Properties

Label 224.3.w.a.43.15
Level 224
Weight 3
Character 224.43
Analytic conductor 6.104
Analytic rank 0
Dimension 192
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(48\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 43.15
Character \(\chi\) \(=\) 224.43
Dual form 224.3.w.a.99.15

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.03112 + 1.71371i) q^{2} +(0.406888 + 0.982314i) q^{3} +(-1.87359 - 3.53407i) q^{4} +(0.691237 - 1.66879i) q^{5} +(-2.10295 - 0.315595i) q^{6} +(-1.87083 + 1.87083i) q^{7} +(7.98826 + 0.433260i) q^{8} +(5.56458 - 5.56458i) q^{9} +O(q^{10})\) \(q+(-1.03112 + 1.71371i) q^{2} +(0.406888 + 0.982314i) q^{3} +(-1.87359 - 3.53407i) q^{4} +(0.691237 - 1.66879i) q^{5} +(-2.10295 - 0.315595i) q^{6} +(-1.87083 + 1.87083i) q^{7} +(7.98826 + 0.433260i) q^{8} +(5.56458 - 5.56458i) q^{9} +(2.14708 + 2.90530i) q^{10} +(-6.83275 + 16.4957i) q^{11} +(2.70923 - 3.27842i) q^{12} +(7.71888 + 18.6350i) q^{13} +(-1.27701 - 5.13510i) q^{14} +1.92054 q^{15} +(-8.97932 + 13.2428i) q^{16} +1.25394i q^{17} +(3.79832 + 15.2738i) q^{18} +(-8.00708 + 3.31664i) q^{19} +(-7.19273 + 0.683754i) q^{20} +(-2.59896 - 1.07652i) q^{21} +(-21.2235 - 28.7184i) q^{22} +(4.46320 + 4.46320i) q^{23} +(2.82473 + 8.02327i) q^{24} +(15.3706 + 15.3706i) q^{25} +(-39.8941 - 5.98701i) q^{26} +(16.5711 + 6.86399i) q^{27} +(10.1168 + 3.10648i) q^{28} +(-15.0132 + 6.21865i) q^{29} +(-1.98030 + 3.29124i) q^{30} +1.05830i q^{31} +(-13.4355 - 29.0428i) q^{32} -18.9841 q^{33} +(-2.14888 - 1.29296i) q^{34} +(1.82884 + 4.41521i) q^{35} +(-30.0914 - 9.23988i) q^{36} +(17.3032 - 41.7737i) q^{37} +(2.57249 - 17.1416i) q^{38} +(-15.1647 + 15.1647i) q^{39} +(6.24480 - 13.0313i) q^{40} +(-41.0423 + 41.0423i) q^{41} +(4.52468 - 3.34383i) q^{42} +(-18.8034 + 45.3955i) q^{43} +(71.0988 - 6.75878i) q^{44} +(-5.43969 - 13.1326i) q^{45} +(-12.2507 + 3.04653i) q^{46} -16.4636 q^{47} +(-16.6622 - 3.43218i) q^{48} -7.00000i q^{49} +(-42.1896 + 10.4918i) q^{50} +(-1.23176 + 0.510211i) q^{51} +(51.3955 - 62.1935i) q^{52} +(2.31262 + 0.957919i) q^{53} +(-28.8497 + 21.3205i) q^{54} +(22.8049 + 22.8049i) q^{55} +(-15.7552 + 14.1341i) q^{56} +(-6.51597 - 6.51597i) q^{57} +(4.82339 - 32.1403i) q^{58} +(60.1726 + 24.9243i) q^{59} +(-3.59830 - 6.78731i) q^{60} +(111.961 - 46.3757i) q^{61} +(-1.81362 - 1.09123i) q^{62} +20.8207i q^{63} +(63.6246 + 6.92199i) q^{64} +36.4336 q^{65} +(19.5749 - 32.5333i) q^{66} +(12.6479 + 30.5347i) q^{67} +(4.43150 - 2.34936i) q^{68} +(-2.56824 + 6.20028i) q^{69} +(-9.45214 - 1.41851i) q^{70} +(19.6183 - 19.6183i) q^{71} +(46.8622 - 42.0404i) q^{72} +(60.5333 - 60.5333i) q^{73} +(53.7462 + 72.7263i) q^{74} +(-8.84465 + 21.3529i) q^{75} +(26.7232 + 22.0836i) q^{76} +(-18.0778 - 43.6436i) q^{77} +(-10.3513 - 41.6246i) q^{78} -46.4996 q^{79} +(15.8927 + 24.1386i) q^{80} -51.7546i q^{81} +(-28.0150 - 112.654i) q^{82} +(-12.5953 + 5.21715i) q^{83} +(1.06487 + 11.2019i) q^{84} +(2.09256 + 0.866767i) q^{85} +(-58.4060 - 79.0317i) q^{86} +(-12.2173 - 12.2173i) q^{87} +(-61.7287 + 128.812i) q^{88} +(-31.5255 - 31.5255i) q^{89} +(28.1144 + 4.21920i) q^{90} +(-49.3037 - 20.4222i) q^{91} +(7.41106 - 24.1355i) q^{92} +(-1.03958 + 0.430610i) q^{93} +(16.9759 - 28.2138i) q^{94} +15.6548i q^{95} +(23.0624 - 25.0151i) q^{96} -36.2674 q^{97} +(11.9960 + 7.21783i) q^{98} +(53.7703 + 129.813i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192q + O(q^{10}) \) \( 192q + 80q^{10} + 96q^{12} - 20q^{16} - 60q^{18} - 260q^{22} + 64q^{23} - 144q^{24} - 200q^{26} + 192q^{27} - 40q^{30} + 40q^{32} + 120q^{34} + 464q^{36} + 504q^{38} - 384q^{39} + 360q^{40} - 96q^{43} + 52q^{44} + 64q^{46} - 104q^{48} - 312q^{50} - 384q^{51} - 320q^{52} + 160q^{53} - 576q^{54} - 512q^{55} - 196q^{56} - 360q^{58} - 872q^{60} + 128q^{61} - 408q^{62} + 832q^{66} + 160q^{67} + 856q^{68} - 384q^{69} + 336q^{70} + 1488q^{72} + 308q^{74} + 768q^{75} + 1024q^{76} - 224q^{77} - 408q^{78} + 1024q^{79} - 1040q^{80} - 240q^{82} - 1384q^{86} + 896q^{87} - 560q^{88} - 1320q^{90} - 380q^{92} - 936q^{94} - 1088q^{96} - 512q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.03112 + 1.71371i −0.515559 + 0.856854i
\(3\) 0.406888 + 0.982314i 0.135629 + 0.327438i 0.977072 0.212908i \(-0.0682934\pi\)
−0.841443 + 0.540346i \(0.818293\pi\)
\(4\) −1.87359 3.53407i −0.468397 0.883518i
\(5\) 0.691237 1.66879i 0.138247 0.333759i −0.839559 0.543268i \(-0.817187\pi\)
0.977807 + 0.209509i \(0.0671867\pi\)
\(6\) −2.10295 0.315595i −0.350491 0.0525992i
\(7\) −1.87083 + 1.87083i −0.267261 + 0.267261i
\(8\) 7.98826 + 0.433260i 0.998532 + 0.0541575i
\(9\) 5.56458 5.56458i 0.618286 0.618286i
\(10\) 2.14708 + 2.90530i 0.214708 + 0.290530i
\(11\) −6.83275 + 16.4957i −0.621159 + 1.49961i 0.229184 + 0.973383i \(0.426394\pi\)
−0.850344 + 0.526228i \(0.823606\pi\)
\(12\) 2.70923 3.27842i 0.225769 0.273202i
\(13\) 7.71888 + 18.6350i 0.593760 + 1.43346i 0.879846 + 0.475260i \(0.157646\pi\)
−0.286085 + 0.958204i \(0.592354\pi\)
\(14\) −1.27701 5.13510i −0.0912149 0.366793i
\(15\) 1.92054 0.128036
\(16\) −8.97932 + 13.2428i −0.561208 + 0.827675i
\(17\) 1.25394i 0.0737609i 0.999320 + 0.0368805i \(0.0117421\pi\)
−0.999320 + 0.0368805i \(0.988258\pi\)
\(18\) 3.79832 + 15.2738i 0.211018 + 0.848544i
\(19\) −8.00708 + 3.31664i −0.421425 + 0.174560i −0.583310 0.812250i \(-0.698243\pi\)
0.161885 + 0.986810i \(0.448243\pi\)
\(20\) −7.19273 + 0.683754i −0.359637 + 0.0341877i
\(21\) −2.59896 1.07652i −0.123760 0.0512630i
\(22\) −21.2235 28.7184i −0.964703 1.30538i
\(23\) 4.46320 + 4.46320i 0.194052 + 0.194052i 0.797444 0.603392i \(-0.206185\pi\)
−0.603392 + 0.797444i \(0.706185\pi\)
\(24\) 2.82473 + 8.02327i 0.117697 + 0.334303i
\(25\) 15.3706 + 15.3706i 0.614824 + 0.614824i
\(26\) −39.8941 5.98701i −1.53439 0.230270i
\(27\) 16.5711 + 6.86399i 0.613746 + 0.254222i
\(28\) 10.1168 + 3.10648i 0.361315 + 0.110946i
\(29\) −15.0132 + 6.21865i −0.517695 + 0.214436i −0.626204 0.779659i \(-0.715392\pi\)
0.108509 + 0.994095i \(0.465392\pi\)
\(30\) −1.98030 + 3.29124i −0.0660100 + 0.109708i
