Properties

Label 224.3.w.a.43.3
Level 224
Weight 3
Character 224.43
Analytic conductor 6.104
Analytic rank 0
Dimension 192
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(48\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 43.3
Character \(\chi\) \(=\) 224.43
Dual form 224.3.w.a.99.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.99185 - 0.180328i) q^{2} +(0.825363 + 1.99260i) q^{3} +(3.93496 + 0.718374i) q^{4} +(0.360772 - 0.870982i) q^{5} +(-1.28468 - 4.11781i) q^{6} +(1.87083 - 1.87083i) q^{7} +(-7.70833 - 2.14048i) q^{8} +(3.07472 - 3.07472i) q^{9} +O(q^{10})\) \(q+(-1.99185 - 0.180328i) q^{2} +(0.825363 + 1.99260i) q^{3} +(3.93496 + 0.718374i) q^{4} +(0.360772 - 0.870982i) q^{5} +(-1.28468 - 4.11781i) q^{6} +(1.87083 - 1.87083i) q^{7} +(-7.70833 - 2.14048i) q^{8} +(3.07472 - 3.07472i) q^{9} +(-0.875668 + 1.66981i) q^{10} +(5.69947 - 13.7597i) q^{11} +(1.81634 + 8.43374i) q^{12} +(2.01655 + 4.86839i) q^{13} +(-4.06378 + 3.38905i) q^{14} +2.03329 q^{15} +(14.9679 + 5.65355i) q^{16} -19.7416i q^{17} +(-6.67884 + 5.56993i) q^{18} +(-23.8235 + 9.86802i) q^{19} +(2.04532 - 3.16811i) q^{20} +(5.27193 + 2.18371i) q^{21} +(-13.8338 + 26.3796i) q^{22} +(18.8473 + 18.8473i) q^{23} +(-2.09705 - 17.1263i) q^{24} +(17.0492 + 17.0492i) q^{25} +(-3.13877 - 10.0608i) q^{26} +(26.5979 + 11.0172i) q^{27} +(8.70560 - 6.01769i) q^{28} +(45.5859 - 18.8823i) q^{29} +(-4.05002 - 0.366659i) q^{30} -37.3014i q^{31} +(-28.7943 - 13.9602i) q^{32} +32.1218 q^{33} +(-3.55997 + 39.3224i) q^{34} +(-0.954514 - 2.30440i) q^{35} +(14.3077 - 9.89010i) q^{36} +(19.3858 - 46.8015i) q^{37} +(49.2324 - 15.3596i) q^{38} +(-8.03638 + 8.03638i) q^{39} +(-4.64527 + 5.94159i) q^{40} +(-16.8279 + 16.8279i) q^{41} +(-10.1071 - 5.30030i) q^{42} +(-31.7055 + 76.5439i) q^{43} +(32.3118 - 50.0497i) q^{44} +(-1.56875 - 3.78730i) q^{45} +(-34.1423 - 40.9397i) q^{46} +83.8956 q^{47} +(1.08866 + 34.4913i) q^{48} -7.00000i q^{49} +(-30.8851 - 37.0340i) q^{50} +(39.3372 - 16.2940i) q^{51} +(4.43774 + 20.6056i) q^{52} +(-25.3103 - 10.4839i) q^{53} +(-50.9924 - 26.7410i) q^{54} +(-9.92827 - 9.92827i) q^{55} +(-18.4254 + 10.4165i) q^{56} +(-39.3261 - 39.3261i) q^{57} +(-94.2055 + 29.3904i) q^{58} +(-37.1064 - 15.3700i) q^{59} +(8.00092 + 1.46066i) q^{60} +(-47.4525 + 19.6555i) q^{61} +(-6.72648 + 74.2989i) q^{62} -11.5045i q^{63} +(54.8367 + 32.9990i) q^{64} +4.96779 q^{65} +(-63.9820 - 5.79246i) q^{66} +(31.7213 + 76.5820i) q^{67} +(14.1819 - 77.6826i) q^{68} +(-21.9993 + 53.1110i) q^{69} +(1.48570 + 4.76216i) q^{70} +(-22.6464 + 22.6464i) q^{71} +(-30.2823 + 17.1196i) q^{72} +(37.4417 - 37.4417i) q^{73} +(-47.0533 + 89.7260i) q^{74} +(-19.9005 + 48.0441i) q^{75} +(-100.834 + 21.7161i) q^{76} +(-15.0794 - 36.4048i) q^{77} +(17.4565 - 14.5581i) q^{78} -11.5269 q^{79} +(10.3241 - 10.9971i) q^{80} +22.9575i q^{81} +(36.5533 - 30.4842i) q^{82} +(-147.866 + 61.2479i) q^{83} +(19.1762 + 12.3800i) q^{84} +(-17.1946 - 7.12224i) q^{85} +(76.9558 - 146.747i) q^{86} +(75.2499 + 75.2499i) q^{87} +(-73.3858 + 93.8650i) q^{88} +(-103.987 - 103.987i) q^{89} +(2.44176 + 7.82663i) q^{90} +(12.8805 + 5.33530i) q^{91} +(60.6239 + 87.7027i) q^{92} +(74.3269 - 30.7872i) q^{93} +(-167.108 - 15.1287i) q^{94} +24.3100i q^{95} +(4.05129 - 68.8979i) q^{96} -82.5634 q^{97} +(-1.26230 + 13.9430i) q^{98} +(-24.7830 - 59.8315i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192q + O(q^{10}) \) \( 192q + 80q^{10} + 96q^{12} - 20q^{16} - 60q^{18} - 260q^{22} + 64q^{23} - 144q^{24} - 200q^{26} + 192q^{27} - 40q^{30} + 40q^{32} + 120q^{34} + 464q^{36} + 504q^{38} - 384q^{39} + 360q^{40} - 96q^{43} + 52q^{44} + 64q^{46} - 104q^{48} - 312q^{50} - 384q^{51} - 320q^{52} + 160q^{53} - 576q^{54} - 512q^{55} - 196q^{56} - 360q^{58} - 872q^{60} + 128q^{61} - 408q^{62} + 832q^{66} + 160q^{67} + 856q^{68} - 384q^{69} + 336q^{70} + 1488q^{72} + 308q^{74} + 768q^{75} + 1024q^{76} - 224q^{77} - 408q^{78} + 1024q^{79} - 1040q^{80} - 240q^{82} - 1384q^{86} + 896q^{87} - 560q^{88} - 1320q^{90} - 380q^{92} - 936q^{94} - 1088q^{96} - 512q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99185 0.180328i −0.995927 0.0901639i
\(3\) 0.825363 + 1.99260i 0.275121 + 0.664201i 0.999687 0.0250040i \(-0.00795985\pi\)
−0.724566 + 0.689205i \(0.757960\pi\)
\(4\) 3.93496 + 0.718374i 0.983741 + 0.179593i
\(5\) 0.360772 0.870982i 0.0721545 0.174196i −0.883688 0.468077i \(-0.844947\pi\)
0.955842 + 0.293881i \(0.0949469\pi\)
\(6\) −1.28468 4.11781i −0.214114 0.686302i
\(7\) 1.87083 1.87083i 0.267261 0.267261i
\(8\) −7.70833 2.14048i −0.963541 0.267560i
\(9\) 3.07472 3.07472i 0.341635 0.341635i
\(10\) −0.875668 + 1.66981i −0.0875668 + 0.166981i
\(11\) 5.69947 13.7597i 0.518133 1.25088i −0.420915 0.907100i \(-0.638291\pi\)
0.939048 0.343785i \(-0.111709\pi\)
\(12\) 1.81634 + 8.43374i 0.151362 + 0.702812i
\(13\) 2.01655 + 4.86839i 0.155119 + 0.374491i 0.982265 0.187496i \(-0.0600371\pi\)
−0.827146 + 0.561987i \(0.810037\pi\)
\(14\) −4.06378 + 3.38905i −0.290270 + 0.242075i
\(15\) 2.03329 0.135553
\(16\) 14.9679 + 5.65355i 0.935492 + 0.353347i
\(17\) 19.7416i 1.16127i −0.814163 0.580636i \(-0.802804\pi\)
0.814163 0.580636i \(-0.197196\pi\)
\(18\) −6.67884 + 5.56993i −0.371047 + 0.309441i
\(19\) −23.8235 + 9.86802i −1.25387 + 0.519370i −0.908023 0.418921i \(-0.862408\pi\)
−0.345847 + 0.938291i \(0.612408\pi\)
\(20\) 2.04532 3.16811i 0.102266 0.158406i
\(21\) 5.27193 + 2.18371i 0.251044 + 0.103986i
\(22\) −13.8338 + 26.3796i −0.628808 + 1.19907i
\(23\) 18.8473 + 18.8473i 0.819447 + 0.819447i 0.986028 0.166581i \(-0.0532728\pi\)
−0.166581 + 0.986028i \(0.553273\pi\)
\(24\) −2.09705 17.1263i −0.0873770 0.713597i
\(25\) 17.0492 + 17.0492i 0.681969 + 0.681969i
\(26\) −3.13877 10.0608i −0.120722 0.386952i
\(27\) 26.5979 + 11.0172i 0.985107 + 0.408045i
\(28\) 8.70560 6.01769i 0.310914 0.214917i
\(29\) 45.5859 18.8823i 1.57193 0.651114i 0.584820 0.811163i \(-0.301165\pi\)
0.987109 + 0.160049i \(0.0511652\pi\)
\(30\) −4.05002 0.366659i −0.135001 0.0122220i
