303710i
\(352\) −392.118 270.894i −1.11397 0.769585i
\(353\) 172.236 0.487921 0.243961 0.969785i \(-0.421553\pi\)
0.243961 + 0.969785i \(0.421553\pi\)
\(354\) −2.63318 9.44863i −0.00743836 0.0266911i
\(355\) 41.6437 + 100.537i 0.117306 + 0.283202i
\(356\) −278.805 68.7671i −0.783161 0.193166i
\(357\) 10.1950 24.6130i 0.0285575 0.0689439i
\(358\) 7.55822 5.92050i 0.0211123 0.0165377i
\(359\) −191.682 + 191.682i −0.533934 + 0.533934i −0.921741 0.387807i \(-0.873233\pi\)
0.387807 + 0.921741i \(0.373233\pi\)
\(360\) −293.604 111.431i −0.815567 0.309530i
\(361\) −239.566 + 239.566i −0.663617 + 0.663617i
\(362\) 369.532 + 44.8996i 1.02081 + 0.124032i
\(363\) −34.3780 + 82.9959i −0.0947054 + 0.228639i
\(364\) −72.7486 + 11.0601i −0.199859 + 0.0303849i
\(365\) 145.369 + 350.952i 0.398271 + 0.961511i
\(366\) 176.611 + 99.6280i 0.482545 + 0.272208i
\(367\) 320.481 0.873244 0.436622 0.899645i \(-0.356175\pi\)
0.436622 + 0.899645i \(0.356175\pi\)
\(368\) 630.969 196.394i 1.71459 0.533680i
\(369\) 454.362i 1.23133i
\(370\) 513.202 + 289.502i 1.38703 + 0.782437i
\(371\) 91.9639 38.0927i 0.247881 0.102676i
\(372\) 126.322 171.619i 0.339577 0.461342i
\(373\) −496.494 205.655i −1.33108 0.551353i −0.400120 0.916463i \(-0.631031\pi\)
−0.930964 + 0.365110i \(0.881031\pi\)
\(374\) 334.145 + 40.6000i 0.893437 + 0.108556i
\(375\) 81.7314 + 81.7314i 0.217950 + 0.217950i
\(376\) 325.668 345.794i 0.866138 0.919666i
\(377\) 45.0517 + 45.0517i 0.119501 + 0.119501i
\(378\) 63.8663 50.0277i 0.168958 0.132348i
\(379\) 21.3731 + 8.85305i 0.0563935 + 0.0233590i 0.410702 0.911770i \(-0.365284\pi\)
−0.354308 + 0.935129i \(0.615284\pi\)
\(380\) −46.6322 77.1673i −0.122716 0.203072i
\(381\) −79.0909 + 32.7605i −0.207588 + 0.0859856i
\(382\) −182.280 654.076i −0.477174 1.71224i
\(383\) 64.0652i 0.167272i 0.996496 + 0.0836361i \(0.0266533\pi\)
−0.996496 + 0.0836361i \(0.973347\pi\)
\(384\) 85.4151 75.5850i 0.222435 0.196836i
\(385\) −188.498 −0.489606
\(386\) 582.404 162.307i 1.50882 0.420484i
\(387\) 120.853 + 291.766i 0.312283 + 0.753917i
\(388\) −438.622 + 265.059i −1.13047 + 0.683143i
\(389\) 70.9527 171.295i 0.182398 0.440347i −0.806062 0.591831i \(-0.798405\pi\)
0.988460 + 0.151484i \(0.0484053\pi\)
\(390\) 36.5527 + 46.6639i 0.0937250 + 0.119651i
\(391\) −330.022 + 330.022i −0.844047 + 0.844047i
\(392\) 40.7666 + 38.3938i 0.103996 + 0.0979434i
\(393\) 7.99674 7.99674i 0.0203479 0.0203479i
\(394\) −3.62245 + 29.8135i −0.00919405 + 0.0756687i
\(395\) −136.613 + 329.813i −0.345855 + 0.834969i
\(396\) 393.710 + 289.795i 0.994217 + 0.731807i
\(397\) 164.352 + 396.782i 0.413986 + 0.999450i 0.984057 + 0.177854i \(0.0569156\pi\)
−0.570071 + 0.821595i \(0.693084\pi\)
\(398\) −13.4697 + 23.8778i −0.0338434 + 0.0599945i
\(399\) 11.1087 0.0278415
\(400\) 32.3343 10.0643i 0.0808357 0.0251608i
\(401\) 24.6822i 0.0615516i −0.999526 0.0307758i \(-0.990202\pi\)
