Properties

Label 224.3.w.a.43.19
Level 224
Weight 3
Character 224.43
Analytic conductor 6.104
Analytic rank 0
Dimension 192
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(48\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 43.19
Character \(\chi\) \(=\) 224.43
Dual form 224.3.w.a.99.19

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.518278 + 1.93168i) q^{2} +(-0.266183 - 0.642623i) q^{3} +(-3.46277 - 2.00230i) q^{4} +(-0.747592 + 1.80485i) q^{5} +(1.37930 - 0.181123i) q^{6} +(1.87083 - 1.87083i) q^{7} +(5.66248 - 5.65123i) q^{8} +(6.02185 - 6.02185i) q^{9} +O(q^{10})\) \(q+(-0.518278 + 1.93168i) q^{2} +(-0.266183 - 0.642623i) q^{3} +(-3.46277 - 2.00230i) q^{4} +(-0.747592 + 1.80485i) q^{5} +(1.37930 - 0.181123i) q^{6} +(1.87083 - 1.87083i) q^{7} +(5.66248 - 5.65123i) q^{8} +(6.02185 - 6.02185i) q^{9} +(-3.09892 - 2.37952i) q^{10} +(0.854581 - 2.06314i) q^{11} +(-0.364989 + 2.75824i) q^{12} +(-2.40343 - 5.80239i) q^{13} +(2.64423 + 4.58345i) q^{14} +1.35883 q^{15} +(7.98162 + 13.8670i) q^{16} +18.1690i q^{17} +(8.51129 + 14.7533i) q^{18} +(34.1345 - 14.1390i) q^{19} +(6.20258 - 4.75288i) q^{20} +(-1.70022 - 0.704255i) q^{21} +(3.54242 + 2.72006i) q^{22} +(6.06571 + 6.06571i) q^{23} +(-5.13887 - 2.13458i) q^{24} +(14.9791 + 14.9791i) q^{25} +(12.4540 - 1.63540i) q^{26} +(-11.2563 - 4.66252i) q^{27} +(-10.2242 + 2.73231i) q^{28} +(29.1695 - 12.0824i) q^{29} +(-0.704254 + 2.62483i) q^{30} -17.4712i q^{31} +(-30.9233 + 8.23097i) q^{32} -1.55330 q^{33} +(-35.0968 - 9.41662i) q^{34} +(1.97794 + 4.77517i) q^{35} +(-32.9098 + 8.79478i) q^{36} +(5.11785 - 12.3556i) q^{37} +(9.62079 + 73.2648i) q^{38} +(-3.08900 + 3.08900i) q^{39} +(5.96637 + 14.4447i) q^{40} +(-19.9681 + 19.9681i) q^{41} +(2.24158 - 2.91928i) q^{42} +(17.0934 - 41.2671i) q^{43} +(-7.09024 + 5.43307i) q^{44} +(6.36663 + 15.3704i) q^{45} +(-14.8607 + 8.57329i) q^{46} +35.7853 q^{47} +(6.78669 - 8.82034i) q^{48} -7.00000i q^{49} +(-36.6982 + 21.1715i) q^{50} +(11.6759 - 4.83630i) q^{51} +(-3.29557 + 24.9048i) q^{52} +(-87.6520 - 36.3066i) q^{53} +(14.8404 - 19.3271i) q^{54} +(3.08478 + 3.08478i) q^{55} +(0.0210475 - 21.1660i) q^{56} +(-18.1721 - 18.1721i) q^{57} +(8.22141 + 62.6082i) q^{58} +(62.7071 + 25.9741i) q^{59} +(-4.70533 - 2.72079i) q^{60} +(-91.3190 + 37.8256i) q^{61} +(33.7487 + 9.05493i) q^{62} -22.5317i q^{63} +(0.127283 - 63.9999i) q^{64} +12.2692 q^{65} +(0.805041 - 3.00048i) q^{66} +(-28.7890 - 69.5029i) q^{67} +(36.3798 - 62.9153i) q^{68} +(2.28338 - 5.51256i) q^{69} +(-10.2492 + 1.34588i) q^{70} +(47.0460 - 47.0460i) q^{71} +(0.0677481 - 68.1294i) q^{72} +(25.5379 - 25.5379i) q^{73} +(21.2146 + 16.2897i) q^{74} +(5.63873 - 13.6131i) q^{75} +(-146.510 - 19.3873i) q^{76} +(-2.26101 - 5.45856i) q^{77} +(-4.36600 - 7.56792i) q^{78} -8.38633 q^{79} +(-30.9948 + 4.03874i) q^{80} -68.1710i q^{81} +(-28.2230 - 48.9211i) q^{82} +(-12.8515 + 5.32326i) q^{83} +(4.47736 + 5.84302i) q^{84} +(-32.7923 - 13.5830i) q^{85} +(70.8556 + 54.4067i) q^{86} +(-15.5289 - 15.5289i) q^{87} +(-6.82023 - 16.5119i) q^{88} +(72.9437 + 72.9437i) q^{89} +(-32.9904 + 4.33214i) q^{90} +(-15.3517 - 6.35888i) q^{91} +(-8.85885 - 33.1496i) q^{92} +(-11.2274 + 4.65054i) q^{93} +(-18.5467 + 69.1257i) q^{94} +72.1777i q^{95} +(13.5207 + 17.6811i) q^{96} -102.626 q^{97} +(13.5218 + 3.62795i) q^{98} +(-7.27777 - 17.5701i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192q + O(q^{10}) \) \( 192q + 80q^{10} + 96q^{12} - 20q^{16} - 60q^{18} - 260q^{22} + 64q^{23} - 144q^{24} - 200q^{26} + 192q^{27} - 40q^{30} + 40q^{32} + 120q^{34} + 464q^{36} + 504q^{38} - 384q^{39} + 360q^{40} - 96q^{43} + 52q^{44} + 64q^{46} - 104q^{48} - 312q^{50} - 384q^{51} - 320q^{52} + 160q^{53} - 576q^{54} - 512q^{55} - 196q^{56} - 360q^{58} - 872q^{60} + 128q^{61} - 408q^{62} + 832q^{66} + 160q^{67} + 856q^{68} - 384q^{69} + 336q^{70} + 1488q^{72} + 308q^{74} + 768q^{75} + 1024q^{76} - 224q^{77} - 408q^{78} + 1024q^{79} - 1040q^{80} - 240q^{82} - 1384q^{86} + 896q^{87} - 560q^{88} - 1320q^{90} - 380q^{92} - 936q^{94} - 1088q^{96} - 512q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.518278 + 1.93168i −0.259139 + 0.965840i
\(3\) −0.266183 0.642623i −0.0887278 0.214208i 0.873286 0.487207i \(-0.161984\pi\)
−0.962014 + 0.272999i \(0.911984\pi\)
\(4\) −3.46277 2.00230i −0.865694 0.500574i
\(5\) −0.747592 + 1.80485i −0.149518 + 0.360969i −0.980838 0.194826i \(-0.937586\pi\)
0.831320 + 0.555795i \(0.187586\pi\)
\(6\) 1.37930 0.181123i 0.229883 0.0301872i
\(7\) 1.87083 1.87083i 0.267261 0.267261i
\(8\) 5.66248 5.65123i 0.707810 0.706403i
\(9\) 6.02185 6.02185i 0.669094 0.669094i
\(10\) −3.09892 2.37952i −0.309892 0.237952i
\(11\) 0.854581 2.06314i 0.0776892 0.187558i −0.880263 0.474486i \(-0.842634\pi\)
0.957952 + 0.286928i \(0.0926339\pi\)
\(12\) −0.364989 + 2.75824i −0.0304158 + 0.229853i
\(13\) −2.40343 5.80239i −0.184879 0.446338i 0.804081 0.594520i \(-0.202658\pi\)
−0.988960 + 0.148182i \(0.952658\pi\)
\(14\) 2.64423 + 4.58345i 0.188874 + 0.327389i
\(15\) 1.35883 0.0905888
\(16\) 7.98162 + 13.8670i 0.498851 + 0.866688i
\(17\) 18.1690i 1.06877i 0.845242 + 0.534384i \(0.179456\pi\)
−0.845242 + 0.534384i \(0.820544\pi\)
\(18\) 8.51129 + 14.7533i 0.472850 + 0.819627i
\(19\) 34.1345 14.1390i 1.79655 0.744156i 0.808808 0.588073i \(-0.200113\pi\)
0.987744 0.156083i \(-0.0498868\pi\)
\(20\) 6.20258 4.75288i 0.310129 0.237644i
\(21\) −1.70022 0.704255i −0.0809629 0.0335359i
\(22\) 3.54242 + 2.72006i 0.161019 + 0.123639i
\(23\) 6.06571 + 6.06571i 0.263727 + 0.263727i 0.826566 0.562839i \(-0.190291\pi\)
−0.562839 + 0.826566i \(0.690291\pi\)
\(24\) −5.13887 2.13458i −0.214119 0.0889407i
\(25\) 14.9791 + 14.9791i 0.599164 + 0.599164i
\(26\) 12.4540 1.63540i 0.479000 0.0629001i
\(27\) −11.2563 4.66252i −0.416900 0.172686i
\(28\) −10.2242 + 2.73231i −0.365150 + 0.0975824i
\(29\) 29.1695 12.0824i 1.00584 0.416635i 0.181908 0.983316i \(-0.441773\pi\)
0.823937 + 0.566681i \(0.191773\pi\)
\(30\) −0.704254 + 2.62483i −0.0234751 + 0.0874943i