\(31\) 37.3014i 1.20327i −0.798771 0.601636i \(-0.794516\pi\)
0.798771 0.601636i \(-0.205484\pi\)
\(32\) −28.7943 13.9602i −0.899823 0.436255i
\(33\) 32.1218 0.973389
\(34\) −3.55997 + 39.3224i −0.104705 + 1.15654i
\(35\) −0.954514 2.30440i −0.0272718 0.0658400i
\(36\) 14.3077 9.89010i 0.397436 0.274725i
\(37\) 19.3858 46.8015i 0.523941 1.26491i −0.411496 0.911412i \(-0.634993\pi\)
0.935437 0.353494i \(-0.115007\pi\)
\(38\) 49.2324 15.3596i 1.29559 0.404200i
\(39\) −8.03638 + 8.03638i −0.206061 + 0.206061i
\(40\) −4.64527 + 5.94159i −0.116132 + 0.148540i
\(41\) −16.8279 + 16.8279i −0.410437 + 0.410437i −0.881891 0.471454i \(-0.843729\pi\)
0.471454 + 0.881891i \(0.343729\pi\)
\(42\) −10.1071 5.30030i −0.240646 0.126198i
\(43\) −31.7055 + 76.5439i −0.737338 + 1.78009i −0.120935 + 0.992660i \(0.538589\pi\)
−0.616403 + 0.787431i \(0.711411\pi\)
\(44\) 32.3118 50.0497i 0.734360 1.13749i
\(45\) −1.56875 3.78730i −0.0348611 0.0841621i
\(46\) −34.1423 40.9397i −0.742224 0.889993i
\(47\) 83.8956 1.78501 0.892506 0.451035i \(-0.148945\pi\)
0.892506 + 0.451035i \(0.148945\pi\)
\(48\) 1.08866 + 34.4913i 0.0226804 + 0.718568i
\(49\) 7.00000i 0.142857i
\(50\) −30.8851 37.0340i −0.617702 0.740680i
\(51\) 39.3372 16.2940i 0.771319 0.319491i
\(52\) 4.43774 + 20.6056i 0.0853411 + 0.396261i
\(53\) −25.3103 10.4839i −0.477553 0.197809i 0.130905 0.991395i \(-0.458212\pi\)
−0.608458 + 0.793586i \(0.708212\pi\)
\(54\) −50.9924 26.7410i −0.944303 0.495204i
\(55\) −9.92827 9.92827i −0.180514 0.180514i
\(56\) −18.4254 + 10.4165i −0.329026 + 0.186009i
\(57\) −39.3261 39.3261i −0.689932 0.689932i
\(58\) −94.2055 + 29.3904i −1.62423 + 0.506731i
\(59\) −37.1064 15.3700i −0.628922 0.260508i 0.0453732 0.998970i \(-0.485552\pi\)
−0.674295 + 0.738462i \(0.735552\pi\)
\(60\) 8.00092 + 1.46066i 0.133349 + 0.0243444i
\(61\) −47.4525 + 19.6555i −0.777909 + 0.322221i −0.736071 0.676904i \(-0.763321\pi\)
−0.0418379 + 0.999124i \(0.513321\pi\)
\(62\) −6.72648 + 74.2989i −0.108492 + 1.19837i
\(63\) 11.5045i 0.182612i
\(64\) 54.8367 + 32.9990i 0.856823 + 0.515610i
\(65\) 4.96779 0.0764276
\(66\) −63.9820 5.79246i −0.969424 0.0877646i
\(67\) 31.7213 + 76.5820i 0.473452 + 1.14301i 0.962627 + 0.270829i \(0.0872979\pi\)
−0.489175 + 0.872186i \(0.662702\pi\)
\(68\) 14.1819 77.6826i 0.208557 1.14239i
\(69\) −21.9993 + 53.1110i −0.318830 + 0.769725i
\(70\) 1.48570 + 4.76216i 0.0212244 + 0.0680308i
\(71\) −22.6464 + 22.6464i −0.318963 + 0.318963i −0.848369 0.529406i \(-0.822415\pi\)
0.529406 + 0.848369i \(0.322415\pi\)
\(72\) −30.2823 + 17.1196i −0.420587 + 0.237772i
\(73\) 37.4417 37.4417i 0.512899 0.512899i −0.402514 0.915414i \(-0.631864\pi\)
0.915414 + 0.402514i \(0.131864\pi\)
\(74\) −47.0533 + 89.7260i −0.635856 + 1.21251i
\(75\) −19.9005 + 48.0441i −0.265340 + 0.640588i
\(76\) −100.834 + 21.7161i −1.32676 + 0.285739i
\(77\) −15.0794 36.4048i −0.195836 0.472790i
\(78\) 17.4565 14.5581i 0.223801 0.186642i
\(79\) −11.5269 −0.145910 −0.0729549 0.997335i \(-0.523243\pi\)
−0.0729549 + 0.997335i \(0.523243\pi\)
\(80\) 10.3241 10.9971i 0.129052 0.137464i
\(81\) 22.9575i 0.283426i
\(82\) 36.5533 30.4842i 0.445772 0.371759i
\(83\) −147.866 + 61.2479i −1.78151 + 0.737927i −0.789204 + 0.614131i \(0.789507\pi\)
−0.992308 + 0.123796i \(0.960493\pi\)
\(84\) 19.1762 + 12.3800i 0.228288 + 0.147381i
\(85\) −17.1946 7.12224i −0.202289 0.0837910i
\(86\) 76.9558 146.747i 0.894835 1.70636i
\(87\) 75.2499 + 75.2499i 0.864942 + 0.864942i
\(88\) −73.3858 + 93.8650i −0.833930 + 1.06665i
\(89\) −103.987 103.987i −1.16839 1.16839i −0.982586 0.185806i \(-0.940510\pi\)
−0.185806 0.982586i \(-0.559490\pi\)
\(90\) 2.44176 + 7.82663i 0.0271307 + 0.0869625i
\(91\) 12.8805 + 5.33530i 0.141544 + 0.0586296i
\(92\) 60.6239 + 87.7027i 0.658956 + 0.953290i
\(93\) 74.3269 30.7872i 0.799214 0.331045i
\(94\) −167.108 15.1287i −1.77774 0.160944i
\(95\) 24.3100i 0.255894i
\(96\) 4.05129 68.8979i 0.0422009 0.717687i
\(97\) −82.5634 −0.851169 −0.425584 0.904919i \(-0.639931\pi\)
−0.425584 + 0.904919i \(0.639931\pi\)
\(98\) −1.26230 + 13.9430i −0.0128806 + 0.142275i
\(99\) −24.7830 59.8315i −0.250334 0.604359i
\(100\) 54.8403 + 79.3358i 0.548403 + 0.793358i
\(101\) 44.0037 106.234i 0.435680 1.05183i −0.541745 0.840543i \(-0.682236\pi\)
0.977425 0.211282i \(-0.0677639\pi\)
\(102\) −81.2923 + 25.3617i −0.796983 + 0.248644i
\(103\) −11.9420 + 11.9420i −0.115942 + 0.115942i −0.762697 0.646756i \(-0.776125\pi\)
0.646756 + 0.762697i \(0.276125\pi\)
\(104\) −5.12357 41.8435i −0.0492651 0.402342i
\(105\) 3.80394 3.80394i 0.0362280 0.0362280i
\(106\) 48.5239 + 25.4465i 0.457772 + 0.240061i
\(107\) 21.5408 52.0041i 0.201316 0.486020i −0.790689 0.612218i \(-0.790278\pi\)
0.992005 + 0.126198i \(0.0402775\pi\)
\(108\) 96.7472 + 62.4595i 0.895808 + 0.578329i
\(109\) 34.1859 + 82.5321i 0.313632 + 0.757175i 0.999564 + 0.0295097i \(0.00939461\pi\)
−0.685932 + 0.727665i \(0.740605\pi\)
\(110\) 17.9853 + 21.5660i 0.163503 + 0.196055i
\(111\) 109.257 0.984299
\(112\) 38.5792 17.4255i 0.344457 0.155585i
\(113\) 54.0821i 0.478603i −0.970945 0.239301i \(-0.923082\pi\)
0.970945 0.239301i \(-0.0769184\pi\)
\(114\) 71.2403 + 85.4235i 0.624915 + 0.749329i
\(115\) 23.2152 9.61605i 0.201871 0.0836179i
\(116\) 192.944 41.5535i 1.66331 0.358220i
\(117\) 21.1692 + 8.76859i 0.180934 + 0.0749452i
\(118\) 71.1389 + 37.3060i 0.602872 + 0.316153i
\(119\) −36.9332 36.9332i −0.310363 0.310363i
\(120\) −15.6733 4.35221i −0.130611 0.0362685i
\(121\) −71.2864 71.2864i −0.589144 0.589144i
\(122\) 98.0628 30.5938i 0.803794 0.250769i
\(123\) −47.4205 19.6422i −0.385533 0.159693i
\(124\) 26.7963 146.780i 0.216100 1.18371i
\(125\) 42.7750 17.7180i 0.342200 0.141744i
\(126\) −2.07459 + 22.9154i −0.0164650 + 0.181868i
\(127\) 48.1308i 0.378983i −0.981882 0.189491i \(-0.939316\pi\)
0.981882 0.189491i \(-0.0606839\pi\)
\(128\) −103.276 75.6178i −0.806844 0.590764i
\(129\) −178.690 −1.38520
\(130\) −9.89512 0.895832i −0.0761163 0.00689101i