0.999526 0.0307758i \(-0.00979779\pi\)
\(402\) 63.0019 111.684i 0.156721 0.277821i
\(403\) 384.063 159.084i 0.953009 0.394749i
\(404\) −11.6879 76.8782i −0.0289305 0.190293i
\(405\) 266.023 + 110.190i 0.656847 + 0.272075i
\(406\) 5.84839 48.1333i 0.0144049 0.118555i
\(407\) −648.595 648.595i −1.59360 1.59360i
\(408\) −28.5833 + 75.3128i −0.0700570 + 0.184590i
\(409\) 139.250 + 139.250i 0.340465 + 0.340465i 0.856542 0.516077i \(-0.172608\pi\)
−0.516077 + 0.856542i \(0.672608\pi\)
\(410\) −326.666 417.027i −0.796746 1.01714i
\(411\) −128.308 53.1468i −0.312184 0.129311i
\(412\) −82.5818 + 334.815i −0.200441 + 0.812657i
\(413\) −13.4535 + 5.57263i −0.0325751 + 0.0134931i
\(414\) −652.962 + 181.970i −1.57720 + 0.439541i
\(415\) 537.768i 1.29583i
\(416\) 218.870 40.0181i 0.526131 0.0961973i
\(417\) −113.699 −0.272659
\(418\) 37.6794 + 135.205i 0.0901421 + 0.323457i
\(419\) −131.743 318.056i −0.314423 0.759084i −0.999530 0.0306423i \(-0.990245\pi\)
0.685107 0.728442i \(-0.259755\pi\)
\(420\) 10.8028 43.7981i 0.0257209 0.104281i
\(421\) −63.8154 + 154.064i −0.151581 + 0.365948i −0.981370 0.192129i \(-0.938461\pi\)
0.829789 + 0.558077i \(0.188461\pi\)
\(422\) −587.025 + 459.828i −1.39105 + 1.08964i
\(423\) −344.531 + 344.531i −0.814494 + 0.814494i
\(424\) −274.497 + 123.461i −0.647398 + 0.291182i
\(425\) −16.9121 + 16.9121i −0.0397933 + 0.0397933i
\(426\) 40.2444 + 4.88986i 0.0944704 + 0.0114785i
\(427\) 115.203 278.124i 0.269795 0.651344i
\(428\) −13.2678 87.2696i −0.0309994 0.203901i
\(429\) −35.3121 85.2509i −0.0823125 0.198720i
\(430\) 320.690 + 180.904i 0.745790 + 0.420706i
\(431\) −219.755 −0.509873 −0.254936 0.966958i \(-0.582055\pi\)
−0.254936 + 0.966958i \(0.582055\pi\)
\(432\) −188.495 + 156.987i −0.436330 + 0.363397i
\(433\) 821.109i 1.89633i 0.317784 + 0.948163i \(0.397061\pi\)
−0.317784 + 0.948163i \(0.602939\pi\)
\(434\) −275.546 155.438i −0.634899 0.358152i
\(435\) −36.0856 + 14.9472i −0.0829555 + 0.0343613i
\(436\) 199.255 + 146.664i 0.457007 + 0.336386i
\(437\) −179.800 74.4757i −0.411442 0.170425i
\(438\) 140.484 + 17.0694i 0.320740 + 0.0389712i
\(439\) −133.281 133.281i −0.303601 0.303601i 0.538820 0.842421i \(-0.318870\pi\)
−0.842421 + 0.538820i \(0.818870\pi\)
\(440\) 569.709 17.0766i 1.29479 0.0388104i
\(441\) −40.6177 40.6177i −0.0921035 0.0921035i
\(442\) −123.709 + 96.9037i −0.279885 + 0.219239i
\(443\) 666.135 + 275.922i 1.50369 + 0.622849i 0.974245 0.225494i \(-0.0723997\pi\)
0.529446 + 0.848343i \(0.322400\pi\)
\(444\) 187.873 113.532i 0.423138 0.255703i
\(445\) 317.279 131.421i 0.712987 0.295329i
\(446\) 228.086 + 818.439i 0.511403 + 1.83506i
\(447\) 43.4352i 0.0971704i
\(448\) −126.689 112.347i −0.282789 0.250774i
\(449\) −438.220 −0.975991 −0.487996 0.872846i \(-0.662272\pi\)
−0.487996 + 0.872846i \(0.662272\pi\)
\(450\) −33.4613 + 9.32513i −0.0743585 + 0.0207225i
\(451\) 315.578 + 761.873i 0.699730 + 1.68930i