\(31\) 17.4712i 0.563586i −0.959475 0.281793i \(-0.909071\pi\)
0.959475 0.281793i \(-0.0909292\pi\)
\(32\) −30.9233 + 8.23097i −0.966353 + 0.257218i
\(33\) −1.55330 −0.0470697
\(34\) −35.0968 9.41662i −1.03226 0.276959i
\(35\) 1.97794 + 4.77517i 0.0565126 + 0.136434i
\(36\) −32.9098 + 8.79478i −0.914162 + 0.244300i
\(37\) 5.11785 12.3556i 0.138320 0.333935i −0.839507 0.543350i \(-0.817156\pi\)
0.977827 + 0.209415i \(0.0671558\pi\)
\(38\) 9.62079 + 73.2648i 0.253179 + 1.92802i
\(39\) −3.08900 + 3.08900i −0.0792051 + 0.0792051i
\(40\) 5.96637 + 14.4447i 0.149159 + 0.361118i
\(41\) −19.9681 + 19.9681i −0.487028 + 0.487028i −0.907367 0.420339i \(-0.861911\pi\)
0.420339 + 0.907367i \(0.361911\pi\)
\(42\) 2.24158 2.91928i 0.0533710 0.0695068i
\(43\) 17.0934 41.2671i 0.397520 0.959699i −0.590732 0.806868i \(-0.701161\pi\)
0.988252 0.152831i \(-0.0488390\pi\)
\(44\) −7.09024 + 5.43307i −0.161142 + 0.123479i
\(45\) 6.36663 + 15.3704i 0.141481 + 0.341564i
\(46\) −14.8607 + 8.57329i −0.323060 + 0.186376i
\(47\) 35.7853 0.761389 0.380694 0.924701i \(-0.375685\pi\)
0.380694 + 0.924701i \(0.375685\pi\)
\(48\) 6.78669 8.82034i 0.141389 0.183757i
\(49\) 7.00000i 0.142857i
\(50\) −36.6982 + 21.1715i −0.733963 + 0.423430i
\(51\) 11.6759 4.83630i 0.228938 0.0948293i
\(52\) −3.29557 + 24.9048i −0.0633764 + 0.478938i
\(53\) −87.6520 36.3066i −1.65381 0.685031i −0.656231 0.754560i \(-0.727850\pi\)
−0.997580 + 0.0695296i \(0.977850\pi\)
\(54\) 14.8404 19.3271i 0.274822 0.357909i
\(55\) 3.08478 + 3.08478i 0.0560868 + 0.0560868i
\(56\) 0.0210475 21.1660i 0.000375849 0.377964i
\(57\) −18.1721 18.1721i −0.318808 0.318808i
\(58\) 8.22141 + 62.6082i 0.141749 + 1.07945i
\(59\) 62.7071 + 25.9741i 1.06283 + 0.440240i 0.844456 0.535625i \(-0.179924\pi\)
0.218377 + 0.975865i \(0.429924\pi\)
\(60\) −4.70533 2.72079i −0.0784222 0.0453464i
\(61\) −91.3190 + 37.8256i −1.49703 + 0.620091i −0.972834 0.231504i \(-0.925635\pi\)
−0.524199 + 0.851596i \(0.675635\pi\)
\(62\) 33.7487 + 9.05493i 0.544334 + 0.146047i
\(63\) 22.5317i 0.357646i
\(64\) 0.127283 63.9999i 0.00198880 0.999998i
\(65\) 12.2692 0.188757
\(66\) 0.805041 3.00048i 0.0121976 0.0454618i
\(67\) −28.7890 69.5029i −0.429687 1.03736i −0.979387 0.201994i \(-0.935258\pi\)
0.549700 0.835362i \(-0.314742\pi\)
\(68\) 36.3798 62.9153i 0.534997 0.925225i
\(69\) 2.28338 5.51256i 0.0330924 0.0798922i
\(70\) −10.2492 + 1.34588i −0.146418 + 0.0192269i
\(71\) 47.0460 47.0460i 0.662620 0.662620i −0.293377 0.955997i \(-0.594779\pi\)
0.955997 + 0.293377i \(0.0947791\pi\)
\(72\) 0.0677481 68.1294i 0.000940946 0.946242i
\(73\) 25.5379 25.5379i 0.349835 0.349835i −0.510213 0.860048i \(-0.670433\pi\)
0.860048 + 0.510213i \(0.170433\pi\)
\(74\) 21.2146 + 16.2897i 0.286683 + 0.220131i
\(75\) 5.63873 13.6131i 0.0751831 0.181508i
\(76\) −146.510 19.3873i −1.92777 0.255096i
\(77\) −2.26101 5.45856i −0.0293638 0.0708904i
\(78\) −4.36600 7.56792i −0.0559743 0.0970246i
\(79\) −8.38633 −0.106156 −0.0530780 0.998590i \(-0.516903\pi\)
−0.0530780 + 0.998590i \(0.516903\pi\)
\(80\) −30.9948 + 4.03874i −0.387435 + 0.0504843i
\(81\) 68.1710i 0.841617i
\(82\) −28.2230 48.9211i −0.344183 0.596599i
\(83\) −12.8515 + 5.32326i −0.154837 + 0.0641356i −0.458756 0.888562i \(-0.651705\pi\)
0.303919 + 0.952698i \(0.401705\pi\)
\(84\) 4.47736 + 5.84302i 0.0533019 + 0.0695598i
\(85\) −32.7923 13.5830i −0.385792 0.159800i
\(86\) 70.8556 + 54.4067i 0.823902 + 0.632637i
\(87\) −15.5289 15.5289i −0.178493 0.178493i
\(88\) −6.82023 16.5119i −0.0775027 0.187636i
\(89\) 72.9437 + 72.9437i 0.819592 + 0.819592i 0.986049 0.166457i \(-0.0532326\pi\)
−0.166457 + 0.986049i \(0.553233\pi\)
\(90\) −32.9904 + 4.33214i −0.366560 + 0.0481349i
\(91\) −15.3517 6.35888i −0.168700 0.0698778i
\(92\) −8.85885 33.1496i −0.0962918 0.360321i
\(93\) −11.2274 + 4.65054i −0.120725 + 0.0500058i
\(94\) −18.5467 + 69.1257i −0.197306 + 0.735380i
\(95\) 72.1777i 0.759765i
\(96\) 13.5207 + 17.6811i 0.140840 + 0.184178i
\(97\) −102.626 −1.05800 −0.528998 0.848623i \(-0.677432\pi\)
−0.528998 + 0.848623i \(0.677432\pi\)
\(98\) 13.5218 + 3.62795i 0.137977 + 0.0370199i
\(99\) −7.27777 17.5701i −0.0735128 0.177476i
\(100\) −21.8767 81.8618i −0.218767 0.818618i
\(101\) −31.6698 + 76.4577i −0.313563 + 0.757007i 0.686005 + 0.727597i \(0.259363\pi\)
−0.999567 + 0.0294102i \(0.990637\pi\)
\(102\) 3.29083 + 25.0606i 0.0322631 + 0.245692i
\(103\) −36.0782 + 36.0782i −0.350274 + 0.350274i −0.860211 0.509937i \(-0.829669\pi\)
0.509937 + 0.860211i \(0.329669\pi\)
\(104\) −46.4000 19.2736i −0.446154 0.185323i
\(105\) 2.54214 2.54214i 0.0242109 0.0242109i
\(106\) 115.561 150.499i 1.09020 1.41980i
\(107\) 60.8944 147.012i 0.569107 1.37395i −0.333202 0.942855i \(-0.608129\pi\)
0.902309 0.431090i \(-0.141871\pi\)
\(108\) 29.6423 + 38.6837i 0.274466 + 0.358182i
\(109\) −1.95510 4.72002i −0.0179367 0.0433029i 0.914657 0.404230i \(-0.132460\pi\)
−0.932594 + 0.360927i \(0.882460\pi\)
\(110\) −7.55757 + 4.36003i −0.0687052 + 0.0396366i
\(111\) −9.30228 −0.0838043
\(112\) 40.8750 + 11.0105i 0.364956 + 0.0983084i
\(113\) 191.128i 1.69140i 0.533659 + 0.845700i \(0.320817\pi\)
−0.533659 + 0.845700i \(0.679183\pi\)
\(114\) 44.5208 25.6844i 0.390533 0.225302i
\(115\) −15.4824 + 6.41300i −0.134629 + 0.0557652i
\(116\) −125.200 16.5673i −1.07931 0.142822i
\(117\) −49.4142 20.4680i −0.422344 0.174941i
\(118\) −82.6735 + 107.668i −0.700623 + 0.912443i
\(119\) 33.9912 + 33.9912i 0.285640 + 0.285640i
\(120\) 7.69436 7.67907i 0.0641196 0.0639923i
\(121\) 82.0337 + 82.0337i 0.677964 + 0.677964i
\(122\) −25.7382 196.003i −0.210969 1.60658i
\(123\) 18.1472 + 7.51681i 0.147538 + 0.0611123i
\(124\) −34.9825 + 60.4987i −0.282117 + 0.487893i
\(125\) −83.3543 + 34.5265i −0.666835 + 0.276212i
\(126\) 43.5240 + 11.6777i 0.345429 + 0.0926801i
\(127\) 244.025i 1.92145i 0.277494 + 0.960727i \(0.410496\pi\)
−0.277494 + 0.960727i \(0.589504\pi\)
\(128\) 123.561 + 33.4156i 0.965323 + 0.261060i
\(129\) −31.0691 −0.240846
\(130\) −6.35886 + 23.7002i −0.0489143 + 0.182309i