\(131\) 59.6654 + 144.045i 0.455461 + 1.09958i 0.970216 + 0.242242i \(0.0778829\pi\)
−0.514755 + 0.857337i \(0.672117\pi\)
\(132\) 126.398 + 23.0755i 0.957562 + 0.174814i
\(133\) −26.1083 + 63.0311i −0.196303 + 0.473918i
\(134\) −49.3743 158.260i −0.368465 1.18105i
\(135\) 19.1916 19.1916i 0.142160 0.142160i
\(136\) −42.2565 + 152.175i −0.310710 + 1.11893i
\(137\) 40.9566 40.9566i 0.298953 0.298953i −0.541650 0.840604i \(-0.682200\pi\)
0.840604 + 0.541650i \(0.182200\pi\)
\(138\) 53.3968 101.822i 0.386933 0.737842i
\(139\) −22.0683 + 53.2776i −0.158765 + 0.383292i −0.983166 0.182713i \(-0.941512\pi\)
0.824401 + 0.566006i \(0.191512\pi\)
\(140\) −2.10056 9.75343i −0.0150040 0.0696674i
\(141\) 69.2444 + 167.171i 0.491095 + 1.18561i
\(142\) 49.1921 41.0245i 0.346423 0.288905i
\(143\) 78.4810 0.548818
\(144\) 63.4050 28.6389i 0.440313 0.198881i
\(145\) 46.5167i 0.320805i
\(146\) −81.3301 + 67.8265i −0.557055 + 0.464565i
\(147\) 13.9482 5.77754i 0.0948859 0.0393030i
\(148\) 109.903 170.236i 0.742591 1.15024i
\(149\) −76.6801 31.7619i −0.514632 0.213167i 0.110225 0.993907i \(-0.464843\pi\)
−0.624857 + 0.780739i \(0.714843\pi\)
\(150\) 48.3026 92.1083i 0.322018 0.614055i
\(151\) −42.2155 42.2155i −0.279573 0.279573i 0.553366 0.832938i \(-0.313343\pi\)
−0.832938 + 0.553366i \(0.813343\pi\)
\(152\) 204.762 25.0722i 1.34712 0.164949i
\(153\) −60.6999 60.6999i −0.396732 0.396732i
\(154\) 23.4711 + 75.2323i 0.152410 + 0.488522i
\(155\) −32.4888 13.4573i −0.209605 0.0868214i
\(156\) −37.3960 + 25.8497i −0.239718 + 0.165703i
\(157\) −11.7705 + 4.87549i −0.0749712 + 0.0310541i −0.419854 0.907592i \(-0.637919\pi\)
0.344883 + 0.938646i \(0.387919\pi\)
\(158\) 22.9598 + 2.07862i 0.145315 + 0.0131558i
\(159\) 59.0864i 0.371613i
\(160\) −22.5473 + 20.0429i −0.140920 + 0.125268i
\(161\) 70.5200 0.438013
\(162\) 4.13987 45.7279i 0.0255548 0.282271i
\(163\) 65.3939 + 157.875i 0.401189 + 0.968557i 0.987378 + 0.158382i \(0.0506278\pi\)
−0.586188 + 0.810175i \(0.699372\pi\)
\(164\) −78.3060 + 54.1285i −0.477476 + 0.330052i
\(165\) 11.5887 27.9775i 0.0702344 0.169561i
\(166\) 305.571 95.3326i 1.84079 0.574293i
\(167\) −113.503 + 113.503i −0.679657 + 0.679657i −0.959923 0.280265i \(-0.909578\pi\)
0.280265 + 0.959923i \(0.409578\pi\)
\(168\) −35.9636 28.1172i −0.214069 0.167364i
\(169\) 99.8663 99.8663i 0.590925 0.590925i
\(170\) 32.9648 + 17.2871i 0.193911 + 0.101689i
\(171\) −42.9092 + 103.592i −0.250931 + 0.605801i
\(172\) −179.747 + 278.421i −1.04504 + 1.61873i
\(173\) 110.682 + 267.210i 0.639781 + 1.54457i 0.826971 + 0.562245i \(0.190062\pi\)
−0.187189 + 0.982324i \(0.559938\pi\)
\(174\) −136.317 163.457i −0.783432 0.939405i
\(175\) 63.7923 0.364528
\(176\) 163.100 173.732i 0.926706 0.987113i
\(177\) 86.6241i 0.489402i
\(178\) 188.375 + 225.879i 1.05829 + 1.26898i
\(179\) −138.016 + 57.1680i −0.771038 + 0.319375i −0.733293 0.679913i \(-0.762018\pi\)
−0.0377454 + 0.999287i \(0.512018\pi\)
\(180\) −3.45228 16.0298i −0.0191793 0.0890545i
\(181\) −57.9483 24.0030i −0.320156 0.132613i 0.216817 0.976212i \(-0.430432\pi\)
−0.536974 + 0.843599i \(0.680432\pi\)
\(182\) −24.6941 12.9498i −0.135682 0.0711530i
\(183\) −78.3311 78.3311i −0.428039 0.428039i
\(184\) −104.939 185.623i −0.570320 1.00882i
\(185\) −33.7694 33.7694i −0.182537 0.182537i
\(186\) −153.600 + 47.9204i −0.825807 + 0.257637i
\(187\) −271.640 112.517i −1.45262 0.601694i
\(188\) 330.126 + 60.2684i 1.75599 + 0.320577i
\(189\) 70.3714 29.1488i 0.372335 0.154226i
\(190\) 4.38376 48.4219i 0.0230724 0.254852i
\(191\) 323.983i 1.69625i −0.529799 0.848123i \(-0.677733\pi\)
0.529799 0.848123i \(-0.322267\pi\)
\(192\) −20.4938 + 136.504i −0.106739 + 0.710958i
\(193\) 196.427 1.01776 0.508879 0.860838i \(-0.330060\pi\)
0.508879 + 0.860838i \(0.330060\pi\)
\(194\) 164.454 + 14.8885i 0.847702 + 0.0767447i
\(195\) 4.10023 + 9.89884i 0.0210268 + 0.0507633i
\(196\) 5.02862 27.5447i 0.0256562 0.140534i
\(197\) −59.0619 + 142.588i −0.299807 + 0.723797i 0.700145 + 0.714000i \(0.253119\pi\)
−0.999952 + 0.00979705i \(0.996881\pi\)
\(198\) 38.5749 + 123.645i 0.194823 + 0.624468i
\(199\) −86.8897 + 86.8897i −0.436632 + 0.436632i −0.890877 0.454245i \(-0.849909\pi\)
0.454245 + 0.890877i \(0.349909\pi\)
\(200\) −94.9275 167.914i −0.474637 0.839572i
\(201\) −126.416 + 126.416i −0.628935 + 0.628935i
\(202\) −106.806 + 203.668i −0.528742 + 1.00826i
\(203\) 49.9579 120.609i 0.246098 0.594133i
\(204\) 166.496 35.8575i 0.816156 0.175772i
\(205\) 8.58577 + 20.7279i 0.0418818 + 0.101112i
\(206\) 25.9402 21.6332i 0.125923 0.105016i
\(207\) 115.900 0.559904
\(208\) 2.65984 + 84.2701i 0.0127877 + 0.405145i
\(209\) 384.048i 1.83755i
\(210\) −8.26284 + 6.89093i −0.0393469 + 0.0328140i
\(211\) −188.416 + 78.0443i −0.892965 + 0.369878i −0.781511 0.623891i \(-0.785551\pi\)
−0.111454 + 0.993770i \(0.535551\pi\)
\(212\) −92.0638 59.4359i −0.434263 0.280358i
\(213\) −63.8168 26.4338i −0.299609 0.124102i
\(214\) −52.2839 + 99.7002i −0.244317 + 0.465889i
\(215\) 55.2299 + 55.2299i 0.256883 + 0.256883i
\(216\) −181.443 141.856i −0.840015 0.656743i
\(217\) −69.7845 69.7845i −0.321588 0.321588i
\(218\) −53.2105 170.557i −0.244085 0.782369i
\(219\) 105.509 + 43.7034i 0.481778 + 0.199559i
\(220\) −31.9352 46.1996i −0.145160 0.209998i
\(221\) 96.1099 39.8100i 0.434886 0.180136i
\(222\) −217.624 19.7021i −0.980290 0.0887483i
\(223\) 53.3854i 0.239396i −0.992810 0.119698i \(-0.961807\pi\)
0.992810 0.119698i \(-0.0381927\pi\)
\(224\) −79.9864 + 27.7522i −0.357082 + 0.123894i
\(225\) 104.843 0.465969
\(226\) −9.75252 + 107.724i −0.0431527 + 0.476654i
\(227\) 18.0211 + 43.5068i 0.0793882 + 0.191660i 0.958590 0.284789i \(-0.0919236\pi\)
−0.879202 + 0.476449i \(0.841924\pi\)
\(228\) −126.496 182.998i −0.554807 0.802621i
\(229\) −135.242 + 326.504i −0.590578 + 1.42578i 0.292368 + 0.956306i \(0.405557\pi\)
−0.882946 + 0.469475i \(0.844443\pi\)
\(230\) −47.9753 + 14.9674i −0.208588 + 0.0650758i
\(231\) 60.0944 60.0944i 0.260149 0.260149i
\(232\) −391.809 + 47.9754i −1.68883 + 0.206790i