\(31\) 1.05830i 0.0341388i 0.999854 + 0.0170694i \(0.00543362\pi\)
−0.999854 + 0.0170694i \(0.994566\pi\)
\(32\) −13.4355 29.0428i −0.419861 0.907588i
\(33\) −18.9841 −0.575277
\(34\) −2.14888 1.29296i −0.0632023 0.0380281i
\(35\) 1.82884 + 4.41521i 0.0522526 + 0.126149i
\(36\) −30.0914 9.23988i −0.835871 0.256663i
\(37\) 17.3032 41.7737i 0.467655 1.12902i −0.497529 0.867447i \(-0.665759\pi\)
0.965184 0.261572i \(-0.0842407\pi\)
\(38\) 2.57249 17.1416i 0.0676972 0.451096i
\(39\) −15.1647 + 15.1647i −0.388839 + 0.388839i
\(40\) 6.24480 13.0313i 0.156120 0.325782i
\(41\) −41.0423 + 41.0423i −1.00103 + 1.00103i −0.00103201 + 0.999999i \(0.500328\pi\)
−0.999999 + 0.00103201i \(0.999672\pi\)
\(42\) 4.52468 3.34383i 0.107731 0.0796151i
\(43\) −18.8034 + 45.3955i −0.437289 + 1.05571i 0.539592 + 0.841926i \(0.318578\pi\)
−0.976881 + 0.213782i \(0.931422\pi\)
\(44\) 71.0988 6.75878i 1.61588 0.153609i
\(45\) −5.43969 13.1326i −0.120882 0.291835i
\(46\) −12.2507 + 3.04653i −0.266320 + 0.0662290i
\(47\) −16.4636 −0.350290 −0.175145 0.984543i \(-0.556039\pi\)
−0.175145 + 0.984543i \(0.556039\pi\)
\(48\) −16.6622 3.43218i −0.347128 0.0715038i
\(49\) 7.00000i 0.142857i
\(50\) −42.1896 + 10.4918i −0.843793 + 0.209836i
\(51\) −1.23176 + 0.510211i −0.0241521 + 0.0100041i
\(52\) 51.3955 62.1935i 0.988375 1.19603i
\(53\) 2.31262 + 0.957919i 0.0436344 + 0.0180739i 0.404394 0.914585i \(-0.367482\pi\)
−0.360760 + 0.932659i \(0.617482\pi\)
\(54\) −28.8497 + 21.3205i −0.534254 + 0.394824i
\(55\) 22.8049 + 22.8049i 0.414635 + 0.414635i
\(56\) −15.7552 + 14.1341i −0.281343 + 0.252395i
\(57\) −6.51597 6.51597i −0.114315 0.114315i
\(58\) 4.82339 32.1403i 0.0831618 0.554144i
\(59\) 60.1726 + 24.9243i 1.01987 + 0.422446i 0.829048 0.559178i \(-0.188883\pi\)
0.190827 + 0.981624i \(0.438883\pi\)
\(60\) −3.59830 6.78731i −0.0599716 0.113122i
\(61\) 111.961 46.3757i 1.83543 0.760258i 0.873570 0.486698i \(-0.161799\pi\)
0.961855 0.273560i \(-0.0882012\pi\)
\(62\) −1.81362 1.09123i −0.0292519 0.0176005i
\(63\) 20.8207i 0.330488i
\(64\) 63.6246 + 6.92199i 0.994134 + 0.108156i
\(65\) 36.4336 0.560517
\(66\) 19.5749 32.5333i 0.296589 0.492928i
\(67\) 12.6479 + 30.5347i 0.188774 + 0.455742i 0.989724 0.142990i \(-0.0456716\pi\)
−0.800950 + 0.598732i \(0.795672\pi\)
\(68\) 4.43150 2.34936i 0.0651691 0.0345494i
\(69\) −2.56824 + 6.20028i −0.0372209 + 0.0898592i
\(70\) −9.45214 1.41851i −0.135031 0.0202644i
\(71\) 19.6183 19.6183i 0.276314 0.276314i −0.555321 0.831636i \(-0.687405\pi\)
0.831636 + 0.555321i \(0.187405\pi\)
\(72\) 46.8622 42.0404i 0.650864 0.583894i
\(73\) 60.5333 60.5333i 0.829224 0.829224i −0.158185 0.987409i \(-0.550564\pi\)
0.987409 + 0.158185i \(0.0505644\pi\)
\(74\) 53.7462 + 72.7263i 0.726300 + 0.982788i
\(75\) −8.84465 + 21.3529i −0.117929 + 0.284705i
\(76\) 26.7232 + 22.0836i 0.351621 + 0.290573i
\(77\) −18.0778 43.6436i −0.234776 0.566800i
\(78\) −10.3513 41.6246i −0.132709 0.533648i
\(79\) −46.4996 −0.588603 −0.294301 0.955713i \(-0.595087\pi\)
−0.294301 + 0.955713i \(0.595087\pi\)
\(80\) 15.8927 + 24.1386i 0.198658 + 0.301732i
\(81\) 51.7546i 0.638945i
\(82\) −28.0150 112.654i −0.341647 1.37383i
\(83\) −12.5953 + 5.21715i −0.151751 + 0.0628572i −0.457266 0.889330i \(-0.651171\pi\)
0.305515 + 0.952187i \(0.401171\pi\)
\(84\) 1.06487 + 11.2019i 0.0126770 + 0.133356i
\(85\) 2.09256 + 0.866767i 0.0246184 + 0.0101973i
\(86\) −58.4060 79.0317i −0.679140 0.918973i
\(87\) −12.2173 12.2173i −0.140429 0.140429i
\(88\) −61.7287 + 128.812i −0.701463 + 1.46377i
\(89\) −31.5255 31.5255i −0.354219 0.354219i 0.507458 0.861677i \(-0.330585\pi\)
−0.861677 + 0.507458i \(0.830585\pi\)
\(90\) 28.1144 + 4.21920i 0.312382 + 0.0468800i
\(91\) −49.3037 20.4222i −0.541798 0.224420i
\(92\) 7.41106 24.1355i 0.0805550 0.262342i
\(93\) −1.03958 + 0.430610i −0.0111783 + 0.00463021i
\(94\) 16.9759 28.2138i 0.180595 0.300147i
\(95\) 15.6548i 0.164787i
\(96\) 23.0624 25.0151i 0.240234 0.260574i
\(97\) −36.2674 −0.373890 −0.186945 0.982370i \(-0.559859\pi\)
−0.186945 + 0.982370i \(0.559859\pi\)
\(98\) 11.9960 + 7.21783i 0.122408 + 0.0736513i
\(99\) 53.7703 + 129.813i 0.543135 + 1.31124i
\(100\) 25.5226 83.1190i 0.255226 0.831190i
\(101\) −49.1244 + 118.597i −0.486380 + 1.17423i 0.470148 + 0.882588i \(0.344201\pi\)
−0.956529 + 0.291639i \(0.905799\pi\)
\(102\) 0.395736 2.63696i 0.00387977 0.0258526i
\(103\) 119.157 119.157i 1.15687 1.15687i 0.171723 0.985145i \(-0.445067\pi\)
0.985145 0.171723i \(-0.0549333\pi\)
\(104\) 53.5866 + 152.206i 0.515256 + 1.46352i
\(105\) −3.59299 + 3.59299i −0.0342190 + 0.0342190i
\(106\) −4.02618 + 2.97543i −0.0379828 + 0.0280701i
\(107\) −13.4872 + 32.5611i −0.126049 + 0.304309i −0.974289 0.225304i \(-0.927663\pi\)
0.848240 + 0.529612i \(0.177663\pi\)
\(108\) −6.78969 71.4239i −0.0628675 0.661333i
\(109\) −68.7960 166.088i −0.631156 1.52375i −0.838171 0.545408i \(-0.816375\pi\)
0.207015 0.978338i \(-0.433625\pi\)
\(110\) −62.5955 + 15.5664i −0.569050 + 0.141513i
\(111\) 48.0754 0.433111
\(112\) −7.97624 41.5738i −0.0712164 0.371195i
\(113\) 117.656i 1.04121i −0.853799 0.520603i \(-0.825707\pi\)
0.853799 0.520603i \(-0.174293\pi\)
\(114\) 17.8852 4.44773i 0.156888 0.0390152i
\(115\) 10.5333 4.36303i 0.0915938 0.0379394i
\(116\) 50.1057 + 41.4064i 0.431945 + 0.356951i
\(117\) 146.648 + 60.7438i 1.25341 + 0.519177i
\(118\) −104.758 + 77.4183i −0.887780 + 0.656087i
\(119\) −2.34590 2.34590i −0.0197134 0.0197134i
\(120\) 15.3417 + 0.832092i 0.127848 + 0.00693410i
\(121\) −139.862 139.862i −1.15589 1.15589i
\(122\) −35.9705 + 239.687i −0.294840 + 1.96465i
\(123\) −57.0160 23.6168i −0.463545 0.192007i
\(124\) 3.74011 1.98282i 0.0301622 0.0159905i
\(125\) 77.9950 32.3066i 0.623960 0.258453i
\(126\) −35.6807 21.4687i −0.283180 0.170386i
\(127\) 217.541i 1.71292i −0.516213 0.856460i \(-0.672659\pi\)
0.516213 0.856460i \(-0.327341\pi\)
\(128\) −77.4667 + 101.897i −0.605209 + 0.796067i
\(129\) −52.2435 −0.404988
\(130\) −37.5674 + 62.4366i −0.288980 + 0.480281i