\(452\) 84.7793 + 140.293i 0.187565 + 0.310383i
\(453\) 30.0734 72.6035i 0.0663871 0.160273i
\(454\) −123.304 157.412i −0.271594 0.346722i
\(455\) 62.2261 62.2261i 0.136761 0.136761i
\(456\) −33.5746 + 1.00637i −0.0736285 + 0.00220696i
\(457\) 345.291 345.291i 0.755561 0.755561i −0.219950 0.975511i \(-0.570590\pi\)
0.975511 + 0.219950i \(0.0705896\pi\)
\(458\) 11.1362 91.6528i 0.0243148 0.200115i
\(459\) 66.3009 160.065i 0.144446 0.348724i
\(460\) −468.480 + 636.468i −1.01844 + 1.38363i
\(461\) −11.5881 27.9761i −0.0251368 0.0606857i 0.910813 0.412820i \(-0.135456\pi\)
−0.935950 + 0.352134i \(0.885456\pi\)
\(462\) −34.5028 + 61.1634i −0.0746813 + 0.132388i
\(463\) −154.334 −0.333336 −0.166668 0.986013i \(-0.553301\pi\)
−0.166668 + 0.986013i \(0.553301\pi\)
\(464\) −13.3154 + 146.006i −0.0286970 + 0.314668i
\(465\) 254.847i 0.548058i
\(466\) −261.289 + 463.189i −0.560706 + 0.993968i
\(467\) −111.812 + 46.3138i −0.239425 + 0.0991731i −0.499170 0.866504i \(-0.666362\pi\)
0.259745 + 0.965677i \(0.416362\pi\)
\(468\) −225.635 + 34.3038i −0.482127 + 0.0732987i
\(469\) −175.877 72.8508i −0.375005 0.155332i
\(470\) −68.5190 + 563.924i −0.145785 + 1.19984i
\(471\) −126.775 126.775i −0.269162 0.269162i
\(472\) 40.1565 18.0613i 0.0850774 0.0382654i
\(473\) −405.294 405.294i −0.856858 0.856858i
\(474\) 82.0111 + 104.697i 0.173019 + 0.220879i
\(475\) −9.21394 3.81654i −0.0193978 0.00803482i
\(476\) 116.112 + 28.6388i 0.243932 + 0.0601656i
\(477\) 285.233 118.147i 0.597973 0.247689i
\(478\) −593.970 + 165.530i −1.24261 + 0.346296i
\(479\) 425.911i 0.889168i 0.895737 + 0.444584i \(0.146648\pi\)
−0.895737 + 0.444584i \(0.853352\pi\)
\(480\) −28.6820 + 133.352i −0.0597542 + 0.277817i
\(481\) 428.222 0.890274
\(482\) −47.8170 171.582i −0.0992055 0.355979i
\(483\) −37.2619 89.9583i −0.0771469 0.186249i
\(484\) −391.533 96.5713i −0.808952 0.199528i
\(485\) 234.545 566.241i 0.483598 1.16751i
\(486\) 301.700 236.327i 0.620781 0.486270i
\(487\) 338.444 338.444i 0.694957 0.694957i −0.268361 0.963318i \(-0.586482\pi\)
0.963318 + 0.268361i \(0.0864821\pi\)
\(488\) −322.988 + 851.026i −0.661860 + 1.74391i
\(489\) 88.5510 88.5510i 0.181086 0.181086i
\(490\) −66.4824 8.07788i −0.135678 0.0164855i
\(491\) 136.368 329.222i 0.277736 0.670514i −0.722036 0.691855i \(-0.756794\pi\)
0.999772 + 0.0213412i \(0.00679363\pi\)
\(492\) −195.109 + 29.6628i −0.396563 + 0.0602902i
\(493\) −39.6259 95.6654i −0.0803771 0.194048i
\(494\) −57.0717 32.1946i −0.115530 0.0651713i
\(495\) −584.642 −1.18109
\(496\) 846.881 + 444.827i 1.70742 + 0.896828i
\(497\) 60.1863i 0.121099i
\(498\) −174.493 98.4332i −0.350388 0.197657i
\(499\) −489.707 + 202.843i −0.981378 + 0.406500i −0.814936 0.579551i \(-0.803228\pi\)
−0.166442 + 0.986051i \(0.553228\pi\)
\(500\) −307.580 + 417.871i −0.615159 + 0.835743i
\(501\) 2.25045 + 0.932167i 0.00449192 + 0.00186061i