\(233\) −46.1172 + 46.1172i −0.197928 + 0.197928i −0.799111 0.601183i \(-0.794696\pi\)
0.601183 + 0.799111i \(0.294696\pi\)
\(234\) −40.5848 21.2831i −0.173439 0.0909536i
\(235\) 30.2672 73.0715i 0.128797 0.310943i
\(236\) −134.971 87.1365i −0.571911 0.369222i
\(237\) −9.51386 22.9685i −0.0401429 0.0969134i
\(238\) 66.9055 + 80.2256i 0.281115 + 0.337083i
\(239\) −210.976 −0.882743 −0.441371 0.897325i \(-0.645508\pi\)
−0.441371 + 0.897325i \(0.645508\pi\)
\(240\) 30.4340 + 11.4953i 0.126808 + 0.0478971i
\(241\) 4.45793i 0.0184976i −0.999957 0.00924882i \(-0.997056\pi\)
0.999957 0.00924882i \(-0.00294403\pi\)
\(242\) 129.137 + 154.847i 0.533625 + 0.639864i
\(243\) 193.636 80.2066i 0.796855 0.330068i
\(244\) −200.844 + 43.2549i −0.823130 + 0.177274i
\(245\) −6.09687 2.52541i −0.0248852 0.0103078i
\(246\) 90.9128 + 47.6757i 0.369564 + 0.193804i
\(247\) −96.0827 96.0827i −0.388999 0.388999i
\(248\) −79.8429 + 287.532i −0.321947 + 1.15940i
\(249\) −244.086 244.086i −0.980263 0.980263i
\(250\) −88.3966 + 27.5781i −0.353586 + 0.110312i
\(251\) −43.0877 17.8475i −0.171664 0.0711056i 0.295196 0.955437i \(-0.404615\pi\)
−0.466860 + 0.884331i \(0.654615\pi\)
\(252\) 8.26456 45.2699i 0.0327959 0.179643i
\(253\) 366.753 151.914i 1.44962 0.600451i
\(254\) −8.67933 + 95.8696i −0.0341706 + 0.377439i
\(255\) 40.1405i 0.157414i
\(256\) 192.075 + 169.243i 0.750292 + 0.661106i
\(257\) −390.515 −1.51951 −0.759757 0.650207i \(-0.774682\pi\)
−0.759757 + 0.650207i \(0.774682\pi\)
\(258\) 355.925 + 32.2228i 1.37955 + 0.124895i
\(259\) −51.2901 123.825i −0.198031 0.478089i
\(260\) 19.5481 + 3.56873i 0.0751849 + 0.0137259i
\(261\) 82.1061 198.222i 0.314583 0.759470i
\(262\) −92.8694 297.676i −0.354463 1.13617i
\(263\) 135.194 135.194i 0.514044 0.514044i −0.401719 0.915763i \(-0.631587\pi\)
0.915763 + 0.401719i \(0.131587\pi\)
\(264\) −247.606 68.7561i −0.937900 0.260440i
\(265\) −18.2625 + 18.2625i −0.0689152 + 0.0689152i
\(266\) 63.3703 120.841i 0.238234 0.454288i
\(267\) 121.378 293.032i 0.454598 1.09750i
\(268\) 69.8077 + 324.135i 0.260476 + 1.20946i
\(269\) 70.1917 + 169.458i 0.260936 + 0.629954i 0.998997 0.0447794i \(-0.0142585\pi\)
−0.738061 + 0.674734i \(0.764259\pi\)
\(270\) −41.6876 + 34.7660i −0.154398 + 0.128763i
\(271\) 4.76275 0.0175747 0.00878737 0.999961i \(-0.497203\pi\)
0.00878737 + 0.999961i \(0.497203\pi\)
\(272\) 111.610 295.490i 0.410332 1.08636i
\(273\) 30.0694i 0.110144i
\(274\) −88.9652 + 74.1940i −0.324691 + 0.270781i
\(275\) 331.764 137.421i 1.20642 0.499714i
\(276\) −124.720 + 193.186i −0.451884 + 0.699950i
\(277\) 377.813 + 156.495i 1.36395 + 0.564965i 0.940140 0.340787i \(-0.110694\pi\)
0.423807 + 0.905753i \(0.360694\pi\)
\(278\) 53.5643 102.142i 0.192677 0.367416i
\(279\) −114.691 114.691i −0.411080 0.411080i
\(280\) 2.42519 + 19.8062i 0.00866139 + 0.0707364i
\(281\) 67.0196 + 67.0196i 0.238504 + 0.238504i 0.816230 0.577727i \(-0.196060\pi\)
−0.577727 + 0.816230i \(0.696060\pi\)
\(282\) −107.779 345.466i −0.382195 1.22506i
\(283\) −80.8989 33.5094i −0.285862 0.118408i 0.235145 0.971960i \(-0.424443\pi\)
−0.521007 + 0.853552i \(0.674443\pi\)
\(284\) −105.381 + 72.8442i −0.371061 + 0.256494i
\(285\) −48.4401 + 20.0646i −0.169965 + 0.0704019i
\(286\) −156.323 14.1523i −0.546583 0.0494836i
\(287\) 62.9643i 0.219388i
\(288\) −131.458 + 45.6109i −0.456451 + 0.158371i
\(289\) −100.732 −0.348554
\(290\) −8.38827 + 92.6546i −0.0289251 + 0.319498i
\(291\) −68.1448 164.516i −0.234174 0.565347i
\(292\) 174.229 120.434i 0.596674 0.412447i
\(293\) −97.2004 + 234.663i −0.331742 + 0.800896i 0.666712 + 0.745315i \(0.267701\pi\)
−0.998454 + 0.0555808i \(0.982299\pi\)
\(294\) −28.8247 + 8.99277i −0.0980431 + 0.0305877i
\(295\) −26.7739 + 26.7739i −0.0907591 + 0.0907591i
\(296\) −249.610 + 319.267i −0.843277 + 1.07860i
\(297\) 303.188 303.188i 1.02083 1.02083i
\(298\) 147.008 + 77.0927i 0.493316 + 0.258700i
\(299\) −53.7493 + 129.762i −0.179764 + 0.433988i
\(300\) −112.822 + 174.756i −0.376072 + 0.582520i
\(301\) 83.8849 + 202.516i 0.278688 + 0.672811i
\(302\) 76.4745 + 91.6997i 0.253227 + 0.303642i
\(303\) 248.002 0.818488
\(304\) −412.377 + 13.0160i −1.35650 + 0.0428157i
\(305\) 48.4214i 0.158759i
\(306\) 109.959 + 131.851i 0.359345 + 0.430887i
\(307\) 33.4486 13.8549i 0.108953 0.0451298i −0.327541 0.944837i \(-0.606220\pi\)
0.436494 + 0.899707i \(0.356220\pi\)
\(308\) −33.1845 154.084i −0.107742 0.500274i
\(309\) −33.6521 13.9392i −0.108907 0.0451106i
\(310\) 62.2863 + 32.6637i 0.200924 + 0.105367i
\(311\) 331.934 + 331.934i 1.06731 + 1.06731i 0.997565 + 0.0697470i \(0.0222192\pi\)
0.0697470 + 0.997565i \(0.477781\pi\)
\(312\) 79.1487 44.7454i 0.253682 0.143415i
\(313\) 261.126 + 261.126i 0.834269 + 0.834269i 0.988098 0.153829i \(-0.0491604\pi\)
−0.153829 + 0.988098i \(0.549160\pi\)
\(314\) 24.3243 7.58872i 0.0774658 0.0241679i
\(315\) −10.0202 4.15052i −0.0318103 0.0131763i
\(316\) −45.3578 8.28060i −0.143537 0.0262044i
\(317\) −89.3605 + 37.0143i −0.281894 + 0.116764i −0.519151 0.854683i \(-0.673752\pi\)
0.237257 + 0.971447i \(0.423752\pi\)
\(318\) −10.6549 + 117.691i −0.0335061 + 0.370099i
\(319\) 734.870i 2.30367i
\(320\) 48.5251 35.8566i 0.151641 0.112052i
\(321\) 121.403 0.378201
\(322\) −140.466 12.7167i −0.436229 0.0394929i
\(323\) 194.811 + 470.315i 0.603130 + 1.45608i
\(324\) −16.4920 + 90.3369i −0.0509014 + 0.278817i
\(325\) −48.6216 + 117.383i −0.149605 + 0.361178i
\(326\) −101.786 326.256i −0.312226 1.00078i
\(327\) −136.238 + 136.238i −0.416630 + 0.416630i
\(328\) 165.735 93.6954i 0.505290 0.285657i
\(329\) 156.954 156.954i 0.477065 0.477065i
\(330\) −28.1281 + 53.6374i −0.0852366 + 0.162538i
\(331\) 33.3563 80.5292i 0.100774 0.243291i −0.865449 0.500997i \(-0.832967\pi\)
0.966223 + 0.257706i \(0.0829668\pi\)
\(332\) −625.844 + 134.786i −1.88507 + 0.405981i
\(333\) −84.2955 203.507i −0.253140 0.611133i
\(334\) 246.549 205.613i 0.738170 0.615608i
\(335\) 78.1457 0.233271
\(336\) 66.5640 + 62.4906i 0.198107 + 0.185984i