\(131\) 57.0245 + 137.669i 0.435301 + 1.05091i 0.977552 + 0.210694i \(0.0675723\pi\)
−0.542251 + 0.840217i \(0.682428\pi\)
\(132\) 35.5685 + 67.0913i 0.269458 + 0.508267i
\(133\) 8.77501 21.1847i 0.0659775 0.159284i
\(134\) −65.3690 9.81011i −0.487829 0.0732098i
\(135\) 22.9092 22.9092i 0.169698 0.169698i
\(136\) −0.543281 + 10.0168i −0.00399471 + 0.0736527i
\(137\) −106.371 + 106.371i −0.776432 + 0.776432i −0.979222 0.202790i \(-0.934999\pi\)
0.202790 + 0.979222i \(0.434999\pi\)
\(138\) −7.97731 10.7944i −0.0578066 0.0782206i
\(139\) −88.4374 + 213.507i −0.636240 + 1.53602i 0.195411 + 0.980721i \(0.437396\pi\)
−0.831651 + 0.555298i \(0.812604\pi\)
\(140\) 12.1772 14.7356i 0.0869799 0.105254i
\(141\) −6.69884 16.1724i −0.0475095 0.114698i
\(142\) 13.3913 + 53.8489i 0.0943046 + 0.379217i
\(143\) −360.139 −2.51846
\(144\) 23.7245 + 123.657i 0.164753 + 0.858727i
\(145\) 29.3524i 0.202431i
\(146\) 41.3194 + 166.154i 0.283010 + 1.13804i
\(147\) 6.87620 2.84821i 0.0467769 0.0193756i
\(148\) −180.050 + 17.1159i −1.21656 + 0.115648i
\(149\) −49.5451 20.5222i −0.332517 0.137733i 0.210177 0.977663i \(-0.432596\pi\)
−0.542695 + 0.839930i \(0.682596\pi\)
\(150\) −27.4727 37.1745i −0.183151 0.247830i
\(151\) 41.5510 + 41.5510i 0.275172 + 0.275172i 0.831178 0.556006i \(-0.187667\pi\)
−0.556006 + 0.831178i \(0.687667\pi\)
\(152\) −65.3996 + 23.0250i −0.430261 + 0.151481i
\(153\) 6.97762 + 6.97762i 0.0456054 + 0.0456054i
\(154\) 93.4327 + 14.0217i 0.606706 + 0.0910499i
\(155\) 1.76609 + 0.731537i 0.0113941 + 0.00471960i
\(156\) 82.0057 + 25.1808i 0.525678 + 0.161415i
\(157\) 147.599 61.1377i 0.940123 0.389412i 0.140613 0.990065i \(-0.455093\pi\)
0.799510 + 0.600653i \(0.205093\pi\)
\(158\) 47.9466 79.6868i 0.303460 0.504347i
\(159\) 2.66149i 0.0167389i
\(160\) −57.7537 + 2.34568i −0.360960 + 0.0146605i
\(161\) −16.6998 −0.103725
\(162\) 88.6922 + 53.3651i 0.547483 + 0.329414i
\(163\) −119.928 289.532i −0.735756 1.77627i −0.622374 0.782720i \(-0.713832\pi\)
−0.113382 0.993551i \(-0.536168\pi\)
\(164\) 221.943 + 68.1500i 1.35331 + 0.415549i
\(165\) −13.1225 + 31.6806i −0.0795306 + 0.192004i
\(166\) 4.04659 26.9642i 0.0243770 0.162435i
\(167\) −131.901 + 131.901i −0.789824 + 0.789824i −0.981465 0.191641i \(-0.938619\pi\)
0.191641 + 0.981465i \(0.438619\pi\)
\(168\) −20.2947 9.72558i −0.120802 0.0578903i
\(169\) −168.182 + 168.182i −0.995161 + 0.995161i
\(170\) −3.64306 + 2.69230i −0.0214298 + 0.0158371i
\(171\) −26.1003 + 63.0117i −0.152633 + 0.368490i
\(172\) 195.661 18.5999i 1.13756 0.108139i
\(173\) −12.6724 30.5939i −0.0732509 0.176843i 0.883013 0.469348i \(-0.155511\pi\)
−0.956264 + 0.292505i \(0.905511\pi\)
\(174\) 33.5345 8.33943i 0.192727 0.0479277i
\(175\) −57.5115 −0.328637
\(176\) −157.096 238.605i −0.892591 1.35571i
\(177\) 69.2498i 0.391242i
\(178\) 86.5319 21.5189i 0.486134 0.120893i
\(179\) 37.1320 15.3806i 0.207441 0.0859249i −0.276544 0.961001i \(-0.589189\pi\)
0.483985 + 0.875076i \(0.339189\pi\)
\(180\) −36.2197 + 43.8293i −0.201221 + 0.243496i
\(181\) 273.376 + 113.236i 1.51036 + 0.625612i 0.975633 0.219411i \(-0.0704135\pi\)
0.534729 + 0.845023i \(0.320414\pi\)
\(182\) 85.8357 63.4343i 0.471625 0.348540i
\(183\) 91.1111 + 91.1111i 0.497875 + 0.497875i
\(184\) 33.7195 + 37.5869i 0.183258 + 0.204277i
\(185\) −57.7511 57.7511i −0.312168 0.312168i
\(186\) 0.333995 2.22555i 0.00179567 0.0119653i
\(187\) −20.6846 8.56783i −0.110613 0.0458173i
\(188\) 30.8461 + 58.1836i 0.164075 + 0.309487i
\(189\) −43.8431 + 18.1604i −0.231974 + 0.0960869i
\(190\) −26.8277 16.1419i −0.141198 0.0849574i
\(191\) 301.279i 1.57738i −0.614793 0.788689i \(-0.710760\pi\)
0.614793 0.788689i \(-0.289240\pi\)
\(192\) 19.0885 + 65.3158i 0.0994192 + 0.340186i
\(193\) −166.144 −0.860851 −0.430425 0.902626i \(-0.641636\pi\)
−0.430425 + 0.902626i \(0.641636\pi\)
\(194\) 37.3960 62.1517i 0.192763 0.320370i
\(195\) 14.8244 + 35.7892i 0.0760225 + 0.183535i
\(196\) −24.7385 + 13.1151i −0.126217 + 0.0669139i
\(197\) 91.3459 220.528i 0.463685 1.11943i −0.503188 0.864177i \(-0.667840\pi\)
0.966873 0.255257i \(-0.0821602\pi\)
\(198\) −277.905 41.7060i −1.40356 0.210636i
\(199\) 159.490 159.490i 0.801458 0.801458i −0.181866 0.983323i \(-0.558214\pi\)
0.983323 + 0.181866i \(0.0582136\pi\)
\(200\) 116.125 + 129.444i 0.580624 + 0.647219i
\(201\) −24.8484 + 24.8484i −0.123624 + 0.123624i
\(202\) −152.587 206.472i −0.755383 1.02214i
\(203\) 16.4530 39.7211i 0.0810493 0.195670i
\(204\) 4.11093 + 3.39720i 0.0201516 + 0.0166529i
\(205\) 40.1212 + 96.8611i 0.195713 + 0.472493i
\(206\) 81.3356 + 327.066i 0.394833 + 1.58770i
\(207\) 49.6716 0.239960
\(208\) −316.090 65.1103i −1.51967 0.313030i
\(209\) 154.744i 0.740403i
\(210\) −2.45254 9.86214i −0.0116788 0.0469626i
\(211\) 128.887 53.3868i 0.610839 0.253018i −0.0557481 0.998445i \(-0.517754\pi\)
0.666587 + 0.745427i \(0.267754\pi\)
\(212\) −0.947549 9.96771i −0.00446957 0.0470175i
\(213\) 27.2538 + 11.2889i 0.127952 + 0.0529995i
\(214\) −41.8932 56.6875i −0.195763 0.264895i
\(215\) 62.7581 + 62.7581i 0.291898 + 0.291898i
\(216\) 129.401 + 62.0110i 0.599077 + 0.287088i
\(217\) −1.97990 1.97990i −0.00912397 0.00912397i
\(218\) 355.564 + 53.3604i 1.63103 + 0.244772i
\(219\) 84.0930 + 34.8325i 0.383986 + 0.159052i
\(220\) 37.8671 123.321i 0.172123 0.560551i
\(221\) −23.3671 + 9.67898i −0.105734 + 0.0437963i
\(222\) −49.5714 + 82.3871i −0.223295 + 0.371113i
\(223\) 5.13748i 0.0230380i −0.999934 0.0115190i \(-0.996333\pi\)
0.999934 0.0115190i \(-0.00366670\pi\)
\(224\) 79.4698 + 29.1986i 0.354776 + 0.130351i
\(225\) 171.062 0.760275
\(226\) 201.629 + 121.318i 0.892162 + 0.536804i
\(227\) −122.615 296.019i −0.540155 1.30405i −0.924613 0.380907i \(-0.875612\pi\)
0.384459 0.923142i \(-0.374388\pi\)
\(228\) −10.8196 + 35.2361i −0.0474546 + 0.154544i
\(229\) −11.0927 + 26.7802i −0.0484399 + 0.116944i −0.946247 0.323444i \(-0.895159\pi\)
0.897807 + 0.440388i \(0.145159\pi\)
\(230\) −3.38411 + 22.5498i −0.0147135 + 0.0980425i
\(231\) 35.5161 35.5161i 0.153749 0.153749i
\(232\) −122.623 + 43.1716i −0.528549 + 0.186084i