\(502\) 696.331 + 84.6070i 1.38711 + 0.168540i
\(503\) −180.106 180.106i −0.358063 0.358063i 0.505036 0.863098i \(-0.331479\pi\)
−0.863098 + 0.505036i \(0.831479\pi\)
\(504\) 126.441 + 119.081i 0.250875 + 0.236273i
\(505\) 65.7584 + 65.7584i 0.130215 + 0.130215i
\(506\) 968.497 758.643i 1.91403 1.49929i
\(507\) −99.3272 41.1427i −0.195912 0.0811493i
\(508\) −198.756 328.903i −0.391252 0.647446i
\(509\) 227.881 94.3912i 0.447702 0.185444i −0.147429 0.989073i \(-0.547100\pi\)
0.595132 + 0.803628i \(0.297100\pi\)
\(510\) −25.8619 92.8002i −0.0507096 0.181961i
\(511\) 210.097i 0.411149i
\(512\) 393.079 + 328.075i 0.767732 + 0.640771i
\(513\) 72.2430 0.140825
\(514\) 468.798 130.646i 0.912058 0.254176i
\(515\) −157.823 381.017i −0.306452 0.739840i
\(516\) 117.398 70.9439i 0.227516 0.137488i
\(517\) 338.414 817.004i 0.654573 1.58028i
\(518\) −200.961 256.551i −0.387956 0.495272i
\(519\) 69.4856 69.4856i 0.133884 0.133884i
\(520\) −182.432 + 193.707i −0.350831 + 0.372513i
\(521\) 434.527 434.527i 0.834024 0.834024i −0.154040 0.988065i \(-0.549229\pi\)
0.988065 + 0.154040i \(0.0492286\pi\)
\(522\) 18.1392 149.289i 0.0347495 0.285995i
\(523\) −137.314 + 331.505i −0.262551 + 0.633853i −0.999095 0.0425360i \(-0.986456\pi\)
0.736544 + 0.676389i \(0.236456\pi\)
\(524\) 40.8852 + 30.0941i 0.0780253 + 0.0574315i
\(525\) −1.90950 4.60995i −0.00363715 0.00878086i
\(526\) 314.485 557.490i 0.597880 1.05987i
\(527\) −675.616 −1.28200
\(528\) 98.7388 187.983i 0.187005 0.356029i
\(529\) 1176.83i 2.22463i
\(530\) 176.853 313.509i 0.333685 0.591527i
\(531\) −41.7272 + 17.2840i −0.0785822 + 0.0325498i
\(532\) 7.49529 + 49.3008i 0.0140889 + 0.0926707i
\(533\) −355.683 147.329i −0.667323 0.276414i
\(534\) 15.4316 127.005i 0.0288982 0.237838i
\(535\) 74.6467 + 74.6467i 0.139527 + 0.139527i
\(536\) 538.164 + 204.248i 1.00404 + 0.381060i
\(537\) 3.02468 + 3.02468i 0.00563256 + 0.00563256i
\(538\) 475.680 + 607.261i 0.884163 + 1.12874i
\(539\) 96.3187 + 39.8965i 0.178699 + 0.0740195i
\(540\) 70.2531 284.830i 0.130098 0.527463i
\(541\) −160.797 + 66.6045i −0.297223 + 0.123114i −0.526311 0.850292i \(-0.676425\pi\)
0.229089 + 0.973406i \(0.426425\pi\)
\(542\) −251.916 + 70.2048i −0.464789 + 0.129529i
\(543\) 165.849i 0.305432i
\(544\) −353.525 76.0380i −0.649863 0.139776i
\(545\) −295.885 −0.542908
\(546\) −8.80107 31.5808i −0.0161192 0.0578404i
\(547\) −139.041 335.675i −0.254189 0.613666i 0.744345 0.667795i \(-0.232762\pi\)
−0.998534 + 0.0541289i \(0.982762\pi\)
\(548\) 149.295 605.291i 0.272436 1.10455i
\(549\) 357.310 862.622i 0.650838 1.57126i
\(550\) 49.6311 38.8770i 0.0902383 0.0706854i
\(551\) 30.5310 30.5310i 0.0554101 0.0554101i
\(552\) 120.768 + 268.510i 0.218784 + 0.486432i
\(553\) 139.613 139.613i 0.252464 0.252464i
\(554\) −515.119 62.5890i −0.929817 0.112976i
\(555\) −100.462 + 242.536i −0.181012 + 0.437002i
\(556\) −76.7150 504.598i −0.137977 0.907550i