\(337\) 601.688i 1.78542i 0.450627 + 0.892712i \(0.351200\pi\)
−0.450627 + 0.892712i \(0.648800\pi\)
\(338\) −216.928 + 180.910i −0.641798 + 0.535238i
\(339\) 107.764 44.6374i 0.317889 0.131674i
\(340\) −62.5437 40.3779i −0.183952 0.118759i
\(341\) −513.257 212.598i −1.50515 0.623455i
\(342\) 104.149 198.602i 0.304530 0.580708i
\(343\) −13.0958 13.0958i −0.0381802 0.0381802i
\(344\) 408.237 522.161i 1.18674 1.51791i
\(345\) 38.3220 + 38.3220i 0.111078 + 0.111078i
\(346\) −172.277 552.203i −0.497911 1.59596i
\(347\) −510.732 211.552i −1.47185 0.609661i −0.504570 0.863371i \(-0.668349\pi\)
−0.967280 + 0.253710i \(0.918349\pi\)
\(348\) 242.048 + 350.163i 0.695541 + 1.00622i
\(349\) 396.990 164.439i 1.13751 0.471171i 0.267181 0.963646i \(-0.413908\pi\)
0.870326 + 0.492475i \(0.163908\pi\)
\(350\) −127.065 11.5035i −0.363043 0.0328672i
\(351\) 151.706i 0.432210i
\(352\) −356.201 + 316.637i −1.01193 + 0.899536i
\(353\) −163.628 −0.463535 −0.231767 0.972771i \(-0.574451\pi\)
−0.231767 + 0.972771i \(0.574451\pi\)
\(354\) −15.6207 + 172.543i −0.0441264 + 0.487408i
\(355\) 11.5544 + 27.8948i 0.0325476 + 0.0785769i
\(356\) −334.483 483.886i −0.939560 1.35923i
\(357\) 43.1099 104.077i 0.120756 0.291531i
\(358\) 285.216 88.9823i 0.796694 0.248554i
\(359\) −229.746 + 229.746i −0.639961 + 0.639961i −0.950546 0.310585i \(-0.899475\pi\)
0.310585 + 0.950546i \(0.399475\pi\)
\(360\) 3.98581 + 32.5516i 0.0110717 + 0.0904211i
\(361\) 214.916 214.916i 0.595336 0.595336i
\(362\) 111.096 + 58.2601i 0.306896 + 0.160940i
\(363\) 83.2084 200.883i 0.229224 0.553396i
\(364\) 46.8517 + 30.2472i 0.128714 + 0.0830968i
\(365\) −19.1031 46.1189i −0.0523372 0.126353i
\(366\) 141.899 + 170.149i 0.387702 + 0.464889i
\(367\) 604.291 1.64657 0.823285 0.567628i \(-0.192139\pi\)
0.823285 + 0.567628i \(0.192139\pi\)
\(368\) 175.550 + 388.658i 0.477037 + 1.05613i
\(369\) 103.482i 0.280440i
\(370\) 61.1741 + 73.3533i 0.165336 + 0.198252i
\(371\) −66.9647 + 27.7377i −0.180498 + 0.0747647i
\(372\) 314.590 67.7521i 0.845673 0.182129i
\(373\) 66.6128 + 27.5919i 0.178587 + 0.0739730i 0.470185 0.882568i \(-0.344187\pi\)
−0.291599 + 0.956541i \(0.594187\pi\)
\(374\) 520.776 + 273.101i 1.39245 + 0.730217i
\(375\) 70.6098 + 70.6098i 0.188293 + 0.188293i
\(376\) −646.695 179.577i −1.71993 0.477598i
\(377\) 183.853 + 183.853i 0.487673 + 0.487673i
\(378\) −145.426 + 45.3702i −0.384724 + 0.120027i
\(379\) −241.151 99.8880i −0.636283 0.263557i 0.0411373 0.999154i \(-0.486902\pi\)
−0.677420 + 0.735597i \(0.736902\pi\)
\(380\) −17.4636 + 95.6588i −0.0459569 + 0.251734i
\(381\) 95.9057 39.7254i 0.251721 0.104266i
\(382\) −58.4232 + 645.327i −0.152940 + 1.68934i
\(383\) 621.449i 1.62258i 0.584643 + 0.811291i \(0.301235\pi\)
−0.584643 + 0.811291i \(0.698765\pi\)
\(384\) 65.4361 268.200i 0.170407 0.698439i
\(385\) −37.1482 −0.0964888
\(386\) −391.255 35.4213i −1.01361 0.0917651i
\(387\) 137.865 + 332.836i 0.356241 + 0.860042i
\(388\) −324.884 59.3113i −0.837329 0.152864i
\(389\) −26.5507 + 64.0991i −0.0682538 + 0.164779i −0.954325 0.298769i \(-0.903424\pi\)
0.886072 + 0.463548i \(0.153424\pi\)
\(390\) −6.38203 20.4564i −0.0163642 0.0524524i
\(391\) 372.076 372.076i 0.951601 0.951601i
\(392\) −14.9834 + 53.9583i −0.0382228 + 0.137649i
\(393\) −237.779 + 237.779i −0.605035 + 0.605035i
\(394\) 143.355 273.364i 0.363846 0.693818i
\(395\) −4.15858 + 10.0397i −0.0105280 + 0.0254169i
\(396\) −54.5389 253.238i −0.137725 0.639491i
\(397\) −98.1441 236.941i −0.247214 0.596828i 0.750751 0.660585i \(-0.229692\pi\)
−0.997965 + 0.0637568i \(0.979692\pi\)
\(398\) 188.740 157.403i 0.474222 0.395485i
\(399\) −147.145 −0.368784
\(400\) 158.802 + 351.579i 0.397005 + 0.878948i
\(401\) 25.0122i 0.0623745i 0.999514 + 0.0311873i \(0.00992883\pi\)
−0.999514 + 0.0311873i \(0.990071\pi\)
\(402\) 274.598 229.006i 0.683081 0.569666i
\(403\) 181.598 75.2202i 0.450615 0.186651i
\(404\) 249.469 386.417i 0.617497 0.956478i
\(405\) 19.9955 + 8.28243i 0.0493717 + 0.0204504i
\(406\) −121.258 + 231.227i −0.298665 + 0.569524i
\(407\) −533.488 533.488i −1.31078 1.31078i
\(408\) −338.101 + 41.3991i −0.828680 + 0.101468i
\(409\) −410.030 410.030i −1.00252 1.00252i −0.999997 0.00252225i \(-0.999197\pi\)
−0.00252225 0.999997i \(-0.500803\pi\)
\(410\) −13.3638 42.8351i −0.0325946 0.104476i
\(411\) 115.414 + 47.8062i 0.280814 + 0.116317i
\(412\) −55.5701 + 38.4125i −0.134879 + 0.0932342i
\(413\) −98.1743 + 40.6651i −0.237710 + 0.0984627i
\(414\) −230.856 20.9000i −0.557623 0.0504831i
\(415\) 150.885i 0.363578i
\(416\) 9.89823 168.333i 0.0237938 0.404648i
\(417\) −124.376 −0.298263
\(418\) 69.2545 764.967i 0.165681 1.83006i
\(419\) −39.3223 94.9324i −0.0938479 0.226569i 0.869984 0.493080i \(-0.164129\pi\)
−0.963832 + 0.266511i \(0.914129\pi\)
\(420\) 17.7010 12.2357i 0.0421452 0.0291326i
\(421\) −150.378 + 363.044i −0.357192 + 0.862338i 0.638500 + 0.769622i \(0.279555\pi\)
−0.995693 + 0.0927168i \(0.970445\pi\)
\(422\) 389.370 121.476i 0.922678 0.287859i
\(423\) 257.955 257.955i 0.609823 0.609823i
\(424\) 172.660 + 134.989i 0.407216 + 0.318371i
\(425\) 336.579 336.579i 0.791951 0.791951i
\(426\) 122.347 + 64.1602i 0.287200 + 0.150611i
\(427\) −52.0035 + 125.547i −0.121788 + 0.294022i
\(428\) 122.121 189.160i 0.285329 0.441962i
\(429\) 64.7753 + 156.381i 0.150991 + 0.364526i
\(430\) −100.050 119.969i −0.232675 0.278998i
\(431\) 344.315 0.798876 0.399438 0.916760i \(-0.369205\pi\)
0.399438 + 0.916760i \(0.369205\pi\)
\(432\) 335.828 + 315.277i 0.777379 + 0.729807i
\(433\) 836.447i 1.93175i 0.259011 + 0.965874i \(0.416603\pi\)
−0.259011 + 0.965874i \(0.583397\pi\)
\(434\) 126.416 + 151.585i 0.291282 + 0.349273i
\(435\) 92.6894 38.3932i 0.213079 0.0882603i
\(436\) 75.2314 + 349.319i 0.172549 + 0.801190i
\(437\) −634.994 263.023i −1.45307 0.601883i
\(438\) −202.278 106.077i −0.461823 0.242185i
\(439\) −269.081 269.081i −0.612942 0.612942i 0.330770 0.943711i \(-0.392692\pi\)
−0.943711 + 0.330770i \(0.892692\pi\)