\(233\) −209.492 + 209.492i −0.899108 + 0.899108i −0.995357 0.0962497i \(-0.969315\pi\)
0.0962497 + 0.995357i \(0.469315\pi\)
\(234\) −255.309 + 188.679i −1.09106 + 0.806318i
\(235\) −11.3803 + 27.4744i −0.0484266 + 0.116912i
\(236\) −24.6545 259.352i −0.104468 1.09895i
\(237\) −18.9201 45.6772i −0.0798318 0.192731i
\(238\) 6.43909 1.60129i 0.0270550 0.00672809i
\(239\) 225.770 0.944644 0.472322 0.881426i \(-0.343416\pi\)
0.472322 + 0.881426i \(0.343416\pi\)
\(240\) −17.2451 + 25.4333i −0.0718546 + 0.105972i
\(241\) 306.269i 1.27083i 0.772173 + 0.635413i \(0.219170\pi\)
−0.772173 + 0.635413i \(0.780830\pi\)
\(242\) 383.898 95.4686i 1.58636 0.394498i
\(243\) 199.980 82.8342i 0.822961 0.340882i
\(244\) −373.664 308.789i −1.53141 1.26553i
\(245\) −11.6816 4.83866i −0.0476798 0.0197496i
\(246\) 99.2626 73.3571i 0.403506 0.298200i
\(247\) −123.611 123.611i −0.500451 0.500451i
\(248\) −0.458520 + 8.45399i −0.00184887 + 0.0340887i
\(249\) −10.2498 10.2498i −0.0411637 0.0411637i
\(250\) −25.0580 + 166.972i −0.100232 + 0.667890i
\(251\) 234.364 + 97.0768i 0.933722 + 0.386760i 0.797089 0.603862i \(-0.206372\pi\)
0.136633 + 0.990622i \(0.456372\pi\)
\(252\) 73.5820 39.0095i 0.291992 0.154800i
\(253\) −104.120 + 43.1277i −0.411540 + 0.170465i
\(254\) 372.801 + 224.310i 1.46772 + 0.883112i
\(255\) 2.40823i 0.00944403i
\(256\) −94.7435 237.823i −0.370092 0.928995i
\(257\) 385.494 1.49998 0.749988 0.661451i \(-0.230059\pi\)
0.749988 + 0.661451i \(0.230059\pi\)
\(258\) 53.8692 89.5301i 0.208795 0.347016i
\(259\) 45.7800 + 110.523i 0.176757 + 0.426729i
\(260\) −68.2616 128.759i −0.262545 0.495227i
\(261\) −48.9377 + 118.146i −0.187501 + 0.452667i
\(262\) −294.724 44.2300i −1.12490 0.168817i
\(263\) −109.727 + 109.727i −0.417214 + 0.417214i −0.884243 0.467028i \(-0.845325\pi\)
0.467028 + 0.884243i \(0.345325\pi\)
\(264\) −151.650 8.22508i −0.574433 0.0311556i
\(265\) 3.19714 3.19714i 0.0120647 0.0120647i
\(266\) 27.2564 + 36.8818i 0.102468 + 0.138653i
\(267\) 18.1406 43.7952i 0.0679422 0.164027i
\(268\) 84.2149 101.908i 0.314235 0.380254i
\(269\) 74.1140 + 178.927i 0.275517 + 0.665156i 0.999701 0.0244505i \(-0.00778361\pi\)
−0.724184 + 0.689606i \(0.757784\pi\)
\(270\) 15.6376 + 62.8817i 0.0579169 + 0.232895i
\(271\) −180.440 −0.665831 −0.332916 0.942957i \(-0.608032\pi\)
−0.332916 + 0.942957i \(0.608032\pi\)
\(272\) −16.6056 11.2595i −0.0610501 0.0413952i
\(273\) 56.7412i 0.207843i
\(274\) −72.6078 291.970i −0.264992 1.06559i
\(275\) −358.573 + 148.526i −1.30390 + 0.540093i
\(276\) 26.7241 2.54044i 0.0968263 0.00920449i
\(277\) 250.197 + 103.635i 0.903238 + 0.374133i 0.785464 0.618907i \(-0.212424\pi\)
0.117774 + 0.993040i \(0.462424\pi\)
\(278\) −274.699 371.707i −0.988125 1.33707i
\(279\) 5.88900 + 5.88900i 0.0211075 + 0.0211075i
\(280\) 12.6963 + 36.0622i 0.0453440 + 0.128794i
\(281\) −148.613 148.613i −0.528873 0.528873i 0.391363 0.920236i \(-0.372004\pi\)
−0.920236 + 0.391363i \(0.872004\pi\)
\(282\) 34.6221 + 5.19584i 0.122774 + 0.0184250i
\(283\) −73.2959 30.3601i −0.258996 0.107280i 0.249408 0.968399i \(-0.419764\pi\)
−0.508403 + 0.861119i \(0.669764\pi\)
\(284\) −106.089 32.5759i −0.373554 0.114704i
\(285\) −15.3779 + 6.36973i −0.0539575 + 0.0223499i
\(286\) 371.346 617.174i 1.29841 2.15795i
\(287\) 153.566i 0.535074i
\(288\) −236.374 86.8479i −0.820744 0.301555i
\(289\) 287.428 0.994559
\(290\) −50.3015 30.2658i −0.173453 0.104365i
\(291\) −14.7568 35.6259i −0.0507105 0.122426i
\(292\) −327.344 100.515i −1.12104 0.344228i
\(293\) −138.570 + 334.537i −0.472935 + 1.14176i 0.489926 + 0.871764i \(0.337024\pi\)
−0.962860 + 0.270001i \(0.912976\pi\)
\(294\) −2.20917 + 14.7206i −0.00751417 + 0.0500702i
\(295\) 83.1870 83.1870i 0.281990 0.281990i
\(296\) 156.322 326.202i 0.528113 1.10203i
\(297\) −226.453 + 226.453i −0.762468 + 0.762468i
\(298\) 86.2560 63.7449i 0.289450 0.213909i
\(299\) −48.7209 + 117.623i −0.162946 + 0.393387i
\(300\) 92.0338 8.74890i 0.306779 0.0291630i
\(301\) −49.7492 120.105i −0.165280 0.399020i
\(302\) −114.050 + 28.3622i −0.377649 + 0.0939147i
\(303\) −136.487 −0.450454
\(304\) 27.9765 135.817i 0.0920281 0.446768i
\(305\) 218.896i 0.717693i
\(306\) −19.1524 + 4.76285i −0.0625894 + 0.0155649i
\(307\) 452.006 187.227i 1.47233 0.609860i 0.504942 0.863153i \(-0.331514\pi\)
0.967390 + 0.253293i \(0.0815137\pi\)
\(308\) −120.369 + 145.658i −0.390809 + 0.472916i
\(309\) 165.534 + 68.5663i 0.535708 + 0.221897i
\(310\) −3.07469 + 2.27226i −0.00991834 + 0.00732986i
\(311\) −139.669 139.669i −0.449097 0.449097i 0.445957 0.895054i \(-0.352863\pi\)
−0.895054 + 0.445957i \(0.852863\pi\)
\(312\) −127.710 + 114.570i −0.409327 + 0.367210i
\(313\) 316.473 + 316.473i 1.01110 + 1.01110i 0.999938 + 0.0111584i \(0.00355190\pi\)
0.0111584 + 0.999938i \(0.496448\pi\)
\(314\) −47.4203 + 315.982i −0.151020 + 1.00631i
\(315\) 34.7455 + 14.3921i 0.110303 + 0.0456891i
\(316\) 87.1212 + 164.333i 0.275700 + 0.520041i
\(317\) −68.6359 + 28.4299i −0.216517 + 0.0896842i −0.488306 0.872673i \(-0.662385\pi\)
0.271789 + 0.962357i \(0.412385\pi\)
\(318\) −4.56101 2.74431i −0.0143428 0.00862989i
\(319\) 290.143i 0.909540i
\(320\) 55.5311 101.392i 0.173535 0.316849i
\(321\) −37.4730 −0.116738
\(322\) 17.2194 28.6185i 0.0534765 0.0888773i
\(323\) −4.15885 10.0404i −0.0128757 0.0310847i
\(324\) −182.904 + 96.9668i −0.564520 + 0.299280i
\(325\) −167.788 + 405.076i −0.516270 + 1.24639i
\(326\) 619.834 + 93.0202i 1.90133 + 0.285338i
\(327\) 135.159 135.159i 0.413329 0.413329i
\(328\) −345.638 + 310.074i −1.05378 + 0.945349i
\(329\) 30.8006 30.8006i 0.0936188 0.0936188i
\(330\) −40.7604 55.1547i −0.123516 0.167135i
\(331\) −170.245 + 411.007i −0.514335 + 1.24171i 0.427004 + 0.904250i \(0.359569\pi\)
−0.941338 + 0.337464i \(0.890431\pi\)
\(332\) 42.0362 + 34.7379i 0.126615 + 0.104632i
\(333\) −136.168 328.738i −0.408912 0.987202i
\(334\) −90.0340 362.044i −0.269563 1.08397i
\(335\) 59.6988 0.178205
\(336\) 37.5931 24.7510i 0.111884 0.0736638i
\(337\) 13.4497i 0.0399100i −0.999801 0.0199550i \(-0.993648\pi\)
