Properties

Label 224.3.w.a.43.14
Level 224
Weight 3
Character 224.43
Analytic conductor 6.104
Analytic rank 0
Dimension 192
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(48\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 43.14
Character \(\chi\) \(=\) 224.43
Dual form 224.3.w.a.99.14

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.34412 - 1.48100i) q^{2} +(1.15434 + 2.78683i) q^{3} +(-0.386709 + 3.98126i) q^{4} +(-3.15510 + 7.61708i) q^{5} +(2.57571 - 5.45539i) q^{6} +(1.87083 - 1.87083i) q^{7} +(6.41602 - 4.77856i) q^{8} +(-0.0699303 + 0.0699303i) q^{9} +O(q^{10})\) \(q+(-1.34412 - 1.48100i) q^{2} +(1.15434 + 2.78683i) q^{3} +(-0.386709 + 3.98126i) q^{4} +(-3.15510 + 7.61708i) q^{5} +(2.57571 - 5.45539i) q^{6} +(1.87083 - 1.87083i) q^{7} +(6.41602 - 4.77856i) q^{8} +(-0.0699303 + 0.0699303i) q^{9} +(15.5217 - 5.56554i) q^{10} +(-3.33495 + 8.05128i) q^{11} +(-11.5415 + 3.51804i) q^{12} +(-2.60255 - 6.28312i) q^{13} +(-5.28530 - 0.256084i) q^{14} -24.8695 q^{15} +(-15.7009 - 3.07918i) q^{16} +13.1664i q^{17} +(0.197561 + 0.00957224i) q^{18} +(-26.6062 + 11.0207i) q^{19} +(-29.1055 - 15.5069i) q^{20} +(7.37325 + 3.05410i) q^{21} +(16.4065 - 5.88280i) q^{22} +(-7.99211 - 7.99211i) q^{23} +(20.7233 + 12.3642i) q^{24} +(-30.3876 - 30.3876i) q^{25} +(-5.80715 + 12.2996i) q^{26} +(24.8058 + 10.2749i) q^{27} +(6.72480 + 8.17173i) q^{28} +(-5.63830 + 2.33546i) q^{29} +(33.4275 + 36.8317i) q^{30} -39.2305i q^{31} +(16.5436 + 27.3918i) q^{32} -26.2872 q^{33} +(19.4994 - 17.6971i) q^{34} +(8.34760 + 20.1529i) q^{35} +(-0.251368 - 0.305454i) q^{36} +(-19.0910 + 46.0898i) q^{37} +(52.0834 + 24.5907i) q^{38} +(14.5057 - 14.5057i) q^{39} +(16.1555 + 63.9482i) q^{40} +(-19.5420 + 19.5420i) q^{41} +(-5.38738 - 15.0248i) q^{42} +(-4.86423 + 11.7433i) q^{43} +(-30.7646 - 16.3908i) q^{44} +(-0.312028 - 0.753302i) q^{45} +(-1.09398 + 22.5786i) q^{46} +89.7695 q^{47} +(-9.54307 - 47.3101i) q^{48} -7.00000i q^{49} +(-4.15953 + 85.8484i) q^{50} +(-36.6924 + 15.1985i) q^{51} +(26.0212 - 7.93171i) q^{52} +(-68.5324 - 28.3871i) q^{53} +(-18.1248 - 50.5480i) q^{54} +(-50.8052 - 50.8052i) q^{55} +(3.06341 - 20.9431i) q^{56} +(-61.4253 - 61.4253i) q^{57} +(11.0373 + 5.21118i) q^{58} +(104.176 + 43.1511i) q^{59} +(9.61726 - 99.0121i) q^{60} +(27.7606 - 11.4988i) q^{61} +(-58.1002 + 52.7302i) q^{62} +0.261655i q^{63} +(18.3307 - 61.3187i) q^{64} +56.0703 q^{65} +(35.3330 + 38.9313i) q^{66} +(3.80599 + 9.18847i) q^{67} +(-52.4189 - 5.09156i) q^{68} +(13.0470 - 31.4982i) q^{69} +(18.6263 - 39.4506i) q^{70} +(10.5420 - 10.5420i) q^{71} +(-0.114508 + 0.782841i) q^{72} +(-84.7899 + 84.7899i) q^{73} +(93.9193 - 33.6762i) q^{74} +(49.6073 - 119.763i) q^{75} +(-33.5873 - 