\(557\) −380.611 918.875i −0.683322 1.64969i −0.757819 0.652465i \(-0.773735\pi\)
0.0744964 0.997221i \(-0.476265\pi\)
\(558\) −854.628 482.103i −1.53159 0.863984i
\(559\) 267.587 0.478689
\(560\) 201.665 + 18.3914i 0.360117 + 0.0328418i
\(561\) 149.967i 0.267322i
\(562\) 290.784 + 164.034i 0.517410 + 0.291875i
\(563\) 257.179 106.527i 0.456802 0.189214i −0.142404 0.989809i \(-0.545483\pi\)
0.599206 + 0.800595i \(0.295483\pi\)
\(564\) 170.439 + 125.454i 0.302196 + 0.222436i
\(565\) −181.112 75.0192i −0.320553 0.132777i
\(566\) −447.134 54.3285i −0.789989 0.0959868i
\(567\) −112.610 112.610i −0.198607 0.198607i
\(568\) 5.45245 + 181.905i 0.00959938 + 0.320255i
\(569\) 5.38568 + 5.38568i 0.00946517 + 0.00946517i 0.711824 0.702358i \(-0.247870\pi\)
−0.702358 + 0.711824i \(0.747870\pi\)
\(570\) 31.6235 24.7713i 0.0554799 0.0434585i
\(571\) −121.268 50.2310i −0.212379 0.0879702i 0.273958 0.961742i \(-0.411667\pi\)
−0.486337 + 0.873772i \(0.661667\pi\)
\(572\) 354.519 214.236i 0.619789 0.374539i
\(573\) 279.489 115.768i 0.487764 0.202039i
\(574\) 78.6537 + 282.233i 0.137027 + 0.491695i
\(575\) 87.4160i 0.152028i
\(576\) −392.937 348.452i −0.682183 0.604952i
\(577\) −503.219 −0.872131 −0.436065 0.899915i \(-0.643628\pi\)
−0.436065 + 0.899915i \(0.643628\pi\)
\(578\) −310.764 + 86.6048i −0.537653 + 0.149835i
\(579\) 103.083 + 248.863i 0.178036 + 0.429816i
\(580\) −90.6835 150.064i −0.156351 0.258730i
\(581\) −113.821 + 274.788i −0.195905 + 0.472957i
\(582\) −140.801 179.749i −0.241927 0.308848i
\(583\) −396.219 + 396.219i −0.679620 + 0.679620i
\(584\) 19.0333 + 634.988i 0.0325912 + 1.08731i
\(585\) 192.999 192.999i 0.329913 0.329913i
\(586\) 94.0363 773.936i 0.160472 1.32071i
\(587\) 406.403 981.143i 0.692338 1.67145i −0.0476770 0.998863i \(-0.515182\pi\)
0.740015 0.672590i \(-0.234818\pi\)
\(588\) −14.7900 + 20.0935i −0.0251531 + 0.0341725i
\(589\) −107.809 260.274i −0.183038 0.441892i
\(590\) −25.8721 + 45.8637i −0.0438510 + 0.0777351i
\(591\) −13.3805 −0.0226405
\(592\) 630.619 + 757.183i 1.06523 + 1.27903i
\(593\) 351.316i 0.592439i −0.955120 0.296219i \(-0.904274\pi\)
0.955120 0.296219i \(-0.0957259\pi\)
\(594\) −224.380 + 397.761i −0.377745 + 0.669632i
\(595\) −132.134 + 54.7319i −0.222075 + 0.0919863i
\(596\) 192.766 29.3066i 0.323433 0.0491721i
\(597\) −11.2845 4.67419i −0.0189020 0.00782947i
\(598\) −69.2761 + 570.155i −0.115846 + 0.953436i
\(599\) 94.6896 + 94.6896i 0.158079 + 0.158079i 0.781715 0.623636i \(-0.214345\pi\)
−0.623636 + 0.781715i \(0.714345\pi\)
\(600\) 6.18884 + 13.7599i 0.0103147 + 0.0229332i
\(601\) 480.796 + 480.796i 0.799993 + 0.799993i 0.983094 0.183101i \(-0.0586135\pi\)
−0.183101 + 0.983094i \(0.558614\pi\)
\(602\) −125.577 160.314i −0.208599 0.266302i
\(603\) −545.497 225.952i −0.904639 0.374714i
\(604\) 342.507 + 84.4791i 0.567064 + 0.139866i
\(605\) 445.563 184.558i 0.736467 0.305055i