0.999801 0.0199550i \(-0.00635229\pi\)
\(338\) −114.799 461.631i −0.339643 1.36577i
\(339\) 115.575 47.8729i 0.340931 0.141218i
\(340\) −0.857384 9.01923i −0.00252172 0.0265271i
\(341\) −17.4574 7.23111i −0.0511949 0.0212056i
\(342\) −81.0712 109.701i −0.237050 0.320763i
\(343\) 13.0958 + 13.0958i 0.0381802 + 0.0381802i
\(344\) −169.875 + 354.484i −0.493822 + 1.03048i
\(345\) 8.57173 + 8.57173i 0.0248456 + 0.0248456i
\(346\) 65.4957 + 9.82912i 0.189294 + 0.0284079i
\(347\) −38.7677 16.0581i −0.111722 0.0462769i 0.326122 0.945328i \(-0.394258\pi\)
−0.437844 + 0.899051i \(0.644258\pi\)
\(348\) −20.2867 + 66.0672i −0.0582950 + 0.189848i
\(349\) −51.4045 + 21.2925i −0.147291 + 0.0610099i −0.455111 0.890435i \(-0.650400\pi\)
0.307820 + 0.951445i \(0.400400\pi\)
\(350\) 59.3012 98.5580i 0.169432 0.281594i
\(351\) 361.786i 1.03073i
\(352\) 570.884 23.1866i 1.62183 0.0658710i
\(353\) −25.9805 −0.0735990 −0.0367995 0.999323i \(-0.511716\pi\)
−0.0367995 + 0.999323i \(0.511716\pi\)
\(354\) −118.674 71.4047i −0.335237 0.201708i
\(355\) −19.1780 46.2998i −0.0540226 0.130422i
\(356\) −52.3474 + 170.479i −0.147043 + 0.478873i
\(357\) 1.34989 3.25893i 0.00378121 0.00912865i
\(358\) −11.9297 + 79.4925i −0.0333231 + 0.222046i
\(359\) 305.546 305.546i 0.851102 0.851102i −0.139167 0.990269i \(-0.544442\pi\)
0.990269 + 0.139167i \(0.0444424\pi\)
\(360\) −37.7638 107.263i −0.104900 0.297953i
\(361\) −202.152 + 202.152i −0.559979 + 0.559979i
\(362\) −475.936 + 351.726i −1.31474 + 0.971619i
\(363\) 80.4805 194.297i 0.221709 0.535254i
\(364\) 20.2012 + 212.506i 0.0554977 + 0.583806i
\(365\) −59.1748 142.861i −0.162123 0.391399i
\(366\) −250.084 + 62.1915i −0.683290 + 0.169922i
\(367\) −141.248 −0.384873 −0.192436 0.981309i \(-0.561639\pi\)
−0.192436 + 0.981309i \(0.561639\pi\)
\(368\) −99.1817 + 19.0287i −0.269516 + 0.0517085i
\(369\) 456.766i 1.23785i
\(370\) 158.517 39.4203i 0.428423 0.106541i
\(371\) −6.11862 + 2.53442i −0.0164922 + 0.00683131i
\(372\) 3.46956 + 2.86718i 0.00932678 + 0.00770747i
\(373\) 250.954 + 103.949i 0.672800 + 0.278683i 0.692813 0.721117i \(-0.256371\pi\)
−0.0200137 + 0.999800i \(0.506371\pi\)
\(374\) 36.0110 26.6129i 0.0962861 0.0711574i
\(375\) 63.4704 + 63.4704i 0.169254 + 0.169254i
\(376\) −131.516 7.13303i −0.349776 0.0189708i
\(377\) −231.770 231.770i −0.614773 0.614773i
\(378\) 14.0858 93.8599i 0.0372640 0.248307i
\(379\) 205.713 + 85.2092i 0.542779 + 0.224826i 0.637190 0.770707i \(-0.280097\pi\)
−0.0944110 + 0.995533i \(0.530097\pi\)
\(380\) 55.3250 29.3306i 0.145592 0.0771858i
\(381\) 213.693 88.5147i 0.560875 0.232322i
\(382\) 516.304 + 310.654i 1.35158 + 0.813231i
\(383\) 401.386i 1.04801i 0.851717 + 0.524003i \(0.175562\pi\)
−0.851717 + 0.524003i \(0.824438\pi\)
\(384\) −131.615 34.6362i −0.342747 0.0901984i
\(385\) −85.3282 −0.221632
\(386\) 171.314 284.723i 0.443820 0.737624i
\(387\) 147.974 + 357.240i 0.382361 + 0.923100i
\(388\) 67.9502 + 128.171i 0.175129 + 0.330339i
\(389\) −98.6459 + 238.152i −0.253588 + 0.612216i −0.998489 0.0549594i \(-0.982497\pi\)
0.744900 + 0.667176i \(0.232497\pi\)
\(390\) −76.6180 11.4983i −0.196456 0.0294827i
\(391\) −5.59656 + 5.59656i −0.0143135 + 0.0143135i
\(392\) 3.03282 55.9178i 0.00773679 0.142647i
\(393\) −112.032 + 112.032i −0.285068 + 0.285068i
\(394\) 283.733 + 383.931i 0.720135 + 0.974445i
\(395\) −32.1423 + 77.5983i −0.0813728 + 0.196451i
\(396\) 358.025 433.245i 0.904104 1.09405i
\(397\) 5.04769 + 12.1862i 0.0127146 + 0.0306957i 0.930109 0.367283i \(-0.119712\pi\)
−0.917395 + 0.397978i \(0.869712\pi\)
\(398\) 108.866 + 437.772i 0.273533 + 1.09993i
\(399\) 24.3805 0.0611040
\(400\) −341.567 + 65.5322i −0.853919 + 0.163831i
\(401\) 75.1817i 0.187486i 0.995596 + 0.0937428i \(0.0298831\pi\)
−0.995596 + 0.0937428i \(0.970117\pi\)
\(402\) −16.9613 68.2045i −0.0421922 0.169663i
\(403\) −19.7215 + 8.16890i −0.0489367 + 0.0202702i
\(404\) 511.169 48.5926i 1.26527 0.120279i
\(405\) −86.3677 35.7747i −0.213254 0.0883326i
\(406\) 51.1053 + 69.1528i 0.125875 + 0.170327i
\(407\) 570.859 + 570.859i 1.40260 + 1.40260i
\(408\) −10.0607 + 3.54203i −0.0246585 + 0.00868144i
\(409\) 292.596 + 292.596i 0.715393 + 0.715393i 0.967658 0.252265i \(-0.0811755\pi\)
−0.252265 + 0.967658i \(0.581176\pi\)
\(410\) −207.361 31.1193i −0.505759 0.0759007i
\(411\) −147.771 61.2087i −0.359540 0.148926i
\(412\) −644.363 197.859i −1.56399 0.480240i
\(413\) −159.202 + 65.9435i −0.385476 + 0.159669i
\(414\) −51.2173 + 85.1227i −0.123713 + 0.205610i
\(415\) 24.6253i 0.0593380i
\(416\) 437.507 474.550i 1.05170 1.14075i
\(417\) −245.715 −0.589244
\(418\) 265.187 + 159.560i 0.634418 + 0.381722i
\(419\) −201.609 486.727i −0.481167 1.16164i −0.959055 0.283219i \(-0.908598\pi\)
0.477888 0.878421i \(-0.341402\pi\)
\(420\) 19.4297 + 5.96610i 0.0462612 + 0.0142050i
\(421\) −70.5652 + 170.360i −0.167613 + 0.404655i −0.985259 0.171067i \(-0.945279\pi\)
0.817646 + 0.575721i \(0.195279\pi\)
\(422\) −41.4085 + 275.923i −0.0981244 + 0.653846i
\(423\) −91.6131 + 91.6131i −0.216579 + 0.216579i
\(424\) 18.0588 + 8.65407i 0.0425915 + 0.0204105i
\(425\) −19.2738 + 19.2738i −0.0453500 + 0.0453500i
\(426\) −47.4478 + 35.0649i −0.111380 + 0.0823119i
\(427\) −122.699 + 296.221i −0.287351 + 0.693726i
\(428\) 140.343 13.3412i 0.327903 0.0311711i
\(429\) −146.536 353.770i −0.341577 0.824639i
\(430\) −172.260 + 42.8380i −0.400605 + 0.0996233i
\(431\) −101.592 −0.235713 −0.117856 0.993031i \(-0.537602\pi\)
−0.117856 + 0.993031i \(0.537602\pi\)
\(432\) −239.696 + 157.814i −0.554852 + 0.365311i
\(433\) 359.409i 0.830043i −0.909812 0.415022i \(-0.863774\pi\)
0.909812 0.415022i \(-0.136226\pi\)
\(434\) 5.43448 1.35146i 0.0125219 0.00311396i
\(435\) −28.8333 + 11.9431i −0.0662834 + 0.0274555i
\(436\) −458.072 + 554.311i −1.05062 + 1.27136i
\(437\) −50.5400 20.9344i −0.115652 0.0479047i
\(438\) −146.403 + 108.194i −0.334252 + 0.247019i
\(439\) 46.4938 + 46.4938i 0.105908 + 0.105908i 0.758075 0.652167i \(-0.226140\pi\)
−0.652167 + 0.758075i \(0.726140\pi\)