\(131\) 46.8130 + 113.017i 0.357351 + 0.862721i 0.995671 + 0.0929502i \(0.0296297\pi\)
−0.638320 + 0.769771i \(0.720370\pi\)
\(132\) 5.37872 + 3.11016i 0.0407479 + 0.0235618i
\(133\) 37.4082 90.3114i 0.281265 0.679033i
\(134\) 149.178 19.5894i 1.11327 0.146189i
\(135\) 16.8302 16.8302i 0.124668 0.124668i
\(136\) 102.677 + 102.882i 0.754981 + 0.756484i
\(137\) 18.6465 18.6465i 0.136106 0.136106i −0.635771 0.771877i \(-0.719318\pi\)
0.771877 + 0.635771i \(0.219318\pi\)
\(138\) 9.46508 + 7.26780i 0.0685875 + 0.0526652i
\(139\) 10.7025 25.8382i 0.0769965 0.185886i −0.880694 0.473685i \(-0.842924\pi\)
0.957691 + 0.287799i \(0.0929235\pi\)
\(140\) 2.71214 20.4958i 0.0193725 0.146398i
\(141\) −9.52545 22.9965i −0.0675564 0.163095i
\(142\) 66.4949 + 115.261i 0.468274 + 0.811696i
\(143\) −14.0251 −0.0980775
\(144\) 131.569 + 35.4409i 0.913674 + 0.246117i
\(145\) 61.6792i 0.425374i
\(146\) 36.0954 + 62.5669i 0.247229 + 0.428540i
\(147\) −4.49836 + 1.86328i −0.0306011 + 0.0126754i
\(148\) −42.4615 + 32.5372i −0.286902 + 0.219846i
\(149\) −45.8596 18.9957i −0.307782 0.127488i 0.223446 0.974716i \(-0.428269\pi\)
−0.531228 + 0.847229i \(0.678269\pi\)
\(150\) 23.3737 + 17.9476i 0.155825 + 0.119651i
\(151\) −135.892 135.892i −0.899945 0.899945i 0.0954859 0.995431i \(-0.469560\pi\)
−0.995431 + 0.0954859i \(0.969560\pi\)
\(152\) 113.383 272.963i 0.745942 1.79581i
\(153\) 109.411 + 109.411i 0.715106 + 0.715106i
\(154\) 11.7160 1.53849i 0.0760781 0.00999022i
\(155\) 31.5328 + 13.0613i 0.203437 + 0.0842665i
\(156\) 16.8816 4.51142i 0.108215 0.0289194i
\(157\) −143.404 + 59.3999i −0.913402 + 0.378343i −0.789358 0.613933i \(-0.789586\pi\)
−0.124044 + 0.992277i \(0.539586\pi\)
\(158\) 4.34645 16.1997i 0.0275092 0.102530i
\(159\) 65.9914i 0.415040i
\(160\) 8.26238 61.9652i 0.0516398 0.387283i
\(161\) 22.6958 0.140968
\(162\) 131.685 + 35.3315i 0.812867 + 0.218096i
\(163\) 29.7483 + 71.8186i 0.182505 + 0.440605i 0.988481 0.151342i \(-0.0483595\pi\)
−0.805977 + 0.591947i \(0.798359\pi\)
\(164\) 109.127 29.1631i 0.665411 0.177824i
\(165\) 1.16123 2.80346i 0.00703778 0.0169907i
\(166\) −3.62218 27.5839i −0.0218204 0.166168i
\(167\) −219.438 + 219.438i −1.31400 + 1.31400i −0.395560 + 0.918440i \(0.629450\pi\)
−0.918440 + 0.395560i \(0.870550\pi\)
\(168\) −13.6074 + 5.62051i −0.0809962 + 0.0334554i
\(169\) 91.6098 91.6098i 0.542070 0.542070i
\(170\) 43.2336 56.3045i 0.254315 0.331203i
\(171\) 120.410 290.695i 0.704152 1.69997i
\(172\) −141.819 + 108.673i −0.824531 + 0.631817i
\(173\) 90.0139 + 217.313i 0.520311 + 1.25614i 0.937710 + 0.347419i \(0.112942\pi\)
−0.417399 + 0.908723i \(0.637058\pi\)
\(174\) 38.0451 21.9485i 0.218650 0.126141i
\(175\) 56.0466 0.320267
\(176\) 35.4305 4.61674i 0.201310 0.0262315i
\(177\) 47.2110i 0.266729i
\(178\) −178.709 + 103.099i −1.00398 + 0.579206i
\(179\) 25.0102 10.3596i 0.139722 0.0578747i −0.311727 0.950172i \(-0.600907\pi\)
0.451449 + 0.892297i \(0.350907\pi\)
\(180\) 8.72989 65.9721i 0.0484994 0.366512i
\(181\) −95.5125 39.5626i −0.527693 0.218578i 0.102899 0.994692i \(-0.467188\pi\)
−0.630593 + 0.776114i \(0.717188\pi\)
\(182\) 20.2398 26.3589i 0.111207 0.144829i
\(183\) 48.6152 + 48.6152i 0.265657 + 0.265657i
\(184\) 68.6257 + 0.0682416i 0.372966 + 0.000370878i
\(185\) 18.4739 + 18.4739i 0.0998588 + 0.0998588i
\(186\) −3.16443 24.0980i −0.0170131 0.129559i
\(187\) 37.4853 + 15.5269i 0.200456 + 0.0830317i
\(188\) −123.916 71.6527i −0.659130 0.381132i
\(189\) −29.7814 + 12.3359i −0.157574 + 0.0652691i
\(190\) −139.424 37.4081i −0.733811 0.196885i
\(191\) 116.515i 0.610026i −0.952348 0.305013i \(-0.901339\pi\)
0.952348 0.305013i \(-0.0986609\pi\)
\(192\) −41.1617 + 16.9539i −0.214384 + 0.0883016i
\(193\) −162.963 −0.844367 −0.422184 0.906510i \(-0.638736\pi\)
−0.422184 + 0.906510i \(0.638736\pi\)
\(194\) 53.1887 198.240i 0.274168 1.02186i
\(195\) −3.26586 7.88448i −0.0167480 0.0404332i
\(196\) −14.0161 + 24.2394i −0.0715106 + 0.123671i
\(197\) 58.8448 142.064i 0.298704 0.721136i −0.701262 0.712904i \(-0.747380\pi\)
0.999966 0.00823219i \(-0.00262042\pi\)
\(198\) 37.7117 4.95212i 0.190463 0.0250107i
\(199\) −16.3250 + 16.3250i −0.0820353 + 0.0820353i −0.746934 0.664898i \(-0.768475\pi\)
0.664898 + 0.746934i \(0.268475\pi\)
\(200\) 169.469 + 0.168521i 0.847345 + 0.000842603i
\(201\) −37.0010 + 37.0010i −0.184085 + 0.184085i
\(202\) −131.278 100.802i −0.649891 0.499022i
\(203\) 31.9670 77.1753i 0.157473 0.380174i
\(204\) −50.1145 6.63151i −0.245660 0.0325074i
\(205\) −21.1114 50.9674i −0.102982 0.248622i
\(206\) −50.9930 88.3901i −0.247539 0.429078i
\(207\) 73.0536 0.352916
\(208\) 61.2785 79.6408i 0.294608 0.382889i
\(209\) 82.5072i 0.394771i
\(210\) 3.59307 + 6.22814i 0.0171099 + 0.0296578i
\(211\) −234.359 + 97.0747i −1.11071 + 0.460070i −0.861181 0.508299i \(-0.830275\pi\)
−0.249526 + 0.968368i \(0.580275\pi\)
\(212\) 230.822 + 301.227i 1.08878 + 1.42088i
\(213\) −42.7557 17.7100i −0.200731 0.0831456i
\(214\) 252.420 + 193.822i 1.17953 + 0.905709i
\(215\) 61.7018 + 61.7018i 0.286985 + 0.286985i
\(216\) −90.0875 + 37.2106i −0.417072 + 0.172271i
\(217\) −32.6856 32.6856i −0.150625 0.150625i
\(218\) 10.1309 1.33034i 0.0464718 0.00610246i
\(219\) −23.2091 9.61351i −0.105977 0.0438973i
\(220\) −4.50525 16.8585i −0.0204784 0.0766296i
\(221\) 105.424 43.6680i 0.477031 0.197593i
\(222\) 4.82117 17.9690i 0.0217170 0.0809416i
\(223\) 298.537i 1.33873i 0.742933 + 0.669366i \(0.233434\pi\)
−0.742933 + 0.669366i \(0.766566\pi\)
\(224\) −42.4535 + 73.2510i −0.189524 + 0.327013i
\(225\) 180.404 0.801794
\(226\) −369.199 99.0576i −1.63362 0.438308i
\(227\) −108.709 262.446i −0.478893 1.15615i −0.960129 0.279558i \(-0.909812\pi\)
0.481236 0.876591i \(-0.340188\pi\)
\(228\) 26.5399 + 99.3116i 0.116403 + 0.435577i
\(229\) 60.2047 145.347i 0.262903 0.634703i −0.736213 0.676750i \(-0.763388\pi\)
0.999116 + 0.0420469i \(0.0133879\pi\)
\(230\) −4.36370 33.2307i −0.0189726 0.144481i
\(231\) −2.90596 + 2.90596i −0.0125799 + 0.0125799i
\(232\) 96.8912 233.260i 0.417635 1.00543i