\(606\) 33.3736 9.30067i 0.0550719 0.0153476i
\(607\) 127.218i 0.209584i 0.994494 + 0.104792i \(0.0334177\pi\)
−0.994494 + 0.104792i \(0.966582\pi\)
\(608\) −27.1198 148.326i −0.0446049 0.243957i
\(609\) 21.6027 0.0354723
\(610\) −292.237 1048.63i −0.479076 1.71907i
\(611\) 157.990 + 381.421i 0.258576 + 0.624257i
\(612\) 360.129 + 88.8256i 0.588446 + 0.145140i
\(613\) −176.925 + 427.135i −0.288622 + 0.696794i −0.999982 0.00603352i \(-0.998079\pi\)
0.711360 + 0.702828i \(0.248079\pi\)
\(614\) 58.6783 45.9639i 0.0955673 0.0748597i
\(615\) 166.888 166.888i 0.271363 0.271363i
\(616\) −294.724 111.856i −0.478448 0.181584i
\(617\) 236.950 236.950i 0.384036 0.384036i −0.488518 0.872554i \(-0.662462\pi\)
0.872554 + 0.488518i \(0.162462\pi\)
\(618\) −152.519 18.5317i −0.246795 0.0299866i
\(619\) −148.266 + 357.945i −0.239524 + 0.578263i −0.997234 0.0743290i \(-0.976318\pi\)
0.757709 + 0.652592i \(0.226318\pi\)
\(620\) −1131.01 + 171.950i −1.82422 + 0.277339i
\(621\) −242.324 585.022i −0.390216 0.942064i
\(622\) 100.980 + 56.9639i 0.162348 + 0.0915819i
\(623\) −189.939 −0.304878
\(624\) 29.4610 + 94.6513i 0.0472131 + 0.151685i
\(625\) 567.607i 0.908172i
\(626\) 475.493 + 268.229i 0.759573 + 0.428482i
\(627\) −57.7735 + 23.9306i −0.0921427 + 0.0381667i
\(628\) 477.093 648.168i 0.759702 1.03212i
\(629\) −642.980 266.331i −1.02223 0.423419i
\(630\) −206.200 25.0542i −0.327302 0.0397685i
\(631\) −580.664 580.664i −0.920228 0.920228i 0.0768174 0.997045i \(-0.475524\pi\)
−0.997045 + 0.0768174i \(0.975524\pi\)
\(632\) −409.312 + 434.608i −0.647645 + 0.687670i
\(633\) −234.919 234.919i −0.371119 0.371119i
\(634\) −225.329 + 176.504i −0.355408 + 0.278398i
\(635\) 424.599 + 175.875i 0.668659 + 0.276968i
\(636\) −69.3553 114.770i −0.109049 0.180455i
\(637\) −44.9667 + 18.6258i −0.0705913 + 0.0292399i
\(638\) 73.2734 + 262.926i 0.114849 + 0.412110i
\(639\) 186.673i 0.292132i
\(640\) −611.171 37.3160i −0.954955 0.0583063i
\(641\) 528.148 0.823944 0.411972 0.911196i \(-0.364840\pi\)
0.411972 + 0.911196i \(0.364840\pi\)
\(642\) 37.8845 10.5578i 0.0590102 0.0164452i
\(643\) −30.4247 73.4517i −0.0473168 0.114233i 0.898454 0.439068i \(-0.144691\pi\)
−0.945771 + 0.324835i \(0.894691\pi\)
\(644\) 374.095 226.066i 0.580893 0.351034i
\(645\) −62.7765 + 151.556i −0.0973280 + 0.234970i
\(646\) 65.6705 + 83.8361i 0.101657 + 0.129777i
\(647\) −561.598 + 561.598i −0.868003 + 0.868003i −0.992251 0.124248i \(-0.960348\pi\)
0.124248 + 0.992251i \(0.460348\pi\)
\(648\) 350.549 + 330.146i 0.540971 + 0.509485i
\(649\) 57.9634 57.9634i 0.0893119 0.0893119i
\(650\) −3.55008 + 29.2178i −0.00546167 + 0.0449505i
\(651\) 53.9395 130.221i 0.0828563 0.200033i
\(652\) 452.738 + 333.244i 0.694384 + 0.511110i
\(653\) −116.030 280.122i −0.177688 0.428977i 0.809793 0.586716i \(-0.199580\pi\)
−0.987481 + 0.157739i \(0.949580\pi\)