\(440\) 172.291 + 192.052i 0.391571 + 0.436482i
\(441\) −38.9520 38.9520i −0.0883266 0.0883266i
\(442\) 7.50733 50.0246i 0.0169849 0.113178i
\(443\) −786.845 325.922i −1.77617 0.735715i −0.993573 0.113191i \(-0.963893\pi\)
−0.782601 0.622524i \(-0.786107\pi\)
\(444\) −90.0735 169.902i −0.202868 0.382662i
\(445\) −74.4011 + 30.8179i −0.167193 + 0.0692538i
\(446\) 8.80414 + 5.29735i 0.0197402 + 0.0118775i
\(447\) 57.0191i 0.127559i
\(448\) −131.981 + 106.081i −0.294599 + 0.236788i
\(449\) 528.764 1.17765 0.588824 0.808261i \(-0.299591\pi\)
0.588824 + 0.808261i \(0.299591\pi\)
\(450\) −176.385 + 293.150i −0.391967 + 0.651445i
\(451\) −396.590 957.454i −0.879358 2.12296i
\(452\) −415.806 + 220.440i −0.919925 + 0.487699i
\(453\) −23.9095 + 57.7227i −0.0527804 + 0.127423i
\(454\) 633.721 + 95.1042i 1.39586 + 0.209481i
\(455\) −68.1610 + 68.1610i −0.149804 + 0.149804i
\(456\) −49.2281 54.8743i −0.107956 0.120338i
\(457\) 291.583 291.583i 0.638036 0.638036i −0.312034 0.950071i \(-0.601010\pi\)
0.950071 + 0.312034i \(0.101010\pi\)
\(458\) −34.4556 46.6233i −0.0752305 0.101798i
\(459\) −8.60701 + 20.7792i −0.0187517 + 0.0452705i
\(460\) −35.1543 29.0509i −0.0764224 0.0631540i
\(461\) 9.29471 + 22.4394i 0.0201621 + 0.0486755i 0.933640 0.358213i \(-0.116614\pi\)
−0.913478 + 0.406888i \(0.866614\pi\)
\(462\) 24.2429 + 97.4855i 0.0524738 + 0.211007i
\(463\) −400.053 −0.864046 −0.432023 0.901863i \(-0.642200\pi\)
−0.432023 + 0.901863i \(0.642200\pi\)
\(464\) 52.4556 254.655i 0.113051 0.548826i
\(465\) 2.03251i 0.00437098i
\(466\) −142.997 575.019i −0.306861 1.23395i
\(467\) 567.497 235.065i 1.21520 0.503351i 0.319318 0.947648i \(-0.396546\pi\)
0.895880 + 0.444296i \(0.146546\pi\)
\(468\) −60.0862 632.075i −0.128389 1.35059i
\(469\) −80.7872 33.4632i −0.172254 0.0713501i
\(470\) −35.3487 47.8318i −0.0752099 0.101770i
\(471\) 120.113 + 120.113i 0.255016 + 0.255016i
\(472\) 469.875 + 225.172i 0.995499 + 0.477060i
\(473\) −620.352 620.352i −1.31153 1.31153i
\(474\) 97.7863 + 14.6751i 0.206300 + 0.0309600i
\(475\) −174.052 72.0949i −0.366426 0.151779i
\(476\) −3.89532 + 12.6858i −0.00818345 + 0.0266509i
\(477\) 18.1992 7.53834i 0.0381534 0.0158037i
\(478\) −232.796 + 386.904i −0.487020 + 0.809422i
\(479\) 920.238i 1.92116i −0.277997 0.960582i \(-0.589671\pi\)
0.277997 0.960582i \(-0.410329\pi\)
\(480\) −25.8035 55.7778i −0.0537572 0.116204i
\(481\) 912.016 1.89608
\(482\) −524.855 315.799i −1.08891 0.655186i
\(483\) −6.79493 16.4044i −0.0140682 0.0339636i
\(484\) −232.239 + 756.328i −0.479833 + 1.56266i
\(485\) −25.0694 + 60.5228i −0.0516894 + 0.124789i
\(486\) −64.2489 + 428.118i −0.132199 + 0.880902i
\(487\) −450.814 + 450.814i −0.925695 + 0.925695i −0.997424 0.0717289i \(-0.977148\pi\)
0.0717289 + 0.997424i \(0.477148\pi\)
\(488\) 914.466 321.953i 1.87391 0.659740i
\(489\) 235.614 235.614i 0.481829 0.481829i
\(490\) 20.3371 15.0295i 0.0415043 0.0306726i
\(491\) −221.153 + 533.911i −0.450414 + 1.08740i 0.521751 + 0.853098i \(0.325279\pi\)
−0.972165 + 0.234298i \(0.924721\pi\)
\(492\) 23.3611 + 245.747i 0.0474820 + 0.499486i
\(493\) −7.79779 18.8255i −0.0158170 0.0381857i
\(494\) 339.292 84.3759i 0.686826 0.170801i
\(495\) 253.799 0.512726
\(496\) −14.0149 9.50283i −0.0282558 0.0191589i
\(497\) 73.4050i 0.147696i
\(498\) 28.1338 6.99637i 0.0564936 0.0140489i
\(499\) 108.772 45.0550i 0.217981 0.0902906i −0.271021 0.962573i \(-0.587361\pi\)
0.489002 + 0.872283i \(0.337361\pi\)
\(500\) −260.304 215.111i −0.520609 0.430221i
\(501\) −183.237 75.8991i −0.365742 0.151495i
\(502\) −408.018 + 301.534i −0.812786 + 0.600665i
\(503\) 354.499 + 354.499i 0.704770 + 0.704770i 0.965430 0.260661i \(-0.0839404\pi\)
−0.260661 + 0.965430i \(0.583940\pi\)
\(504\) −9.02080 + 166.322i −0.0178984 + 0.330003i
\(505\) 163.957 + 163.957i 0.324668 + 0.324668i
\(506\) 33.4513 222.900i 0.0661092 0.440515i
\(507\) −233.639 96.7764i −0.460826 0.190881i
\(508\) −768.805 + 407.582i −1.51340 + 0.802327i
\(509\) −486.589 + 201.552i −0.955971 + 0.395976i −0.805472 0.592634i \(-0.798088\pi\)
−0.150499 + 0.988610i \(0.548088\pi\)
\(510\) −4.12700 2.48317i −0.00809216 0.00486896i
\(511\) 226.495i 0.443239i
\(512\) 505.251 + 82.8607i 0.986817 + 0.161837i
\(513\) −155.452 −0.303025
\(514\) −397.490 + 660.624i −0.773327 + 1.28526i
\(515\) −116.483 281.215i −0.226181 0.546049i
\(516\) 97.8829 + 184.632i 0.189695 + 0.357814i
\(517\) 112.492 271.579i 0.217586 0.525298i
\(518\) −236.608 35.5085i −0.456773 0.0685492i
\(519\) 24.8966 24.8966i 0.0479702 0.0479702i
\(520\) 291.041 + 15.7852i 0.559694 + 0.0303562i
\(521\) 153.128 153.128i 0.293912 0.293912i −0.544711 0.838624i \(-0.683361\pi\)
0.838624 + 0.544711i \(0.183361\pi\)
\(522\) −152.007 205.687i −0.291202 0.394037i
\(523\) 70.6048 170.455i 0.135000 0.325918i −0.841894 0.539642i \(-0.818559\pi\)
0.976894 + 0.213724i \(0.0685595\pi\)
\(524\) 379.693 459.464i 0.724604 0.876841i
\(525\) −23.4007 56.4944i −0.0445728 0.107608i
\(526\) −74.8988 301.183i −0.142393 0.572591i
\(527\) −1.32704 −0.00251811
\(528\) 170.465 251.403i 0.322850 0.476142i
\(529\) 489.160i 0.924688i
\(530\) 2.18233 + 8.77559i 0.00411761 + 0.0165577i
\(531\) 473.528 196.142i 0.891767 0.369382i
\(532\) −91.3092 + 8.68001i −0.171634 + 0.0163158i
\(533\) −1081.62 448.024i −2.02932 0.840570i
\(534\) 56.3471 + 76.2457i 0.105519 + 0.142782i
\(535\) 45.0148 + 45.0148i 0.0841399 + 0.0841399i
\(536\) 87.8052 + 249.399i 0.163816 + 0.465297i
\(537\) 30.2171 + 30.2171i 0.0562702 + 0.0562702i
\(538\) −383.049 57.4852i −0.711986 0.106850i
\(539\) 115.470 + 47.8293i 0.214230 + 0.0887370i
\(540\) −123.885 38.0403i −0.229417 0.0704450i
\(541\) −180.940 + 74.9479i −0.334455 + 0.138536i −0.543590 0.839351i \(-0.682935\pi\)
0.209135 + 0.977887i \(0.432935\pi\)
\(542\) 186.055 309.222i 0.343275 0.570520i
\(543\) 314.615i 0.579401i
\(544\) 36.4178 16.8473i 0.0669446 0.0309693i
\(545\) −324.722 −0.595819
\(546\) 97.2379 + 58.5069i 0.178091 + 0.107156i
\(547\) 111.327 + 268.767i 0.203522 + 0.491347i 0.992378 0.123232i \(-0.0393260\pi\)