\(233\) 118.214 118.214i 0.507357 0.507357i −0.406357 0.913714i \(-0.633201\pi\)
0.913714 + 0.406357i \(0.133201\pi\)
\(234\) 65.1480 84.8443i 0.278410 0.362583i
\(235\) −26.7528 + 64.5869i −0.113842 + 0.274838i
\(236\) −165.133 215.501i −0.699715 0.913139i
\(237\) 2.23230 + 5.38925i 0.00941899 + 0.0227394i
\(238\) −83.2769 + 48.0432i −0.349903 + 0.201862i
\(239\) −104.925 −0.439017 −0.219508 0.975611i \(-0.570445\pi\)
−0.219508 + 0.975611i \(0.570445\pi\)
\(240\) 10.8457 + 18.8429i 0.0451904 + 0.0785122i
\(241\) 54.4361i 0.225876i 0.993602 + 0.112938i \(0.0360261\pi\)
−0.993602 + 0.112938i \(0.963974\pi\)
\(242\) −200.979 + 115.947i −0.830492 + 0.479118i
\(243\) −145.115 + 60.1086i −0.597181 + 0.247361i
\(244\) 391.955 + 51.8663i 1.60637 + 0.212567i
\(245\) 12.6339 + 5.23314i 0.0515670 + 0.0213598i
\(246\) −23.9254 + 31.1588i −0.0972576 + 0.126662i
\(247\) −164.080 164.080i −0.664290 0.664290i
\(248\) −98.7336 98.9301i −0.398119 0.398912i
\(249\) 6.84170 + 6.84170i 0.0274767 + 0.0274767i
\(250\) −23.4934 178.908i −0.0939736 0.715633i
\(251\) 151.730 + 62.8485i 0.604501 + 0.250392i 0.663875 0.747843i \(-0.268911\pi\)
−0.0593744 + 0.998236i \(0.518911\pi\)
\(252\) −45.1151 + 78.0222i −0.179028 + 0.309612i
\(253\) 17.6981 7.33078i 0.0699529 0.0289754i
\(254\) −471.378 126.473i −1.85582 0.497924i
\(255\) 24.6887i 0.0968184i
\(256\) −128.587 + 221.362i −0.502295 + 0.864696i
\(257\) 185.282 0.720941 0.360470 0.932771i \(-0.382616\pi\)
0.360470 + 0.932771i \(0.382616\pi\)
\(258\) 16.1025 60.0156i 0.0624127 0.232619i
\(259\) −13.5406 32.6898i −0.0522802 0.126216i
\(260\) −42.4855 24.5666i −0.163406 0.0944869i
\(261\) 102.896 248.413i 0.394237 0.951773i
\(262\) −242.574 + 31.8537i −0.925855 + 0.121579i
\(263\) −142.962 + 142.962i −0.543581 + 0.543581i −0.924577 0.380995i \(-0.875581\pi\)
0.380995 + 0.924577i \(0.375581\pi\)
\(264\) −8.79552 + 8.77804i −0.0333164 + 0.0332502i
\(265\) 131.056 131.056i 0.494550 0.494550i
\(266\) 155.065 + 119.067i 0.582950 + 0.447621i
\(267\) 27.4589 66.2917i 0.102842 0.248284i
\(268\) −39.4754 + 298.317i −0.147296 + 1.11312i
\(269\) 19.0062 + 45.8851i 0.0706552 + 0.170577i 0.955262 0.295761i \(-0.0955732\pi\)
−0.884607 + 0.466338i \(0.845573\pi\)
\(270\) 23.7879 + 41.2334i 0.0881033 + 0.152716i
\(271\) 18.7752 0.0692812 0.0346406 0.999400i \(-0.488971\pi\)
0.0346406 + 0.999400i \(0.488971\pi\)
\(272\) −251.950 + 145.018i −0.926287 + 0.533156i
\(273\) 11.5580i 0.0423369i
\(274\) 26.3551 + 45.6833i 0.0961863 + 0.166727i
\(275\) 43.7049 18.1031i 0.158927 0.0658296i
\(276\) −18.9446 + 14.5168i −0.0686399 + 0.0525970i
\(277\) −15.3036 6.33898i −0.0552478 0.0228844i 0.354888 0.934909i \(-0.384519\pi\)
−0.410136 + 0.912024i \(0.634519\pi\)
\(278\) 44.3642 + 34.0652i 0.159583 + 0.122537i
\(279\) −105.209 105.209i −0.377092 0.377092i
\(280\) 38.1856 + 15.8615i 0.136377 + 0.0566483i
\(281\) 222.571 + 222.571i 0.792069 + 0.792069i 0.981830 0.189761i \(-0.0607714\pi\)
−0.189761 + 0.981830i \(0.560771\pi\)
\(282\) 49.3586 6.48154i 0.175031 0.0229842i
\(283\) −249.110 103.185i −0.880248 0.364611i −0.103655 0.994613i \(-0.533054\pi\)
−0.776593 + 0.630003i \(0.783054\pi\)
\(284\) −257.110 + 68.7097i −0.905316 + 0.241936i
\(285\) 46.3831 19.2125i 0.162748 0.0674122i
\(286\) 7.26890 27.0920i 0.0254157 0.0947272i
\(287\) 74.7140i 0.260327i
\(288\) −136.650 + 235.781i −0.474479 + 0.818685i
\(289\) −41.1141 −0.142263
\(290\) −119.144 31.9670i −0.410843 0.110231i
\(291\) 27.3172 + 65.9496i 0.0938737 + 0.226631i
\(292\) −139.567 + 37.2976i −0.477968 + 0.127732i
\(293\) −34.5694 + 83.4579i −0.117984 + 0.284839i −0.971828 0.235690i \(-0.924265\pi\)
0.853844 + 0.520529i \(0.174265\pi\)
\(294\) −1.26786 9.65510i −0.00431246 0.0328405i
\(295\) −93.7587 + 93.7587i −0.317826 + 0.317826i
\(296\) −40.8445 98.8854i −0.137988 0.334072i
\(297\) −19.2389 + 19.2389i −0.0647773 + 0.0647773i
\(298\) 60.4616 78.7410i 0.202891 0.264231i
\(299\) 20.6171 49.7742i 0.0689536 0.166469i
\(300\) −46.7831 + 35.8487i −0.155944 + 0.119496i
\(301\) −45.2248 109.182i −0.150249 0.362732i
\(302\) 332.929 192.069i 1.10241 0.635992i
\(303\) 57.5635 0.189979
\(304\) 468.514 + 360.491i 1.54116 + 1.18583i
\(305\) 193.095i 0.633098i
\(306\) −268.053 + 154.642i −0.875990 + 0.505366i
\(307\) −83.7613 + 34.6951i −0.272838 + 0.113013i −0.514908 0.857246i \(-0.672174\pi\)
0.242069 + 0.970259i \(0.422174\pi\)
\(308\) −3.10029 + 23.4290i −0.0100659 + 0.0760681i
\(309\) 32.7881 + 13.5813i 0.106110 + 0.0439524i
\(310\) −41.5730 + 54.1418i −0.134106 + 0.174651i
\(311\) −431.656 431.656i −1.38796 1.38796i −0.829593 0.558369i \(-0.811427\pi\)
−0.558369 0.829593i \(-0.688573\pi\)
\(312\) −0.0347524 + 34.9480i −0.000111386 + 0.112013i
\(313\) −2.33254 2.33254i −0.00745219 0.00745219i 0.703371 0.710823i \(-0.251677\pi\)
−0.710823 + 0.703371i \(0.751677\pi\)
\(314\) −40.4184 307.796i −0.128721 0.980243i
\(315\) 40.6662 + 16.8445i 0.129099 + 0.0534746i
\(316\) 29.0400 + 16.7919i 0.0918986 + 0.0531389i
\(317\) −210.177 + 87.0583i −0.663020 + 0.274632i −0.688709 0.725038i \(-0.741822\pi\)
0.0256887 + 0.999670i \(0.491822\pi\)
\(318\) −127.474 34.2019i −0.400863 0.107553i
\(319\) 70.5062i 0.221023i
\(320\) 115.415 + 48.0755i 0.360671 + 0.150236i
\(321\) −110.683 −0.344805
\(322\) −11.7628 + 43.8411i −0.0365303 + 0.136152i
\(323\) 256.891 + 620.191i 0.795330 + 1.92010i
\(324\) −136.498 + 236.061i −0.421292 + 0.728583i
\(325\) 50.9134 122.916i 0.156657 0.378202i
\(326\) −154.148 + 20.2421i −0.472848 + 0.0620922i
\(327\) −2.51278 + 2.51278i −0.00768435 + 0.00768435i
\(328\) −0.224649 + 225.914i −0.000684906 + 0.688761i
\(329\) 66.9481 66.9481i 0.203490 0.203490i
\(330\) 4.81355 + 3.69611i 0.0145865 + 0.0112003i
\(331\) 68.1626 164.559i 0.205929 0.497158i −0.786845 0.617150i \(-0.788287\pi\)
0.992775 + 0.119993i \(0.0382871\pi\)
\(332\) 55.1605 + 7.29922i 0.166146 + 0.0219856i
\(333\) −43.5846 105.222i −0.130885 0.315983i
\(334\) −310.154 537.614i −0.928605 1.60962i
\(335\) 146.964 0.438700
\(336\) −3.80462 29.1981i −0.0113233 0.0868990i