\(654\) −54.1589 + 96.0080i −0.0828118 + 0.146801i
\(655\) −60.7128 −0.0926912
\(656\) −263.288 845.883i −0.401354 1.28946i
\(657\) 651.632i 0.991830i
\(658\) 154.369 273.651i 0.234603 0.415883i
\(659\) 672.170 278.422i 1.01999 0.422492i 0.190897 0.981610i \(-0.438860\pi\)
0.829088 + 0.559118i \(0.188860\pi\)
\(660\) 38.1680 + 251.053i 0.0578304 + 0.380383i
\(661\) 1122.15 + 464.811i 1.69766 + 0.703193i 0.999913 0.0131540i \(-0.00418716\pi\)
0.697744 + 0.716347i \(0.254187\pi\)
\(662\) −57.0900 + 469.861i −0.0862387 + 0.709761i
\(663\) −49.5065 49.5065i −0.0746704 0.0746704i
\(664\) 319.114 840.820i 0.480593 1.26629i
\(665\) −42.1698 42.1698i −0.0634133 0.0634133i
\(666\) −623.297 795.713i −0.935882 1.19476i
\(667\) −349.649 144.829i −0.524211 0.217135i
\(668\) −2.61855 + 10.6165i −0.00391999 + 0.0158930i
\(669\) −349.721 + 144.859i −0.522753 + 0.216531i
\(670\) −663.124 + 184.802i −0.989737 + 0.275824i
\(671\) 1694.61i 2.52550i
\(672\) 42.8805 62.0695i 0.0638103 0.0923653i
\(673\) 1306.98 1.94202 0.971008 0.239049i \(-0.0768356\pi\)
0.971008 + 0.239049i \(0.0768356\pi\)
\(674\) −89.4058 320.814i −0.132650 0.475986i
\(675\) −12.4180 29.9797i −0.0183970 0.0444144i
\(676\) 115.574 468.576i 0.170967 0.693159i
\(677\) 99.1899 239.465i 0.146514 0.353716i −0.833537 0.552464i \(-0.813688\pi\)
0.980051 + 0.198748i \(0.0636877\pi\)
\(678\) −57.4929 + 45.0353i −0.0847978 + 0.0664238i
\(679\) −239.695 + 239.695i −0.353012 + 0.353012i
\(680\) 394.399 177.390i 0.579999 0.260867i
\(681\) 62.9938 62.9938i 0.0925019 0.0925019i
\(682\) 1767.88 + 214.805i 2.59221 + 0.314963i
\(683\) 11.7575 28.3852i 0.0172146 0.0415596i −0.915039 0.403366i \(-0.867840\pi\)
0.932253 + 0.361807i \(0.117840\pi\)
\(684\) 23.2472 + 152.910i 0.0339872 + 0.223553i
\(685\) 285.318 + 688.819i 0.416523 + 1.00557i
\(686\) 32.2614 + 18.1989i 0.0470283 + 0.0265291i
\(687\) 41.1346 0.0598757
\(688\) 394.061 + 473.149i 0.572763 + 0.687716i
\(689\) 261.596i 0.379674i
\(690\) −306.672 172.996i −0.444452 0.250719i
\(691\) 1107.27 458.644i 1.60241 0.663740i 0.610656 0.791896i \(-0.290906\pi\)
0.991754 + 0.128156i \(0.0409057\pi\)
\(692\) 355.261 + 261.495i 0.513384 + 0.377883i
\(693\) 298.740 + 123.742i 0.431082 + 0.178560i
\(694\) −372.022 45.2022i −0.536055 0.0651328i
\(695\) 431.612 + 431.612i 0.621024 + 0.621024i
\(696\) −65.2910 + 1.95704i −0.0938088 + 0.00281184i
\(697\) 442.431 + 442.431i 0.634765 + 0.634765i
\(698\) −944.444 + 739.801i −1.35307 + 1.05989i
\(699\) −218.900 90.6715i −0.313162 0.129716i
\(700\) 19.1707 11.5848i 0.0273867 0.0165498i
\(701\) −360.890 + 149.486i −0.514822 + 0.213246i −0.624941 0.780672i \(-0.714877\pi\)
0.110119 + 0.993918i \(0.464877\pi\)
\(702\) −57.2356 205.378i −0.0815322 0.292562i
\(703\) 290.200i 0.412803i
\(704\) 900.895 + 311.368i 1.27968 + 0.442285i
\(705\) −253.094 −0.358998
\(706\) −331.828 + 92.4750i −0.470011 + 0.130984i