\(440\) 55.2791 + 97.7816i 0.125634 + 0.222231i
\(441\) −21.5230 21.5230i −0.0488050 0.0488050i
\(442\) −198.616 + 61.9645i −0.449357 + 0.140191i
\(443\) −0.0904257 0.0374556i −0.000204121 8.45498e-5i 0.382581 0.923922i \(-0.375035\pi\)
−0.382785 + 0.923837i \(0.625035\pi\)
\(444\) 429.923 + 78.4875i 0.968296 + 0.176774i
\(445\) −128.086 + 53.0551i −0.287834 + 0.119225i
\(446\) −9.62688 + 106.336i −0.0215849 + 0.238421i
\(447\) 179.008i 0.400466i
\(448\) 164.326 40.8545i 0.366798 0.0911931i
\(449\) 336.165 0.748698 0.374349 0.927288i \(-0.377866\pi\)
0.374349 + 0.927288i \(0.377866\pi\)
\(450\) −208.832 18.9061i −0.464071 0.0420136i
\(451\) 135.638 + 327.458i 0.300748 + 0.726071i
\(452\) 38.8512 212.811i 0.0859539 0.470821i
\(453\) 49.2756 118.962i 0.108776 0.262609i
\(454\) −28.0499 89.9090i −0.0617840 0.198037i
\(455\) 9.29389 9.29389i 0.0204261 0.0204261i
\(456\) 218.962 + 387.315i 0.480180 + 0.849376i
\(457\) 423.550 423.550i 0.926805 0.926805i −0.0706935 0.997498i \(-0.522521\pi\)
0.997498 + 0.0706935i \(0.0225212\pi\)
\(458\) 328.261 625.960i 0.716726 1.36672i
\(459\) 217.498 525.086i 0.473851 1.14398i
\(460\) 98.2589 21.1616i 0.213606 0.0460035i
\(461\) −129.970 313.776i −0.281931 0.680641i 0.717950 0.696095i \(-0.245081\pi\)
−0.999881 + 0.0154537i \(0.995081\pi\)
\(462\) −130.536 + 108.863i −0.282546 + 0.235633i
\(463\) −15.0541 −0.0325143 −0.0162572 0.999868i \(-0.505175\pi\)
−0.0162572 + 0.999868i \(0.505175\pi\)
\(464\) 789.077 24.9059i 1.70060 0.0536765i
\(465\) 75.8446i 0.163107i
\(466\) 100.175 83.5424i 0.214968 0.179276i
\(467\) 128.179 53.0936i 0.274474 0.113691i −0.241201 0.970475i \(-0.577541\pi\)
0.515675 + 0.856784i \(0.327541\pi\)
\(468\) 77.0011 + 49.7115i 0.164532 + 0.106221i
\(469\) 202.617 + 83.9267i 0.432019 + 0.178948i
\(470\) −73.4647 + 140.090i −0.156308 + 0.298063i
\(471\) −19.4298 19.4298i −0.0412523 0.0412523i
\(472\) 253.129 + 197.902i 0.536291 + 0.419284i
\(473\) 872.519 + 872.519i 1.84465 + 1.84465i
\(474\) 14.8084 + 47.4655i 0.0312413 + 0.100138i
\(475\) −574.414 237.930i −1.20929 0.500906i
\(476\) −118.799 171.863i −0.249578 0.361056i
\(477\) −110.057 + 45.5871i −0.230727 + 0.0955704i
\(478\) 420.232 + 38.0448i 0.879147 + 0.0795916i
\(479\) 134.284i 0.280342i 0.990127 + 0.140171i \(0.0447652\pi\)
−0.990127 + 0.140171i \(0.955235\pi\)
\(480\) −58.5472 28.3851i −0.121973 0.0591356i
\(481\) 266.940 0.554970
\(482\) −0.803889 + 8.87955i −0.00166782 + 0.0184223i
\(483\) 58.2047 + 140.518i 0.120507 + 0.290929i
\(484\) −229.299 331.720i −0.473759 0.685371i
\(485\) −29.7866 + 71.9112i −0.0614156 + 0.148270i
\(486\) −400.158 + 124.842i −0.823370 + 0.256876i
\(487\) −618.569 + 618.569i −1.27016 + 1.27016i −0.324158 + 0.946003i \(0.605081\pi\)
−0.946003 + 0.324158i \(0.894919\pi\)
\(488\) 407.851 49.9397i 0.835761 0.102336i
\(489\) −260.608 + 260.608i −0.532941 + 0.532941i
\(490\) 11.6887 + 6.12968i 0.0238544 + 0.0125095i
\(491\) −19.8666 + 47.9621i −0.0404614 + 0.0976825i −0.942818 0.333307i \(-0.891835\pi\)
0.902357 + 0.430990i \(0.141835\pi\)
\(492\) −172.488 111.357i −0.350585 0.226336i
\(493\) −372.768 899.941i −0.756121 1.82544i
\(494\) 174.056 + 208.709i 0.352341 + 0.422488i
\(495\) −61.0532 −0.123340
\(496\) 210.885 558.323i 0.425172 1.12565i
\(497\) 84.7351i 0.170493i
\(498\) 442.167 + 530.198i 0.887886 + 1.06466i
\(499\) 328.968 136.263i 0.659255 0.273072i −0.0278702 0.999612i \(-0.508872\pi\)
0.687125 + 0.726539i \(0.258872\pi\)
\(500\) 181.046 38.9912i 0.362092 0.0779824i
\(501\) −319.847 132.485i −0.638417 0.264441i
\(502\) 82.6060 + 43.3195i 0.164554 + 0.0862939i
\(503\) 474.652 + 474.652i 0.943641 + 0.943641i 0.998494 0.0548531i \(-0.0174690\pi\)
−0.0548531 + 0.998494i \(0.517469\pi\)
\(504\) −24.6252 + 88.6808i −0.0488596 + 0.175954i
\(505\) −76.6528 76.6528i −0.151788 0.151788i
\(506\) −757.912 + 236.455i −1.49785 + 0.467302i
\(507\) 281.420 + 116.568i 0.555069 + 0.229917i
\(508\) 34.5759 189.393i 0.0680628 0.372821i
\(509\) −278.699 + 115.441i −0.547542 + 0.226799i −0.639267 0.768985i \(-0.720762\pi\)
0.0917249 + 0.995784i \(0.470762\pi\)
\(510\) −7.23844 + 79.9539i −0.0141930 + 0.156772i
\(511\) 140.094i 0.274156i
\(512\) −352.066 371.744i −0.687628 0.726063i
\(513\) −742.373 −1.44712
\(514\) 777.849 + 70.4208i 1.51333 + 0.137005i
\(515\) 6.09291 + 14.7096i 0.0118309 + 0.0285623i
\(516\) −703.140 128.366i −1.36267 0.248772i
\(517\) 478.160 1154.38i 0.924875 2.23285i
\(518\) 79.8332 + 255.891i 0.154118 + 0.493997i
\(519\) −441.091 + 441.091i −0.849887 + 0.849887i
\(520\) −38.2934 10.6335i −0.0736411 0.0204490i
\(521\) −151.306 + 151.306i −0.290415 + 0.290415i −0.837244 0.546829i \(-0.815835\pi\)
0.546829 + 0.837244i \(0.315835\pi\)
\(522\) −199.288 + 380.022i −0.381778 + 0.728012i
\(523\) −76.0879 + 183.693i −0.145484 + 0.351229i −0.979777 0.200092i \(-0.935876\pi\)
0.834293 + 0.551321i \(0.185876\pi\)
\(524\) 131.303 + 609.674i 0.250578 + 1.16350i
\(525\) 52.6519 + 127.113i 0.100289 + 0.242120i
\(526\) −293.665 + 244.907i −0.558298 + 0.465602i
\(527\) −736.391 −1.39733
\(528\) 480.796 + 181.602i 0.910598 + 0.343944i
\(529\) 181.439i 0.342986i
\(530\) 39.6695 33.0830i 0.0748481 0.0624208i
\(531\) −161.350 + 66.8333i −0.303860 + 0.125863i
\(532\) −148.015 + 229.270i −0.278224 + 0.430958i
\(533\) −115.859 47.9905i −0.217372 0.0900384i
\(534\) −294.608 + 561.789i −0.551701 + 1.05204i
\(535\) −37.5233 37.5233i −0.0701370 0.0701370i
\(536\) −80.5961 658.218i −0.150366 1.22802i
\(537\) −227.826 227.826i −0.424258 0.424258i
\(538\) −109.254 350.192i −0.203074 0.650915i
\(539\) −96.3181 39.8963i −0.178698 0.0740191i
\(540\) 89.3048 61.7314i 0.165379 0.114317i
\(541\) −91.6470 + 37.9614i −0.169403 + 0.0701690i −0.465773 0.884904i \(-0.654224\pi\)
0.296370 + 0.955073i \(0.404224\pi\)
\(542\) −9.48671 0.858858i −0.0175032 0.00158461i
\(543\) 135.279i 0.249133i
\(544\) −275.597 + 568.447i −0.506611 + 1.04494i
\(545\) 84.2173 0.154527
\(546\) 5.42235 59.8938i 0.00993104 0.109696i