\(337\) 228.601i 0.678340i −0.940725 0.339170i \(-0.889854\pi\)
0.940725 0.339170i \(-0.110146\pi\)
\(338\) 129.481 + 224.440i 0.383081 + 0.664024i
\(339\) 122.823 50.8751i 0.362311 0.150074i
\(340\) 86.3552 + 112.695i 0.253986 + 0.331456i
\(341\) −36.0455 14.9305i −0.105705 0.0437846i
\(342\) 499.125 + 383.255i 1.45943 + 1.12063i
\(343\) −13.0958 13.0958i −0.0381802 0.0381802i
\(344\) −136.419 330.272i −0.396566 0.960094i
\(345\) 8.24229 + 8.24229i 0.0238907 + 0.0238907i
\(346\) −466.431 + 61.2495i −1.34807 + 0.177022i
\(347\) 205.523 + 85.1304i 0.592285 + 0.245333i 0.658633 0.752464i \(-0.271135\pi\)
−0.0663482 + 0.997797i \(0.521135\pi\)
\(348\) 22.6796 + 84.8664i 0.0651712 + 0.243869i
\(349\) 470.881 195.045i 1.34923 0.558869i 0.413152 0.910662i \(-0.364428\pi\)
0.936078 + 0.351793i \(0.114428\pi\)
\(350\) −29.0478 + 108.264i −0.0829936 + 0.309326i
\(351\) 76.5195i 0.218004i
\(352\) −9.44482 + 70.8332i −0.0268319 + 0.201231i
\(353\) −208.364 −0.590265 −0.295133 0.955456i \(-0.595364\pi\)
−0.295133 + 0.955456i \(0.595364\pi\)
\(354\) 91.1965 + 24.4684i 0.257617 + 0.0691198i
\(355\) 49.7396 + 120.082i 0.140112 + 0.338259i
\(356\) −106.533 398.642i −0.299249 1.11978i
\(357\) 12.7956 30.8914i 0.0358421 0.0865305i
\(358\) 7.04912 + 53.6809i 0.0196903 + 0.149947i
\(359\) 266.013 266.013i 0.740984 0.740984i −0.231784 0.972767i \(-0.574456\pi\)
0.972767 + 0.231784i \(0.0744562\pi\)
\(360\) 122.912 + 51.0553i 0.341423 + 0.141820i
\(361\) 709.987 709.987i 1.96672 1.96672i
\(362\) 125.924 163.995i 0.347857 0.453025i
\(363\) 30.8808 74.5528i 0.0850710 0.205380i
\(364\) 40.4271 + 52.7580i 0.111063 + 0.144939i
\(365\) 27.0001 + 65.1840i 0.0739729 + 0.178586i
\(366\) −119.105 + 68.7128i −0.325424 + 0.187740i
\(367\) 550.676 1.50048 0.750240 0.661165i \(-0.229938\pi\)
0.750240 + 0.661165i \(0.229938\pi\)
\(368\) −35.6990 + 132.528i −0.0970082 + 0.360129i
\(369\) 240.490i 0.651735i
\(370\) −45.2602 + 26.1110i −0.122325 + 0.0705703i
\(371\) −231.905 + 96.0583i −0.625082 + 0.258917i
\(372\) 48.1897 + 6.37679i 0.129542 + 0.0171419i
\(373\) −221.545 91.7668i −0.593954 0.246024i 0.0653968 0.997859i \(-0.479169\pi\)
−0.659351 + 0.751836i \(0.729169\pi\)
\(374\) −49.4209 + 64.3624i −0.132141 + 0.172092i
\(375\) 44.3751 + 44.3751i 0.118334 + 0.118334i
\(376\) 202.633 202.231i 0.538918 0.537848i
\(377\) −140.214 140.214i −0.371920 0.371920i
\(378\) −8.39387 63.9215i −0.0222060 0.169105i
\(379\) −320.165 132.616i −0.844761 0.349912i −0.0820322 0.996630i \(-0.526141\pi\)
−0.762729 + 0.646718i \(0.776141\pi\)
\(380\) 144.521 249.935i 0.380319 0.657724i
\(381\) 156.816 64.9553i 0.411591 0.170486i
\(382\) 225.070 + 60.3872i 0.589188 + 0.158082i
\(383\) 470.646i 1.22884i 0.788979 + 0.614420i \(0.210610\pi\)
−0.788979 + 0.614420i \(0.789390\pi\)
\(384\) −11.4163 88.2981i −0.0297299 0.229943i
\(385\) 11.5422 0.0299797
\(386\) 84.4601 314.792i 0.218809 0.815523i
\(387\) −145.570 351.438i −0.376151 0.908108i
\(388\) 355.370 + 205.487i 0.915901 + 0.529606i
\(389\) 109.044 263.254i 0.280318 0.676747i −0.719525 0.694466i \(-0.755641\pi\)
0.999843 + 0.0177196i \(0.00564061\pi\)
\(390\) 16.9229 2.22224i 0.0433921 0.00569804i
\(391\) −110.208 + 110.208i −0.281862 + 0.281862i
\(392\) −39.5586 39.6373i −0.100915 0.101116i
\(393\) 60.1662 60.1662i 0.153095 0.153095i
\(394\) 243.924 + 187.298i 0.619096 + 0.475375i
\(395\) 6.26955 15.1360i 0.0158723 0.0383190i
\(396\) −9.97924 + 75.4135i −0.0252001 + 0.190438i
\(397\) 218.676 + 527.930i 0.550820 + 1.32980i 0.916864 + 0.399200i \(0.130712\pi\)
−0.366043 + 0.930598i \(0.619288\pi\)
\(398\) −23.0738 39.9956i −0.0579744 0.100492i
\(399\) −67.9936 −0.170410
\(400\) −88.1577 + 327.273i −0.220394 + 0.818181i
\(401\) 633.058i 1.57870i 0.613944 + 0.789350i \(0.289582\pi\)
−0.613944 + 0.789350i \(0.710418\pi\)
\(402\) −52.2973 90.6510i −0.130093 0.225500i
\(403\) −101.375 + 41.9907i −0.251550 + 0.104195i
\(404\) 262.756 201.344i 0.650387 0.498375i
\(405\) 123.038 + 50.9641i 0.303798 + 0.125837i
\(406\) 132.510 + 101.748i 0.326379 + 0.250612i
\(407\) −21.1177 21.1177i −0.0518863 0.0518863i
\(408\) 38.7832 93.3683i 0.0950569 0.228844i
\(409\) 324.224 + 324.224i 0.792725 + 0.792725i 0.981936 0.189212i \(-0.0605932\pi\)
−0.189212 + 0.981936i \(0.560593\pi\)
\(410\) 109.394 14.3652i 0.266816 0.0350370i
\(411\) −16.9461 7.01931i −0.0412314 0.0170786i
\(412\) 197.170 52.6915i 0.478568 0.127892i
\(413\) 165.908 68.7211i 0.401713 0.166395i
\(414\) −37.8621 + 141.116i −0.0914544 + 0.340861i
\(415\) 27.1746i 0.0654809i
\(416\) 122.081 + 159.647i 0.293465 + 0.383766i
\(417\) −19.4530 −0.0466500
\(418\) 159.377 + 42.7617i 0.381286 + 0.102301i
\(419\) 15.1517 + 36.5795i 0.0361617 + 0.0873020i 0.940929 0.338605i \(-0.109955\pi\)
−0.904767 + 0.425907i \(0.859955\pi\)
\(420\) −13.8930 + 3.71275i −0.0330786 + 0.00883987i
\(421\) 195.396 471.728i 0.464124 1.12049i −0.502565 0.864539i \(-0.667610\pi\)
0.966689 0.255954i \(-0.0823897\pi\)
\(422\) −66.0540 503.018i −0.156526 1.19199i
\(423\) 215.494 215.494i 0.509441 0.509441i
\(424\) −701.504 + 289.756i −1.65449 + 0.683386i
\(425\) −272.156 + 272.156i −0.640367 + 0.640367i
\(426\) 56.3694 73.4117i 0.132323 0.172328i
\(427\) −100.077 + 241.607i −0.234373 + 0.565825i
\(428\) −505.226 + 387.141i −1.18043 + 0.904536i
\(429\) 3.73324 + 9.01285i 0.00870220 + 0.0210090i
\(430\) −151.167 + 87.2094i −0.351551 + 0.202813i
\(431\) −165.132 −0.383136 −0.191568 0.981479i \(-0.561357\pi\)
−0.191568 + 0.981479i \(0.561357\pi\)
\(432\) −25.1885 193.306i −0.0583067 0.447467i
\(433\) 528.816i 1.22128i −0.791907 0.610642i \(-0.790911\pi\)
0.791907 0.610642i \(-0.209089\pi\)
\(434\) 80.0783 46.1978i 0.184512 0.106447i
\(435\) 39.6365 16.4180i 0.0911183 0.0377424i
\(436\) −2.68082 + 20.2590i −0.00614867 + 0.0464657i
\(437\) 292.813 + 121.287i 0.670053 + 0.277545i
\(438\) 30.5990 39.8500i 0.0698607 0.0909817i
\(439\) −25.1536 25.1536i −0.0572975 0.0572975i 0.677877 0.735175i \(-0.262900\pi\)
−0.735175 + 0.677877i \(0.762900\pi\)