−0.788855 + 0.614579i \(0.789326\pi\)
\(548\) 575.219 + 176.627i 1.04967 + 0.322313i
\(549\) 364.954 881.077i 0.664761 1.60488i
\(550\) 115.201 767.636i 0.209457 1.39570i
\(551\) 99.5865 99.5865i 0.180738 0.180738i
\(552\) −23.2021 + 48.4167i −0.0420328 + 0.0877115i
\(553\) 86.9928 86.9928i 0.157311 0.157311i
\(554\) −435.583 + 321.904i −0.786250 + 0.581055i
\(555\) 33.2315 80.2279i 0.0598765 0.144555i
\(556\) 920.244 87.4800i 1.65511 0.157338i
\(557\) −129.222 311.969i −0.231996 0.560088i 0.764416 0.644723i \(-0.223027\pi\)
−0.996412 + 0.0846355i \(0.973027\pi\)
\(558\) −16.1643 + 4.01977i −0.0289683 + 0.00720389i
\(559\) −991.087 −1.77296
\(560\) −74.8916 15.4266i −0.133735 0.0275476i
\(561\) 23.8049i 0.0424330i
\(562\) 407.918 101.442i 0.725832 0.180502i
\(563\) −423.649 + 175.481i −0.752485 + 0.311689i −0.725755 0.687953i \(-0.758509\pi\)
−0.0267298 + 0.999643i \(0.508509\pi\)
\(564\) −44.6037 + 53.9747i −0.0790845 + 0.0956998i
\(565\) −196.344 81.3285i −0.347512 0.143944i
\(566\) 127.605 94.3028i 0.225451 0.166613i
\(567\) 96.8239 + 96.8239i 0.170765 + 0.170765i
\(568\) 165.216 148.216i 0.290873 0.260944i
\(569\) 493.712 + 493.712i 0.867684 + 0.867684i 0.992216 0.124531i \(-0.0397427\pi\)
−0.124531 + 0.992216i \(0.539743\pi\)
\(570\) 4.94056 32.9211i 0.00866766 0.0577564i
\(571\) 1048.82 + 434.436i 1.83682 + 0.760834i 0.959995 + 0.280016i \(0.0903397\pi\)
0.876820 + 0.480818i \(0.159660\pi\)
\(572\) 674.754 + 1272.76i 1.17964 + 2.22510i
\(573\) 295.951 122.587i 0.516493 0.213939i
\(574\) 263.168 + 158.345i 0.458480 + 0.275862i
\(575\) 137.204i 0.238616i
\(576\) 392.562 315.526i 0.681531 0.547788i
\(577\) 1053.31 1.82549 0.912743 0.408533i \(-0.133960\pi\)
0.912743 + 0.408533i \(0.133960\pi\)
\(578\) −296.372 + 492.567i −0.512754 + 0.852192i
\(579\) −67.6021 163.206i −0.116757 0.281875i
\(580\) 103.734 54.9944i 0.178851 0.0948179i
\(581\) 13.8033 33.3241i 0.0237578 0.0573564i
\(582\) 76.2684 + 11.4458i 0.131045 + 0.0196663i
\(583\) −31.6031 + 31.6031i −0.0542078 + 0.0542078i
\(584\) 509.783 457.329i 0.872916 0.783098i
\(585\) 202.738 202.738i 0.346560 0.346560i
\(586\) −430.417 582.416i −0.734500 0.993883i
\(587\) 31.4320 75.8836i 0.0535468 0.129274i −0.894842 0.446382i \(-0.852712\pi\)
0.948389 + 0.317109i \(0.102712\pi\)
\(588\) −22.9490 18.9646i −0.0390289 0.0322527i
\(589\) −3.51001 8.47390i −0.00595926 0.0143869i
\(590\) 56.7826 + 228.334i 0.0962417 + 0.387007i
\(591\) 253.796 0.429434
\(592\) 397.829 + 604.243i 0.672009 + 1.02068i
\(593\) 479.859i 0.809206i −0.914492 0.404603i \(-0.867410\pi\)
0.914492 0.404603i \(-0.132590\pi\)
\(594\) −154.574 621.574i −0.260226 1.04642i
\(595\) −5.53640 + 2.29325i −0.00930487 + 0.00385420i
\(596\) 20.3001 + 213.546i 0.0340605 + 0.358299i
\(597\) 221.564 + 91.7748i 0.371129 + 0.153727i
\(598\) −151.334 204.776i −0.253067 0.342435i
\(599\) 95.2796 + 95.2796i 0.159064 + 0.159064i 0.782152 0.623088i \(-0.214122\pi\)
−0.623088 + 0.782152i \(0.714122\pi\)
\(600\) −79.9047 + 166.740i −0.133174 + 0.277900i
\(601\) −611.632 611.632i −1.01769 1.01769i −0.999841 0.0178501i \(-0.994318\pi\)
−0.0178501 0.999841i \(-0.505682\pi\)
\(602\) 257.122 + 38.5871i 0.427114 + 0.0640981i
\(603\) 240.293 + 99.5326i 0.398496 + 0.165062i
\(604\) 68.9946 224.693i 0.114229 0.372009i
\(605\) −330.080 + 136.723i −0.545586 + 0.225989i
\(606\) 140.735 233.900i 0.232236 0.385973i
\(607\) 354.936i 0.584739i −0.956305 0.292369i \(-0.905556\pi\)
0.956305 0.292369i \(-0.0944437\pi\)
\(608\) 203.904 + 187.987i 0.335369 + 0.309190i
\(609\) 45.7131 0.0750625
\(610\) 375.125 + 225.708i 0.614958 + 0.370013i
\(611\) −127.081 306.800i −0.207988 0.502128i
\(612\) 11.5862 37.7326i 0.0189317 0.0616546i
\(613\) 45.2602 109.268i 0.0738340 0.178251i −0.882654 0.470024i \(-0.844245\pi\)
0.956488 + 0.291773i \(0.0942452\pi\)
\(614\) −145.219 + 967.659i −0.236513 + 1.57599i
\(615\) −78.8232 + 78.8232i −0.128168 + 0.128168i
\(616\) −125.501 356.469i −0.203735 0.578683i
\(617\) 577.446 577.446i 0.935893 0.935893i −0.0621727 0.998065i \(-0.519803\pi\)
0.998065 + 0.0621727i \(0.0198030\pi\)
\(618\) −288.187 + 212.976i −0.466323 + 0.344622i
\(619\) 308.535 744.869i 0.498441 1.20334i −0.451882 0.892078i \(-0.649247\pi\)
0.950323 0.311265i \(-0.100753\pi\)
\(620\) −0.723618 7.61208i −0.00116713 0.0122775i
\(621\) 43.3249 + 104.596i 0.0697664 + 0.168431i
\(622\) 383.368 95.3368i 0.616347 0.153275i
\(623\) 117.957 0.189338
\(624\) −64.6545 336.993i −0.103613 0.540052i
\(625\) 390.944i 0.625510i
\(626\) −868.664 + 216.021i −1.38764 + 0.345082i
\(627\) 152.008 62.9636i 0.242436 0.100420i
\(628\) −492.606 407.080i −0.784404 0.648216i
\(629\) 52.3815 + 21.6971i 0.0832775 + 0.0344947i
\(630\) −60.4906 + 44.7038i −0.0960168 + 0.0709584i
\(631\) −408.006 408.006i −0.646603 0.646603i 0.305568 0.952170i \(-0.401154\pi\)
−0.952170 + 0.305568i \(0.901154\pi\)
\(632\) −371.451 20.1464i −0.587739 0.0318773i
\(633\) 104.885 + 104.885i 0.165695 + 0.165695i
\(634\) 22.0511 146.936i 0.0347810 0.231761i
\(635\) −363.031 150.372i −0.571702 0.236807i
\(636\) 9.40588 4.98653i 0.0147891 0.00784046i
\(637\) 130.445 54.0322i 0.204781 0.0848229i
\(638\) 497.221 + 299.172i 0.779343 + 0.468922i
\(639\) 218.335i 0.341683i
\(640\) 116.496 + 199.711i 0.182026 + 0.312048i
\(641\) 554.374 0.864858 0.432429 0.901668i \(-0.357657\pi\)
0.432429 + 0.901668i \(0.357657\pi\)
\(642\) 38.6391 64.2177i 0.0601855 0.100028i
\(643\) 60.4710 + 145.990i 0.0940451 + 0.227045i 0.963901 0.266261i \(-0.0857883\pi\)
−0.869856 + 0.493306i \(0.835788\pi\)
\(644\) 31.2885 + 59.0181i 0.0485846 + 0.0916431i
\(645\) −36.1126 + 87.1836i −0.0559886 + 0.135168i
\(646\) 21.4945 + 3.22574i 0.0332733 + 0.00499341i
\(647\) −788.175 + 788.175i −1.21820 + 1.21820i −0.249938 + 0.968262i \(0.580410\pi\)
−0.968262 + 0.249938i \(0.919590\pi\)
\(648\) 22.4232 413.429i 0.0346037 0.638008i
\(649\) −822.288 + 822.288i −1.26701 + 1.26701i
\(650\) −521.172 705.220i −0.801803 1.08495i
\(651\) 1.13929 2.75048i 0.00175006 0.00422501i