\(547\) −195.499 471.977i −0.357403 0.862847i −0.995664 0.0930265i \(-0.970346\pi\)
0.638261 0.769820i \(-0.279654\pi\)
\(548\) 190.585 131.741i 0.347783 0.240403i
\(549\) −85.4679 + 206.338i −0.155679 + 0.375843i
\(550\) −685.607 + 213.897i −1.24656 + 0.388903i
\(551\) −899.686 + 899.686i −1.63282 + 1.63282i
\(552\) 283.261 362.308i 0.513154 0.656355i
\(553\) −21.5648 + 21.5648i −0.0389960 + 0.0389960i
\(554\) −724.328 379.846i −1.30745 0.685643i
\(555\) 39.4170 95.1610i 0.0710216 0.171461i
\(556\) −125.111 + 193.792i −0.225020 + 0.348547i
\(557\) −128.159 309.403i −0.230088 0.555481i 0.766100 0.642722i \(-0.222195\pi\)
−0.996187 + 0.0872413i \(0.972195\pi\)
\(558\) 207.766 + 249.130i 0.372341 + 0.446470i
\(559\) −436.581 −0.781004
\(560\) −1.25901 39.8884i −0.00224823 0.0712293i
\(561\) 634.137i 1.13037i
\(562\) −121.408 145.579i −0.216028 0.259037i
\(563\) −305.681 + 126.617i −0.542949 + 0.224897i −0.637264 0.770645i \(-0.719934\pi\)
0.0943148 + 0.995542i \(0.469934\pi\)
\(564\) 152.383 + 707.554i 0.270183 + 1.25453i
\(565\) −47.1046 19.5113i −0.0833709 0.0345334i
\(566\) 155.096 + 81.3342i 0.274022 + 0.143700i
\(567\) 42.9495 + 42.9495i 0.0757487 + 0.0757487i
\(568\) 223.040 126.092i 0.392676 0.221993i
\(569\) −496.100 496.100i −0.871880 0.871880i 0.120797 0.992677i \(-0.461455\pi\)
−0.992677 + 0.120797i \(0.961455\pi\)
\(570\) 100.104 31.2305i 0.175621 0.0547904i
\(571\) −483.761 200.381i −0.847218 0.350929i −0.0835225 0.996506i \(-0.526617\pi\)
−0.763695 + 0.645577i \(0.776617\pi\)
\(572\) 308.820 + 56.3787i 0.539895 + 0.0985641i
\(573\) 645.570 267.404i 1.12665 0.466673i
\(574\) 11.3542 125.416i 0.0197809 0.218494i
\(575\) 642.662i 1.11767i
\(576\) 270.070 67.1446i 0.468872 0.116571i
\(577\) 760.250 1.31759 0.658795 0.752322i \(-0.271066\pi\)
0.658795 + 0.752322i \(0.271066\pi\)
\(578\) 200.643 + 18.1648i 0.347134 + 0.0314270i
\(579\) 162.124 + 391.402i 0.280007 + 0.675996i
\(580\) 33.4164 183.042i 0.0576145 0.315589i
\(581\) −162.047 + 391.215i −0.278910 + 0.673348i
\(582\) 106.068 + 339.980i 0.182247 + 0.584159i
\(583\) −288.510 + 288.510i −0.494872 + 0.494872i
\(584\) −368.756 + 208.470i −0.631431 + 0.356968i
\(585\) 15.2746 15.2746i 0.0261104 0.0261104i
\(586\) 235.925 449.886i 0.402603 0.767723i
\(587\) −180.706 + 436.264i −0.307847 + 0.743210i 0.691927 + 0.721968i \(0.256762\pi\)
−0.999774 + 0.0212420i \(0.993238\pi\)
\(588\) 59.0362 12.7144i 0.100402 0.0216231i
\(589\) 368.091 + 888.651i 0.624942 + 1.50874i
\(590\) 58.1578 48.5017i 0.0985726 0.0822062i
\(591\) −332.869 −0.563230
\(592\) 554.759 590.921i 0.937093 0.998177i
\(593\) 534.025i 0.900547i −0.892891 0.450274i \(-0.851326\pi\)
0.892891 0.450274i \(-0.148674\pi\)
\(594\) −658.579 + 549.232i −1.10872 + 0.924633i
\(595\) −45.4926 + 18.8437i −0.0764582 + 0.0316700i
\(596\) −278.917 180.067i −0.467981 0.302126i
\(597\) −244.852 101.421i −0.410138 0.169885i
\(598\) 130.461 248.775i 0.218161 0.416012i
\(599\) 373.320 + 373.320i 0.623239 + 0.623239i 0.946358 0.323119i \(-0.104731\pi\)
−0.323119 + 0.946358i \(0.604731\pi\)
\(600\) 256.237 327.743i 0.427062 0.546239i
\(601\) 68.9545 + 68.9545i 0.114733 + 0.114733i 0.762142 0.647409i \(-0.224148\pi\)
−0.647409 + 0.762142i \(0.724148\pi\)
\(602\) −130.567 418.509i −0.216889 0.695198i
\(603\) 333.002 + 137.934i 0.552242 + 0.228746i
\(604\) −135.790 196.443i −0.224818 0.325237i
\(605\) −87.8073 + 36.3710i −0.145136 + 0.0601173i
\(606\) −493.984 44.7217i −0.815155 0.0737981i
\(607\) 620.715i 1.02259i −0.859404 0.511297i \(-0.829165\pi\)
0.859404 0.511297i \(-0.170835\pi\)
\(608\) 823.742 + 48.4371i 1.35484 + 0.0796663i
\(609\) 281.559 0.462331
\(610\) 8.73173 96.4483i 0.0143143 0.158112i
\(611\) 169.180 + 408.436i 0.276890 + 0.668472i
\(612\) −195.247 282.457i −0.319031 0.461531i
\(613\) 189.467 457.413i 0.309081 0.746187i −0.690655 0.723185i \(-0.742678\pi\)
0.999735 0.0230022i \(-0.00732248\pi\)
\(614\) −69.1231 + 21.5651i −0.112578 + 0.0351224i
\(615\) −34.2161 + 34.2161i −0.0556359 + 0.0556359i
\(616\) 38.3130 + 312.898i 0.0621965 + 0.507951i
\(617\) −223.382 + 223.382i −0.362046 + 0.362046i −0.864566 0.502520i \(-0.832406\pi\)
0.502520 + 0.864566i \(0.332406\pi\)
\(618\) 64.5165 + 33.8332i 0.104396 + 0.0547463i
\(619\) 374.604 904.373i 0.605176 1.46102i −0.263015 0.964792i \(-0.584717\pi\)
0.868190 0.496231i \(-0.165283\pi\)
\(620\) −118.175 76.2932i −0.190605 0.123054i
\(621\) 293.653 + 708.942i 0.472872 + 1.14161i
\(622\) −601.307 721.021i −0.966731 1.15920i
\(623\) −389.083 −0.624532
\(624\) −165.722 + 74.8535i −0.265579 + 0.119957i
\(625\) 559.132i 0.894612i
\(626\) −473.037 567.213i −0.755650 0.906092i
\(627\) −765.255 + 316.979i −1.22050 + 0.505549i
\(628\) −49.8188 + 10.7293i −0.0793293 + 0.0170848i
\(629\) −923.938 382.708i −1.46890 0.608438i
\(630\) 19.2104 + 10.0742i 0.0304927 + 0.0159907i
\(631\) 120.246 + 120.246i 0.190564 + 0.190564i 0.795940 0.605376i \(-0.206977\pi\)
−0.605376 + 0.795940i \(0.706977\pi\)
\(632\) 88.8529 + 24.6730i 0.140590 + 0.0390396i
\(633\) −311.023 311.023i −0.491347 0.491347i
\(634\) 184.668 57.6129i 0.291274 0.0908721i
\(635\) −41.9211 17.3643i −0.0660174 0.0273453i
\(636\) 42.4461 232.503i 0.0667392 0.365570i
\(637\) 34.0787 14.1159i 0.0534988 0.0221599i
\(638\) −132.517 + 1463.75i −0.207708 + 2.29428i
\(639\) 139.263i 0.217938i
\(640\) −103.121 + 62.6707i −0.161126 + 0.0979230i
\(641\) −278.072 −0.433810 −0.216905 0.976193i \(-0.569596\pi\)
−0.216905 + 0.976193i \(0.569596\pi\)
\(642\) −241.816 21.8923i −0.376661 0.0341001i
\(643\) −334.195 806.819i −0.519744 1.25477i −0.938061 0.346471i \(-0.887380\pi\)
0.418317 0.908301i \(-0.362620\pi\)
\(644\) 277.494 + 50.6597i 0.430891 + 0.0786642i
\(645\) −64.4665 + 155.636i −0.0999481 + 0.241296i
\(646\) −303.224 971.929i −0.469387 1.50453i
\(647\) 409.640 409.640i 0.633137 0.633137i −0.315716 0.948854i \(-0.602245\pi\)
0.948854 + 0.315716i \(0.102245\pi\)
\(648\) 49.1400 176.964i 0.0758333 0.273092i
\(649\) −422.973 + 422.973i −0.651731 + 0.651731i