\(440\) 34.9002 + 0.0347049i 0.0793187 + 7.88748e-5i
\(441\) −42.1529 42.1529i −0.0955849 0.0955849i
\(442\) 29.7137 + 226.277i 0.0672255 + 0.511940i
\(443\) 20.2440 + 8.38535i 0.0456976 + 0.0189286i 0.405415 0.914133i \(-0.367127\pi\)
−0.359718 + 0.933061i \(0.617127\pi\)
\(444\) 32.2117 + 18.6259i 0.0725489 + 0.0419503i
\(445\) −186.184 + 77.1200i −0.418391 + 0.173303i
\(446\) −576.678 154.725i −1.29300 0.346918i
\(447\) 34.5268i 0.0772411i
\(448\) −119.495 119.971i −0.266729 0.267792i
\(449\) −822.991 −1.83294 −0.916471 0.400101i \(-0.868975\pi\)
−0.916471 + 0.400101i \(0.868975\pi\)
\(450\) −93.4993 + 348.482i −0.207776 + 0.774405i
\(451\) 24.1327 + 58.2615i 0.0535093 + 0.129183i
\(452\) 382.695 661.834i 0.846671 1.46423i
\(453\) −51.1551 + 123.499i −0.112925 + 0.272625i
\(454\) 563.303 73.9703i 1.24075 0.162930i
\(455\) 22.9536 22.9536i 0.0504474 0.0504474i
\(456\) −205.593 0.204443i −0.450863 0.000448339i
\(457\) −348.494 + 348.494i −0.762568 + 0.762568i −0.976786 0.214218i \(-0.931280\pi\)
0.214218 + 0.976786i \(0.431280\pi\)
\(458\) 249.561 + 191.626i 0.544893 + 0.418398i
\(459\) 84.7134 204.516i 0.184561 0.445569i
\(460\) 66.4526 + 8.79348i 0.144462 + 0.0191163i
\(461\) 309.271 + 746.645i 0.670869 + 1.61962i 0.780137 + 0.625609i \(0.215149\pi\)
−0.109268 + 0.994012i \(0.534851\pi\)
\(462\) −4.10728 7.11947i −0.00889022 0.0154101i
\(463\) 434.921 0.939354 0.469677 0.882838i \(-0.344370\pi\)
0.469677 + 0.882838i \(0.344370\pi\)
\(464\) 400.367 + 308.056i 0.862859 + 0.663915i
\(465\) 23.7404i 0.0510546i
\(466\) 167.084 + 289.620i 0.358550 + 0.621502i
\(467\) −671.182 + 278.013i −1.43722 + 0.595316i −0.959123 0.282991i \(-0.908673\pi\)
−0.478097 + 0.878307i \(0.658673\pi\)
\(468\) 130.127 + 169.818i 0.278050 + 0.362859i
\(469\) −183.887 76.1686i −0.392084 0.162406i
\(470\) −110.896 85.1518i −0.235949 0.181174i
\(471\) 76.3435 + 76.3435i 0.162088 + 0.162088i
\(472\) 501.864 207.294i 1.06327 0.439183i
\(473\) −70.5321 70.5321i −0.149116 0.149116i
\(474\) −11.5673 + 1.51896i −0.0244035 + 0.00320455i
\(475\) 723.093 + 299.515i 1.52230 + 0.630557i
\(476\) −49.6434 185.764i −0.104293 0.390261i
\(477\) −746.460 + 309.194i −1.56491 + 0.648205i
\(478\) 54.3803 202.681i 0.113766 0.424020i
\(479\) 498.738i 1.04121i −0.853799 0.520603i \(-0.825707\pi\)
0.853799 0.520603i \(-0.174293\pi\)
\(480\) −42.0196 + 11.1845i −0.0875408 + 0.0233011i
\(481\) −83.9924 −0.174620
\(482\) −105.153 28.2131i −0.218160 0.0585333i
\(483\) −6.04125 14.5849i −0.0125078 0.0301964i
\(484\) −119.808 448.320i −0.247538 0.926281i
\(485\) 76.7221 185.223i 0.158190 0.381904i
\(486\) −40.9006 311.469i −0.0841577 0.640882i
\(487\) −174.500 + 174.500i −0.358316 + 0.358316i −0.863192 0.504876i \(-0.831538\pi\)
0.504876 + 0.863192i \(0.331538\pi\)
\(488\) −303.331 + 730.251i −0.621580 + 1.49642i
\(489\) 38.2338 38.2338i 0.0781878 0.0781878i
\(490\) −16.6566 + 21.6925i −0.0339931 + 0.0442703i
\(491\) −294.735 + 711.553i −0.600275 + 1.44919i 0.273025 + 0.962007i \(0.411976\pi\)
−0.873299 + 0.487184i \(0.838024\pi\)
\(492\) −47.7887 62.3651i −0.0971316 0.126758i
\(493\) 219.526 + 529.982i 0.445285 + 1.07501i
\(494\) 401.988 231.910i 0.813741 0.469454i
\(495\) 37.1521 0.0750548
\(496\) 242.273 139.448i 0.488453 0.281146i
\(497\) 176.030i 0.354185i
\(498\) −16.7619 + 9.67007i −0.0336584 + 0.0194178i
\(499\) −831.140 + 344.269i −1.66561 + 0.689919i −0.998485 0.0550257i \(-0.982476\pi\)
−0.667126 + 0.744945i \(0.732476\pi\)
\(500\) 357.770 + 47.3426i 0.715539 + 0.0946851i
\(501\) 199.427 + 82.6053i 0.398057 + 0.164881i
\(502\) −200.041 + 260.520i −0.398489 + 0.518965i
\(503\) −391.784 391.784i −0.778895 0.778895i 0.200748 0.979643i \(-0.435663\pi\)
−0.979643 + 0.200748i \(0.935663\pi\)
\(504\) −127.332 127.585i −0.252642 0.253145i
\(505\) −114.318 114.318i −0.226373 0.226373i
\(506\) 4.98820 + 37.9864i 0.00985809 + 0.0750719i
\(507\) −83.2556 34.4856i −0.164212 0.0680189i
\(508\) 488.610 845.003i 0.961830 1.66339i
\(509\) −574.213 + 237.847i −1.12812 + 0.467283i −0.867142 0.498062i \(-0.834045\pi\)
−0.260979 + 0.965344i \(0.584045\pi\)
\(510\) −47.6906 12.7956i −0.0935111 0.0250894i
\(511\) 95.5542i 0.186995i
\(512\) −360.957 363.117i −0.704994 0.709213i
\(513\) −450.151 −0.877488
\(514\) −96.0275 + 357.905i −0.186824 + 0.696313i
\(515\) −38.1439 92.0874i −0.0740657 0.178810i
\(516\) 107.585 + 62.2096i 0.208499 + 0.120561i
\(517\) 30.5814 73.8301i 0.0591517 0.142805i
\(518\) 70.1641 9.21362i 0.135452 0.0177869i
\(519\) 115.690 115.690i 0.222909 0.222909i
\(520\) 69.4741 69.3361i 0.133604 0.133339i
\(521\) −237.942 + 237.942i −0.456702 + 0.456702i −0.897571 0.440869i \(-0.854670\pi\)
0.440869 + 0.897571i \(0.354670\pi\)
\(522\) 426.525 + 327.509i 0.817098 + 0.627412i
\(523\) −22.1112 + 53.3811i −0.0422775 + 0.102067i −0.943608 0.331066i \(-0.892592\pi\)
0.901330 + 0.433133i \(0.142592\pi\)
\(524\) 64.1897 485.084i 0.122499 0.925733i
\(525\) −14.9187 36.0169i −0.0284165 0.0686036i
\(526\) −202.063 350.251i −0.384149 0.665876i
\(527\) 317.434 0.602343
\(528\) −12.3978 21.5396i −0.0234808 0.0407947i
\(529\) 455.414i 0.860896i
\(530\) 185.234 + 321.081i 0.349499 + 0.605813i
\(531\) 534.025 221.201i 1.00570 0.416574i
\(532\) −310.366 + 237.826i −0.583395 + 0.447041i
\(533\) 163.855 + 67.8710i 0.307420 + 0.127338i
\(534\) 113.823 + 87.3994i 0.213152 + 0.163669i
\(535\) 219.810 + 219.810i 0.410860 + 0.410860i
\(536\) −555.794 230.865i −1.03693 0.430719i
\(537\) −13.3146 13.3146i −0.0247944 0.0247944i
\(538\) −98.4859 + 12.9327i −0.183059 + 0.0240385i
\(539\) −14.4420 5.98207i −0.0267941 0.0110985i
\(540\) −91.9785 + 24.5802i −0.170331 + 0.0455189i
\(541\) 354.065 146.658i 0.654464 0.271088i −0.0306431 0.999530i \(-0.509756\pi\)
0.685107 + 0.728443i \(0.259756\pi\)
\(542\) −9.73079 + 36.2677i −0.0179535 + 0.0669146i
\(543\) 71.9095i 0.132430i
\(544\) −149.549 561.847i −0.274906 1.03281i
\(545\) 9.98052 0.0183129
\(546\) −22.3263 5.99025i −0.0408907 0.0109712i
\(547\) 103.588 + 250.083i 0.189374 + 0.457189i 0.989839 0.142190i \(-0.0454143\pi\)