\(652\) −798.532 + 966.300i −1.22474 + 1.48205i
\(653\) −326.822 789.017i −0.500493 1.20830i −0.949216 0.314625i \(-0.898121\pi\)
0.448723 0.893671i \(-0.351879\pi\)
\(654\) 92.2578 + 370.987i 0.141067 + 0.567258i
\(655\) 269.159 0.410930
\(656\) −174.983 912.047i −0.266742 1.39032i
\(657\) 673.685i 1.02540i
\(658\) 21.0242 + 84.5423i 0.0319516 + 0.128484i
\(659\) −396.308 + 164.156i −0.601377 + 0.249099i −0.662537 0.749029i \(-0.730520\pi\)
0.0611595 + 0.998128i \(0.480520\pi\)
\(660\) 136.548 12.9805i 0.206891 0.0196674i
\(661\) 1177.90 + 487.903i 1.78200 + 0.738129i 0.992184 + 0.124786i \(0.0398243\pi\)
0.789817 + 0.613343i \(0.210176\pi\)
\(662\) −528.804 715.547i −0.798798 1.08089i
\(663\) −19.0156 19.0156i −0.0286811 0.0286811i
\(664\) −102.875 + 36.2189i −0.154932 + 0.0545465i
\(665\) −29.2874 29.2874i −0.0440411 0.0440411i
\(666\) 703.766 + 105.616i 1.05671 + 0.158583i
\(667\) −94.7617 39.2516i −0.142072 0.0588480i
\(668\) 713.274 + 219.019i 1.06778 + 0.327872i
\(669\) 5.04662 2.09038i 0.00754353 0.00312463i
\(670\) −61.5566 + 102.306i −0.0918755 + 0.152696i
\(671\) 2163.75i 3.22467i
\(672\) 3.65313 + 89.9448i 0.00543621 + 0.133846i
\(673\) −120.445 −0.178967 −0.0894837 0.995988i \(-0.528522\pi\)
−0.0894837 + 0.995988i \(0.528522\pi\)
\(674\) 23.0488 + 13.8682i 0.0341970 + 0.0205760i
\(675\) 149.205 + 360.212i 0.221044 + 0.533648i
\(676\) 909.472 + 279.263i 1.34537 + 0.413112i
\(677\) 284.771 687.499i 0.420637 1.01551i −0.561523 0.827461i \(-0.689784\pi\)
0.982160 0.188047i \(-0.0602157\pi\)
\(678\) −37.1318 + 247.425i −0.0547666 + 0.364934i
\(679\) 67.8500 67.8500i 0.0999264 0.0999264i
\(680\) 16.3404 + 7.83058i 0.0240300 + 0.0115156i
\(681\) 240.893 240.893i 0.353734 0.353734i
\(682\) 30.3927 22.4608i 0.0445641 0.0329338i
\(683\) 213.473 515.370i 0.312552 0.754567i −0.687057 0.726604i \(-0.741098\pi\)
0.999609 0.0279638i \(-0.00890231\pi\)
\(684\) 271.589 25.8178i 0.397060 0.0377453i
\(685\) 103.984 + 251.039i 0.151801 + 0.366481i
\(686\) −35.9457 + 8.93906i −0.0523990 + 0.0130307i
\(687\) −30.8201 −0.0448618
\(688\) −432.321 656.631i −0.628374 0.954405i
\(689\) 50.4898i 0.0732799i
\(690\) −23.5279 + 5.85097i −0.0340984 + 0.00847967i
\(691\) −989.467 + 409.851i −1.43193 + 0.593127i −0.957828 0.287341i \(-0.907229\pi\)
−0.474106 + 0.880468i \(0.657229\pi\)
\(692\) −84.3781 + 102.106i −0.121934 + 0.147551i
\(693\) −343.453 142.263i −0.495603 0.205286i
\(694\) 67.4929 49.8787i 0.0972521 0.0718713i
\(695\) 295.168 + 295.168i 0.424702 + 0.424702i
\(696\) −92.3020 102.889i −0.132618 0.147828i
\(697\) −51.4644 51.4644i −0.0738370 0.0738370i
\(698\) 16.5151 110.047i 0.0236606 0.157661i
\(699\) −291.027 120.547i −0.416347 0.172457i
\(700\) 107.753 + 203.250i 0.153933 + 0.290357i
\(701\) −198.915 + 82.3934i −0.283759 + 0.117537i −0.520024 0.854152i \(-0.674077\pi\)
0.236264 + 0.971689i \(0.424077\pi\)
\(702\) −619.996 373.044i −0.883185 0.531402i
\(703\) 391.874i 0.557431i
\(704\) −548.914 + 1002.24i −0.779708 + 1.42363i
\(705\) −31.6190 −0.0448496
\(706\) 26.7889 44.5229i 0.0379447 0.0630636i
\(707\) −129.971 313.778i −0.183835 0.443816i
\(708\) 244.734 129.746i 0.345669 0.183257i
\(709\) −493.538 + 1191.51i −0.696105 + 1.68055i 0.0359976 + 0.999352i \(0.488539\pi\)
−0.732103 + 0.681194i \(0.761461\pi\)
\(710\) 99.1192 + 14.8751i 0.139605 + 0.0209508i
\(711\) −258.751 + 258.751i −0.363925 + 0.363925i
\(712\) −238.175 265.492i −0.334515 0.372882i
\(713\) −4.72341 + 4.72341i −0.00662470 + 0.00662470i
\(714\) 4.19295 + 5.67366i 0.00587248 + 0.00794630i
\(715\) −248.942 + 600.999i −0.348170 + 0.840558i
\(716\) −123.926 102.410i −0.173081 0.143031i
\(717\) 91.8630 + 221.777i 0.128121 + 0.309312i
\(718\) 208.562 + 838.670i 0.290477 + 1.16806i
\(719\) 194.306 0.270244 0.135122 0.990829i \(-0.456857\pi\)
0.135122 + 0.990829i \(0.456857\pi\)
\(720\) 222.757 + 45.8849i 0.309385 + 0.0637290i
\(721\) 445.846i 0.618372i
\(722\) −137.987 554.873i −0.191118 0.768522i
\(723\) −300.852 + 124.617i −0.416116 + 0.172361i
\(724\) −112.010 1178.29i −0.154710 1.62747i
\(725\) −326.346 135.177i −0.450132 0.186451i
\(726\) 249.984 + 338.263i 0.344330 + 0.465927i
\(727\) 116.639 + 116.639i 0.160439 + 0.160439i 0.782761 0.622322i \(-0.213811\pi\)
−0.622322 + 0.782761i \(0.713811\pi\)
\(728\) −385.002 184.499i −0.528849 0.253433i
\(729\) −166.626 166.626i −0.228567 0.228567i
\(730\) 305.838 + 45.8979i 0.418956 + 0.0628738i
\(731\) −56.9230 23.5783i −0.0778700 0.0322548i
\(732\) 151.288 492.698i 0.206678 0.673084i
\(733\) 58.0063 24.0270i 0.0791354 0.0327790i −0.342765 0.939421i \(-0.611363\pi\)
0.421900 + 0.906642i \(0.361363\pi\)
\(734\) 145.644 242.058i 0.198425 0.329780i
\(735\) 13.4438i 0.0182908i
\(736\) 69.6584 189.589i 0.0946446 0.257594i
\(737\) −590.112 −0.800695
\(738\) −782.764 470.980i −1.06066 0.638184i
\(739\) −2.53325 6.11581i −0.00342795 0.00827579i 0.922156 0.386817i \(-0.126426\pi\)
−0.925584 + 0.378542i \(0.876426\pi\)
\(740\) −95.8946 + 312.298i −0.129587 + 0.422025i
\(741\) 71.1292 171.721i 0.0959909 0.231742i
\(742\) 1.96577 13.0988i 0.00264929 0.0176534i
\(743\) 541.806 541.806i 0.729214 0.729214i −0.241249 0.970463i \(-0.577557\pi\)
0.970463 + 0.241249i \(0.0775572\pi\)
\(744\) −8.49104 + 2.98941i −0.0114127 + 0.00401803i
\(745\) −68.4948 + 68.4948i −0.0919393 + 0.0919393i
\(746\) −436.901 + 322.879i −0.585658 + 0.432814i
\(747\) −41.0563 + 99.1188i −0.0549616 + 0.132689i
\(748\) 8.47508 + 89.1534i 0.0113303 + 0.119189i
\(749\) −35.6839 86.1485i −0.0476420 0.115018i
\(750\) −174.215 + 43.3242i −0.232287 + 0.0577656i
\(751\) 1085.16 1.44495 0.722476 0.691396i \(-0.243004\pi\)
0.722476 + 0.691396i \(0.243004\pi\)
\(752\) 147.832 218.024i 0.196585 0.289926i
\(753\) 269.719i 0.358192i
\(754\) 636.167 158.203i 0.843723 0.209819i
\(755\) 98.0616 40.6184i 0.129883 0.0537992i
\(756\) 146.324 + 120.920i 0.193551 + 0.159947i
\(757\) −616.782 255.480i −0.814772 0.337490i −0.0639157 0.997955i \(-0.520359\pi\)
−0.750856 + 0.660466i \(0.770359\pi\)
\(758\) −358.138 + 264.672i −0.472478 + 0.349171i