\(707\) −19.6831 47.5193i −0.0278403 0.0672125i
\(708\) 10.1461 + 16.7898i 0.0143306 + 0.0237144i
\(709\) −427.671 + 1032.49i −0.603203 + 1.45626i 0.267064 + 0.963679i \(0.413947\pi\)
−0.870267 + 0.492581i \(0.836053\pi\)
\(710\) −134.209 171.334i −0.189027 0.241315i
\(711\) 433.020 433.020i 0.609029 0.609029i
\(712\) 574.064 17.2071i 0.806269 0.0241673i
\(713\) −1746.07 + 1746.07i −2.44891 + 2.44891i
\(714\) −6.42668 + 52.8928i −0.00900095 + 0.0740795i
\(715\) −189.572 + 457.668i −0.265136 + 0.640096i
\(716\) −11.3828 + 15.4644i −0.0158977 + 0.0215984i
\(717\) −105.130 253.805i −0.146624 0.353982i
\(718\) 266.376 472.208i 0.370998 0.657671i
\(719\) −832.395 −1.15771 −0.578856 0.815430i \(-0.696501\pi\)
−0.578856 + 0.815430i \(0.696501\pi\)
\(720\) 625.481 + 57.0424i 0.868724 + 0.0792256i
\(721\) 228.096i 0.316360i
\(722\) 332.919 590.168i 0.461106 0.817407i
\(723\) 73.3174 30.3691i 0.101407 0.0420042i
\(724\) −736.042 + 111.902i −1.01663 + 0.154561i
\(725\) −17.9179 7.42184i −0.0247144 0.0102370i
\(726\) 21.6710 178.357i 0.0298499 0.245670i
\(727\) 749.215 + 749.215i 1.03056 + 1.03056i 0.999518 + 0.0310395i \(0.00988178\pi\)
0.0310395 + 0.999518i \(0.490118\pi\)
\(728\) 134.218 60.3675i 0.184365 0.0829224i
\(729\) −262.327 262.327i −0.359846 0.359846i
\(730\) −468.494 598.088i −0.641773 0.819299i
\(731\) −401.785 166.425i −0.549637 0.227667i
\(732\) −393.748 97.1177i −0.537907 0.132674i
\(733\) 600.300 248.652i 0.818963 0.339226i 0.0664391 0.997790i \(-0.478836\pi\)
0.752524 + 0.658565i \(0.228836\pi\)
\(734\) −617.433 + 172.069i −0.841189 + 0.234426i
\(735\) 29.8379i 0.0405958i
\(736\) −1110.17 + 717.142i −1.50838 + 0.974378i
\(737\) 1071.62 1.45404
\(738\) 243.951 + 875.367i 0.330556 + 1.18613i
\(739\) −215.738 520.838i −0.291932 0.704787i 0.708067 0.706146i \(-0.249568\pi\)
−0.999999 + 0.00135834i \(0.999568\pi\)
\(740\) −1144.16 282.207i −1.54617 0.381361i
\(741\) 11.1721 26.9717i 0.0150770 0.0363991i
\(742\) −156.724 + 122.765i −0.211218 + 0.165451i
\(743\) −321.952 + 321.952i −0.433313 + 0.433313i −0.889754 0.456441i \(-0.849124\pi\)
0.456441 + 0.889754i \(0.349124\pi\)
\(744\) −151.227 + 398.462i −0.203263 + 0.535568i
\(745\) −164.884 + 164.884i −0.221321 + 0.221321i
\(746\) 1066.96 + 129.639i 1.43024 + 0.173779i
\(747\) −353.025 + 852.277i −0.472590 + 1.14093i
\(748\) −665.558 + 101.186i −0.889783 + 0.135275i
\(749\) −22.3436 53.9423i −0.0298313 0.0720190i
\(750\) −201.345 113.580i −0.268460 0.151440i
\(751\) −112.921 −0.150360 −0.0751802 0.997170i \(-0.523953\pi\)
−0.0751802 + 0.997170i \(0.523953\pi\)
\(752\) −441.767 + 841.056i −0.587456 + 1.11843i
\(753\) 312.520i 0.415033i
\(754\) −110.985 62.6074i −0.147194 0.0830336i
\(755\) −389.771 + 161.448i −0.516253 + 0.213839i
\(756\) −96.1835 + 130.673i −0.127227 + 0.172848i
\(757\) 525.784 + 217.787i 0.694562 + 0.287697i 0.701900 0.712276i \(-0.252336\pi\)
−0.00733715 + 0.999973i