−0.800465 + 0.599379i \(0.795414\pi\)
\(548\) −101.905 + 27.2329i −0.185957 + 0.0496951i
\(549\) −322.130 + 777.689i −0.586757 + 1.41656i
\(550\) 12.3182 + 93.8063i 0.0223967 + 0.170557i
\(551\) 824.853 824.853i 1.49701 1.49701i
\(552\) −18.2232 44.1186i −0.0330130 0.0799251i
\(553\) −15.6894 + 15.6894i −0.0283714 + 0.0283714i
\(554\) 20.1764 26.2764i 0.0364195 0.0474303i
\(555\) 6.95431 16.7892i 0.0125303 0.0302508i
\(556\) −88.7961 + 68.0421i −0.159705 + 0.122378i
\(557\) 120.210 + 290.214i 0.215818 + 0.521030i 0.994298 0.106639i \(-0.0340090\pi\)
−0.778480 + 0.627669i \(0.784009\pi\)
\(558\) 257.757 148.702i 0.461930 0.266492i
\(559\) −280.530 −0.501843
\(560\) −50.4302 + 65.5417i −0.0900538 + 0.117039i
\(561\) 28.2219i 0.0503065i
\(562\) −545.291 + 314.583i −0.970268 + 0.559756i
\(563\) 79.9556 33.1187i 0.142017 0.0588254i −0.310543 0.950559i \(-0.600511\pi\)
0.452560 + 0.891734i \(0.350511\pi\)
\(564\) −13.0612 + 98.7043i −0.0231582 + 0.175008i
\(565\) −344.957 142.886i −0.610543 0.252895i
\(566\) 328.428 427.723i 0.580262 0.755694i
\(567\) −127.536 127.536i −0.224932 0.224932i
\(568\) 0.529286 532.265i 0.000931841 0.937086i
\(569\) 179.051 + 179.051i 0.314676 + 0.314676i 0.846718 0.532042i \(-0.178575\pi\)
−0.532042 + 0.846718i \(0.678575\pi\)
\(570\) 13.0730 + 99.5546i 0.0229352 + 0.174657i
\(571\) 377.516 + 156.372i 0.661149 + 0.273857i 0.687922 0.725785i \(-0.258523\pi\)
−0.0267729 + 0.999642i \(0.508523\pi\)
\(572\) 48.5657 + 28.0824i 0.0849051 + 0.0490950i
\(573\) −74.8753 + 31.0144i −0.130672 + 0.0541263i
\(574\) −144.323 38.7226i −0.251435 0.0674610i
\(575\) 181.718i 0.316031i
\(576\) −384.631 386.164i −0.667762 0.670424i
\(577\) −876.819 −1.51962 −0.759808 0.650147i \(-0.774707\pi\)
−0.759808 + 0.650147i \(0.774707\pi\)
\(578\) 21.3085 79.4193i 0.0368660 0.137404i
\(579\) 43.3780 + 104.724i 0.0749188 + 0.180870i
\(580\) 123.500 213.581i 0.212931 0.368243i
\(581\) −14.0840 + 34.0018i −0.0242410 + 0.0585229i
\(582\) −141.552 + 18.5879i −0.243216 + 0.0319379i
\(583\) −149.811 + 149.811i −0.256966 + 0.256966i
\(584\) 0.287312 288.929i 0.000491972 0.494741i
\(585\) 73.8833 73.8833i 0.126296 0.126296i
\(586\) −143.297 110.031i −0.244535 0.187767i
\(587\) −2.16109 + 5.21733i −0.00368158 + 0.00888812i −0.925710 0.378235i \(-0.876531\pi\)
0.922028 + 0.387123i \(0.126531\pi\)
\(588\) 19.3077 + 2.55493i 0.0328362 + 0.00434511i
\(589\) −247.024 596.370i −0.419396 1.01251i
\(590\) −132.519 229.705i −0.224608 0.389330i
\(591\) −106.957 −0.180976
\(592\) 212.184 27.6484i 0.358419 0.0467033i
\(593\) 925.041i 1.55993i 0.625821 + 0.779967i \(0.284764\pi\)
−0.625821 + 0.779967i \(0.715236\pi\)
\(594\) −27.1922 47.1344i −0.0457782 0.0793509i
\(595\) −86.7603 + 35.9373i −0.145816 + 0.0603988i
\(596\) 120.766 + 157.602i 0.202628 + 0.264433i
\(597\) 14.8363 + 6.14539i 0.0248514 + 0.0102938i
\(598\) 85.4623 + 65.6226i 0.142914 + 0.109737i
\(599\) 26.4007 + 26.4007i 0.0440746 + 0.0440746i 0.728801 0.684726i \(-0.240078\pi\)
−0.684726 + 0.728801i \(0.740078\pi\)
\(600\) −45.0015 108.950i −0.0750026 0.181583i
\(601\) −792.247 792.247i −1.31821 1.31821i −0.915189 0.403026i \(-0.867959\pi\)
−0.403026 0.915189i \(-0.632041\pi\)
\(602\) 234.344 30.7730i 0.389276 0.0511180i
\(603\) −591.899 245.173i −0.981591 0.406588i
\(604\) 198.467 + 742.658i 0.328588 + 1.22957i
\(605\) −209.386 + 86.7304i −0.346092 + 0.143356i
\(606\) −29.8339 + 111.194i −0.0492309 + 0.183489i
\(607\) 625.862i 1.03107i −0.856867 0.515537i \(-0.827592\pi\)
0.856867 0.515537i \(-0.172408\pi\)
\(608\) −939.174 + 718.184i −1.54469 + 1.18122i
\(609\) −58.1037 −0.0954084
\(610\) 372.997 + 100.077i 0.611471 + 0.164060i
\(611\) −86.0074 207.640i −0.140765 0.339837i
\(612\) −159.793 597.940i −0.261099 0.977026i
\(613\) −41.1666 + 99.3849i −0.0671559 + 0.162129i −0.953894 0.300143i \(-0.902966\pi\)
0.886738 + 0.462272i \(0.152966\pi\)
\(614\) −23.6081 179.782i −0.0384497 0.292804i
\(615\) −27.1334 + 27.1334i −0.0441193 + 0.0441193i
\(616\) −43.6505 18.1315i −0.0708612 0.0294342i
\(617\) −289.658 + 289.658i −0.469462 + 0.469462i −0.901740 0.432278i \(-0.857710\pi\)
0.432278 + 0.901740i \(0.357710\pi\)
\(618\) −43.2281 + 56.2973i −0.0699484 + 0.0910959i
\(619\) 259.369 626.173i 0.419013 1.01159i −0.563621 0.826034i \(-0.690592\pi\)
0.982634 0.185554i \(-0.0594079\pi\)
\(620\) −83.0383 108.366i −0.133933 0.174784i
\(621\) −39.9961 96.5590i −0.0644059 0.155490i
\(622\) 1057.54 610.103i 1.70022 0.980874i
\(623\) 272.930 0.438090
\(624\) −67.4904 18.1799i −0.108158 0.0291345i
\(625\) 353.337i 0.565340i
\(626\) 5.71462 3.29681i 0.00912878 0.00526647i
\(627\) −53.0210 + 21.9620i −0.0845631 + 0.0350272i
\(628\) 615.512 + 81.4489i 0.980115 + 0.129696i
\(629\) 224.489 + 92.9865i 0.356899 + 0.147832i
\(630\) −53.6146 + 69.8240i −0.0851026 + 0.110832i
\(631\) −196.095 196.095i −0.310768 0.310768i 0.534439 0.845207i \(-0.320523\pi\)
−0.845207 + 0.534439i \(0.820523\pi\)
\(632\) −47.4874 + 47.3930i −0.0751382 + 0.0749890i
\(633\) 124.765 + 124.765i 0.197101 + 0.197101i
\(634\) −59.2384 451.116i −0.0934360 0.711539i
\(635\) −440.427 182.431i −0.693586 0.287293i
\(636\) 132.134 228.513i 0.207758 0.359298i
\(637\) −40.6167 + 16.8240i −0.0637625 + 0.0264113i
\(638\) 136.195 + 36.5419i 0.213472 + 0.0572756i
\(639\) 566.608i 0.886711i
\(640\) −152.683 + 198.028i −0.238568 + 0.309419i
\(641\) −950.236 −1.48243 −0.741213 0.671270i \(-0.765749\pi\)
−0.741213 + 0.671270i \(0.765749\pi\)
\(642\) 57.3644 213.803i 0.0893526 0.333027i
\(643\) 262.428 + 633.557i 0.408130 + 0.985314i 0.985629 + 0.168923i \(0.0540288\pi\)
−0.577499 + 0.816391i \(0.695971\pi\)
\(644\) −78.5905 45.4438i −0.122035 0.0705648i
\(645\) 23.2270 56.0750i 0.0360109 0.0869380i
\(646\) −1331.15 + 174.801i −2.06061 + 0.270589i
\(647\) 283.714 283.714i 0.438508 0.438508i −0.453002 0.891510i \(-0.649647\pi\)
0.891510 + 0.453002i \(0.149647\pi\)
\(648\) −385.250 386.017i −0.594521 0.595705i
\(649\) 107.177 107.177i 0.165141 0.165141i
\(650\) 211.047 + 162.053i 0.324687 + 0.249312i