\(650\) 118.014 225.042i 0.181561 0.346218i
\(651\) 81.4553 196.651i 0.125123 0.302075i
\(652\) 143.909 + 668.209i 0.220720 + 1.02486i
\(653\) −457.695 1104.97i −0.700911 1.69215i −0.721550 0.692362i \(-0.756570\pi\)
0.0206388 0.999787i \(-0.493430\pi\)
\(654\) 295.934 246.799i 0.452498 0.377368i
\(655\) 146.986 0.224406
\(656\) −347.016 + 156.741i −0.528988 + 0.238934i
\(657\) 230.245i 0.350449i
\(658\) −340.933 + 284.327i −0.518136 + 0.432108i
\(659\) 820.050 339.676i 1.24439 0.515441i 0.339303 0.940677i \(-0.389809\pi\)
0.905083 + 0.425236i \(0.139809\pi\)
\(660\) 65.6993 101.766i 0.0995444 0.154190i
\(661\) −449.364 186.133i −0.679825 0.281593i 0.0159290 0.999873i \(-0.494929\pi\)
−0.695754 + 0.718281i \(0.744929\pi\)
\(662\) −80.9625 + 154.387i −0.122300 + 0.233213i
\(663\) 158.651 + 158.651i 0.239293 + 0.239293i
\(664\) 1270.90 155.616i 1.91400 0.234361i
\(665\) 45.4798 + 45.4798i 0.0683906 + 0.0683906i
\(666\) 131.206 + 420.558i 0.197006 + 0.631468i
\(667\) 1215.05 + 503.291i 1.82167 + 0.754558i
\(668\) −528.167 + 365.092i −0.790669 + 0.546545i
\(669\) 106.376 44.0624i 0.159007 0.0658630i
\(670\) −155.655 14.0918i −0.232321 0.0210326i
\(671\) 764.959i 1.14003i
\(672\) −121.317 136.475i −0.180531 0.203088i
\(673\) −460.650 −0.684473 −0.342236 0.939614i \(-0.611184\pi\)
−0.342236 + 0.939614i \(0.611184\pi\)
\(674\) 108.501 1198.47i 0.160981 1.77815i
\(675\) 265.638 + 641.308i 0.393538 + 0.950086i
\(676\) 464.712 321.229i 0.687443 0.475191i
\(677\) 20.9880 50.6694i 0.0310014 0.0748441i −0.907621 0.419791i \(-0.862103\pi\)
0.938622 + 0.344947i \(0.112103\pi\)
\(678\) −222.700 + 69.4783i −0.328466 + 0.102475i
\(679\) −154.462 + 154.462i −0.227484 + 0.227484i
\(680\) 117.297 + 91.7052i 0.172495 + 0.134861i
\(681\) −71.8179 + 71.8179i −0.105459 + 0.105459i
\(682\) 983.996 + 516.019i 1.44281 + 0.756626i
\(683\) −29.0552 + 70.1454i −0.0425405 + 0.102702i −0.943722 0.330741i \(-0.892701\pi\)
0.901181 + 0.433443i \(0.142701\pi\)
\(684\) −243.264 + 376.806i −0.355649 + 0.550885i
\(685\) −20.8965 50.4485i −0.0305058 0.0736474i
\(686\) 23.7234 + 28.4465i 0.0345822 + 0.0414671i
\(687\) −762.217 −1.10949
\(688\) −907.309 + 966.451i −1.31876 + 1.40473i
\(689\) 144.362i 0.209523i
\(690\) −69.4212 83.2423i −0.100610 0.120641i
\(691\) 822.850 340.836i 1.19081 0.493250i 0.302792 0.953057i \(-0.402081\pi\)
0.888019 + 0.459807i \(0.152081\pi\)
\(692\) 243.573 + 1130.97i 0.351985 + 1.63436i
\(693\) −158.299 65.5697i −0.228426 0.0946172i
\(694\) 979.155 + 513.480i 1.41089 + 0.739885i
\(695\) 38.4422 + 38.4422i 0.0553125 + 0.0553125i
\(696\) −418.980 741.122i −0.601983 1.06483i
\(697\) 332.211 + 332.211i 0.476629 + 0.476629i
\(698\) −820.399 + 255.949i −1.17536 + 0.366690i
\(699\) −129.957 53.8298i −0.185918 0.0770097i
\(700\) 251.020 + 45.8267i 0.358601 + 0.0654668i
\(701\) −305.289 + 126.455i −0.435505 + 0.180392i −0.589655 0.807655i \(-0.700736\pi\)
0.154150 + 0.988048i \(0.450736\pi\)
\(702\) 27.3567 302.175i 0.0389697 0.430449i
\(703\) 1306.28i 1.85815i
\(704\) 766.598 566.461i 1.08892 0.804633i
\(705\) 170.584 0.241963
\(706\) 325.923 + 29.5067i 0.461647 + 0.0417941i
\(707\) −116.423 281.070i −0.164672 0.397553i
\(708\) 62.2285 340.863i 0.0878933 0.481445i
\(709\) −81.1217 + 195.845i −0.114417 + 0.276227i −0.970706 0.240270i \(-0.922764\pi\)
0.856289 + 0.516497i \(0.172764\pi\)
\(710\) −17.9845 57.6459i −0.0253302 0.0811915i
\(711\) −35.4419 + 35.4419i −0.0498479 + 0.0498479i
\(712\) 578.984 + 1024.15i 0.813179 + 1.43841i
\(713\) 703.030 703.030i 0.986016 0.986016i
\(714\) −104.637 + 199.531i −0.146550 + 0.279456i
\(715\) 28.3138 68.3555i 0.0395997 0.0956021i
\(716\) −584.155 + 125.807i −0.815860 + 0.175708i
\(717\) −174.131 420.391i −0.242861 0.586319i
\(718\) 499.050 416.191i 0.695055 0.579653i
\(719\) 1240.79 1.72571 0.862855 0.505451i \(-0.168674\pi\)
0.862855 + 0.505451i \(0.168674\pi\)
\(720\) −2.06919 65.5568i −0.00287387 0.0910511i
\(721\) 44.6828i 0.0619734i
\(722\) −466.838 + 389.327i −0.646589 + 0.539234i
\(723\) 8.88289 3.67941i 0.0122862 0.00508909i
\(724\) −210.781 136.079i −0.291135 0.187955i
\(725\) 1099.13 + 455.276i 1.51605 + 0.627967i
\(726\) −201.964 + 385.124i −0.278187 + 0.530474i
\(727\) −814.186 814.186i −1.11993 1.11993i −0.991752 0.128174i \(-0.959088\pi\)
−0.128174 0.991752i \(-0.540912\pi\)
\(728\) −87.8674 68.6967i −0.120697 0.0943637i
\(729\) 465.740 + 465.740i 0.638876 + 0.638876i
\(730\) 29.7340 + 95.3070i 0.0407315 + 0.130557i
\(731\) 1511.10 + 625.919i 2.06717 + 0.856250i
\(732\) −251.959 364.501i −0.344206 0.497952i
\(733\) 302.729 125.394i 0.413000 0.171070i −0.166502 0.986041i \(-0.553247\pi\)
0.579502 + 0.814971i \(0.303247\pi\)
\(734\) −1203.66 108.971i −1.63986 0.148461i
\(735\) 14.2330i 0.0193647i
\(736\) −279.584 805.806i −0.379869 1.09484i
\(737\) 1234.54 1.67509
\(738\) 18.6607 206.121i 0.0252855 0.279297i
\(739\) 212.589 + 513.236i 0.287671 + 0.694500i 0.999973 0.00737358i \(-0.00234710\pi\)
−0.712301 + 0.701874i \(0.752347\pi\)
\(740\) −108.622 157.140i −0.146787 0.212352i
\(741\) 112.152 270.758i 0.151352 0.365395i
\(742\) 138.386 43.1738i 0.186504 0.0581858i
\(743\) 308.665 308.665i 0.415431 0.415431i −0.468195 0.883625i \(-0.655095\pi\)
0.883625 + 0.468195i \(0.155095\pi\)
\(744\) −638.836 + 78.2228i −0.858650 + 0.105138i
\(745\) −55.3282 + 55.3282i −0.0742660 + 0.0742660i
\(746\) −127.707 66.9712i −0.171190 0.0897738i
\(747\) −266.325 + 642.964i −0.356526 + 0.860729i
\(748\) −988.063 637.888i −1.32094 0.852792i
\(749\) −56.9916 137.590i −0.0760903 0.183698i
\(750\) −127.912 153.377i −0.170549 0.204503i
\(751\) −616.146 −0.820434 −0.410217 0.911988i \(-0.634547\pi\)
−0.410217 + 0.911988i \(0.634547\pi\)
\(752\) 1255.74 + 474.308i 1.66987 + 0.630728i
\(753\) 100.587i 0.133582i
\(754\) −333.054 399.362i −0.441716 0.529658i
\(755\) −51.9991 + 21.5387i −0.0688730 + 0.0285281i
\(756\) 297.849 64.1464i 0.393980 0.0848498i
\(757\) −164.876 68.2937i −0.217801 0.0902163i 0.271115 0.962547i \(-0.412608\pi\)
−0.488916