\(651\) −12.3042 + 29.7049i −0.0189004 + 0.0456296i
\(652\) 40.7907 308.257i 0.0625624 0.472786i
\(653\) 53.2215 + 128.488i 0.0815031 + 0.196766i 0.959378 0.282124i \(-0.0910391\pi\)
−0.877875 + 0.478890i \(0.841039\pi\)
\(654\) −3.55157 6.15621i −0.00543053 0.00941317i
\(655\) −238.974 −0.364846
\(656\) −436.277 117.520i −0.665056 0.179147i
\(657\) 307.571i 0.468145i
\(658\) 94.6246 + 164.020i 0.143806 + 0.249271i
\(659\) 9.86433 4.08594i 0.0149686 0.00620021i −0.375187 0.926949i \(-0.622421\pi\)
0.390155 + 0.920749i \(0.372421\pi\)
\(660\) −9.63445 + 7.38263i −0.0145977 + 0.0111858i
\(661\) 333.350 + 138.078i 0.504311 + 0.208892i 0.620310 0.784357i \(-0.287007\pi\)
−0.115999 + 0.993249i \(0.537007\pi\)
\(662\) 282.548 + 216.956i 0.426810 + 0.327728i
\(663\) −56.1242 56.1242i −0.0846518 0.0846518i
\(664\) −42.6883 + 102.769i −0.0642896 + 0.154773i
\(665\) 135.032 + 135.032i 0.203056 + 0.203056i
\(666\) 225.845 29.6569i 0.339107 0.0445299i
\(667\) 250.222 + 103.645i 0.375146 + 0.155391i
\(668\) 1199.24 320.485i 1.79528 0.479767i
\(669\) 191.847 79.4656i 0.286767 0.118783i
\(670\) −76.1685 + 283.888i −0.113684 + 0.423714i
\(671\) 220.729i 0.328956i
\(672\) 58.3732 + 7.78342i 0.0868649 + 0.0115825i
\(673\) 1036.18 1.53965 0.769824 0.638256i \(-0.220344\pi\)
0.769824 + 0.638256i \(0.220344\pi\)
\(674\) 441.583 + 118.479i 0.655168 + 0.175784i
\(675\) −98.7690 238.450i −0.146325 0.353259i
\(676\) −500.654 + 133.794i −0.740612 + 0.197920i
\(677\) 198.976 480.371i 0.293909 0.709559i −0.706090 0.708122i \(-0.749543\pi\)
0.999999 0.00143687i \(-0.000457372\pi\)
\(678\) 34.6177 + 263.623i 0.0510586 + 0.388825i
\(679\) −191.995 + 191.995i −0.282761 + 0.282761i
\(680\) −262.446 + 108.403i −0.385951 + 0.159417i
\(681\) −139.717 + 139.717i −0.205165 + 0.205165i
\(682\) 47.5226 61.8902i 0.0696813 0.0907481i
\(683\) −57.9171 + 139.824i −0.0847980 + 0.204721i −0.960591 0.277967i \(-0.910339\pi\)
0.875793 + 0.482688i \(0.160339\pi\)
\(684\) −999.011 + 765.517i −1.46054 + 1.11918i
\(685\) 19.7141 + 47.5941i 0.0287798 + 0.0694805i
\(686\) 32.0842 18.5096i 0.0467699 0.0269820i
\(687\) −109.429 −0.159285
\(688\) 708.683 92.3442i 1.03006 0.134221i
\(689\) 595.851i 0.864806i
\(690\) −20.1933 + 11.6497i −0.0292656 + 0.0168836i
\(691\) 986.285 408.532i 1.42733 0.591219i 0.470639 0.882326i \(-0.344023\pi\)
0.956691 + 0.291107i \(0.0940235\pi\)
\(692\) 123.427 932.739i 0.178362 1.34789i
\(693\) −46.4861 19.2552i −0.0670795 0.0277852i
\(694\) −270.963 + 352.883i −0.390436 + 0.508477i
\(695\) 38.6328 + 38.6328i 0.0555867 + 0.0555867i
\(696\) −175.689 0.174706i −0.252427 0.000251014i
\(697\) −362.802 362.802i −0.520520 0.520520i
\(698\) 132.718 + 1010.68i 0.190140 + 1.44797i
\(699\) −107.434 44.5006i −0.153697 0.0636632i
\(700\) −194.077 112.222i −0.277253 0.160317i
\(701\) 1291.47 534.944i 1.84232 0.763115i 0.891829 0.452372i \(-0.149422\pi\)
0.950494 0.310743i \(-0.100578\pi\)
\(702\) −147.811 39.6584i −0.210557 0.0564935i
\(703\) 494.113i 0.702863i
\(704\) −131.932 54.9557i −0.187403 0.0780621i
\(705\) 48.6262 0.0689733
\(706\) 107.990 402.492i 0.152961 0.570102i
\(707\) 83.7905 + 202.288i 0.118516 + 0.286122i
\(708\) −94.5303 + 163.481i −0.133517 + 0.230905i
\(709\) −318.805 + 769.664i −0.449655 + 1.08556i 0.522797 + 0.852457i \(0.324889\pi\)
−0.972451 + 0.233105i \(0.925111\pi\)
\(710\) −257.739 + 33.8451i −0.363013 + 0.0476691i
\(711\) −50.5012 + 50.5012i −0.0710284 + 0.0710284i
\(712\) 825.263 + 0.820644i 1.15908 + 0.00115259i
\(713\) 105.975 105.975i 0.148633 0.148633i
\(714\) 53.0406 + 40.7274i 0.0742866 + 0.0570412i
\(715\) 10.4850 25.3131i 0.0146644 0.0354030i
\(716\) −107.348 14.2050i −0.149927 0.0198394i
\(717\) 27.9293 + 67.4272i 0.0389530 + 0.0940408i
\(718\) 375.983 + 651.721i 0.523654 + 0.907689i
\(719\) −171.790 −0.238929 −0.119465 0.992838i \(-0.538118\pi\)
−0.119465 + 0.992838i \(0.538118\pi\)
\(720\) −162.325 + 210.967i −0.225452 + 0.293009i
\(721\) 134.992i 0.187229i
\(722\) 1003.50 + 1739.44i 1.38989 + 2.40920i
\(723\) 34.9819 14.4900i 0.0483844 0.0200415i
\(724\) 251.522 + 328.241i 0.347407 + 0.453371i
\(725\) 617.916 + 255.949i 0.852298 + 0.353033i
\(726\) 128.007 + 98.2908i 0.176319 + 0.135387i
\(727\) 168.124 + 168.124i 0.231258 + 0.231258i 0.813218 0.581960i \(-0.197714\pi\)
−0.581960 + 0.813218i \(0.697714\pi\)
\(728\) −122.864 + 50.7489i −0.168769 + 0.0697100i
\(729\) −356.583 356.583i −0.489140 0.489140i
\(730\) −139.908 + 18.3721i −0.191655 + 0.0251672i
\(731\) 749.783 + 310.570i 1.02569 + 0.424857i
\(732\) −71.0015 265.686i −0.0969966 0.362958i
\(733\) 690.214 285.896i 0.941629 0.390035i 0.141550 0.989931i \(-0.454791\pi\)
0.800078 + 0.599896i \(0.204791\pi\)
\(734\) −285.404 + 1063.73i −0.388833 + 1.44922i
\(735\) 9.51183i 0.0129413i
\(736\) −237.499 137.645i −0.322688 0.187018i
\(737\) −167.997 −0.227947
\(738\) −464.550 124.641i −0.629472 0.168890i
\(739\) 317.679 + 766.944i 0.429876 + 1.03781i 0.979326 + 0.202287i \(0.0648373\pi\)
−0.549450 + 0.835527i \(0.685163\pi\)
\(740\) −26.9807 100.961i −0.0364604 0.136434i
\(741\) −61.7662 + 149.117i −0.0833551 + 0.201237i
\(742\) −65.3624 497.752i −0.0880895 0.670824i
\(743\) 286.566 286.566i 0.385688 0.385688i −0.487458 0.873146i \(-0.662076\pi\)
0.873146 + 0.487458i \(0.162076\pi\)
\(744\) −37.2936 + 89.7820i −0.0501258 + 0.120675i
\(745\) 68.5685 68.5685i 0.0920382 0.0920382i
\(746\) 292.086 380.393i 0.391536 0.509910i
\(747\) −45.3338 + 109.446i −0.0606878 + 0.146513i
\(748\) −98.7137 128.823i −0.131970 0.172223i
\(749\) −161.112 388.958i −0.215102 0.519303i
\(750\) −108.717 + 62.7198i −0.144956 + 0.0836264i
\(751\) 1161.38 1.54645 0.773226 0.634131i \(-0.218642\pi\)
0.773226 + 0.634131i \(0.218642\pi\)
\(752\) 285.625 + 496.235i 0.379820 + 0.659886i
\(753\) 114.234i 0.151706i
\(754\) 343.518 198.178i 0.455594 0.262836i
\(755\) 346.855 143.672i 0.459411 0.190294i
\(756\) 127.826 + 16.9149i 0.169082 + 0.0223742i
\(757\) −1034.46 428.489i −1.36653 0.566035i −0.425685 0.904871i \(-0.639967\pi\)
−0.940845