110.188i) q^{76} +(8.82345 + 21.3017i) q^{77} +(-40.9803 - 1.98558i) q^{78} -33.0781 q^{79} +(72.9923 - 109.880i) q^{80} +81.8803i q^{81} +(55.2083 + 2.67496i) q^{82} +(51.6399 - 21.3899i) q^{83} +(-15.0105 + 28.1738i) q^{84} +(-100.289 - 41.5413i) q^{85} +(23.9299 - 8.58043i) q^{86} +(-13.0170 - 13.0170i) q^{87} +(17.0764 + 67.5935i) q^{88} +(92.6239 + 92.6239i) q^{89} +(-0.696237 + 1.47464i) q^{90} +(-16.6236 - 6.88571i) q^{91} +(34.9093 - 28.7281i) q^{92} +(109.328 - 45.2853i) q^{93} +(-120.661 - 132.948i) q^{94} -237.433i q^{95} +(-57.2392 + 77.7235i) q^{96} +100.382 q^{97} +(-10.3670 + 9.40881i) q^{98} +(-0.329815 - 0.796243i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192q + O(q^{10}) \) \( 192q + 80q^{10} + 96q^{12} - 20q^{16} - 60q^{18} - 260q^{22} + 64q^{23} - 144q^{24} - 200q^{26} + 192q^{27} - 40q^{30} + 40q^{32} + 120q^{34} + 464q^{36} + 504q^{38} - 384q^{39} + 360q^{40} - 96q^{43} + 52q^{44} + 64q^{46} - 104q^{48} - 312q^{50} - 384q^{51} - 320q^{52} + 160q^{53} - 576q^{54} - 512q^{55} - 196q^{56} - 360q^{58} - 872q^{60} + 128q^{61} - 408q^{62} + 832q^{66} + 160q^{67} + 856q^{68} - 384q^{69} + 336q^{70} + 1488q^{72} + 308q^{74} + 768q^{75} + 1024q^{76} - 224q^{77} - 408q^{78} + 1024q^{79} - 1040q^{80} - 240q^{82} - 1384q^{86} + 896q^{87} - 560q^{88} - 1320q^{90} - 380q^{92} - 936q^{94} - 1088q^{96} - 512q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34412 1.48100i −0.672058 0.740499i
\(3\) 1.15434 + 2.78683i 0.384780 + 0.928942i 0.991027 + 0.133665i \(0.0426745\pi\)
−0.606246 + 0.795277i \(0.707325\pi\)
\(4\) −0.386709 + 3.98126i −0.0966772 + 0.995316i
\(5\) −3.15510 + 7.61708i −0.631020 + 1.52342i 0.207323 + 0.978273i \(0.433525\pi\)
−0.838343 + 0.545144i \(0.816475\pi\)
\(6\) 2.57571 5.45539i 0.429286 0.909232i
\(7\) 1.87083 1.87083i 0.267261 0.267261i
\(8\) 6.41602 4.77856i 0.802003 0.597320i
\(9\) −0.0699303 + 0.0699303i −0.00777004 + 0.00777004i
\(10\) 15.5217 5.56554i 1.55217 0.556554i
\(11\) −3.33495 + 8.05128i −0.303177 + 0.731935i 0.696716 + 0.717347i \(0.254644\pi\)
−0.999894 + 0.0145881i \(0.995356\pi\)
\(12\) −11.5415 + 3.51804i −0.961790 + 0.293170i
\(13\) −2.60255 6.28312i −0.200196 0.483317i 0.791616 0.611019i \(-0.209240\pi\)
−0.991813 + 0.127702i \(0.959240\pi\)
\(14\) −5.28530 0.256084i −0.377522 0.0182917i
\(15\) −24.8695 −1.65797
\(16\) −15.7009 3.07918i −0.981307 0.192449i
\(17\) 13.1664i 0.774494i 0.921976 + 0.387247i \(0.126574\pi\)
−0.921976 + 0.387247i \(0.873426\pi\)
\(18\) 0.197561 + 0.00957224i 0.0109756 + 0.000531791i
\(19\) −26.6062 + 11.0207i −1.40033 + 0.580035i −0.949837 0.312746i \(-0.898751\pi\)
−0.450492 + 0.892781i \(0.648751\pi\)
\(20\) −29.1055 15.5069i −1.45527 0.775343i
\(21\) 7.37325 + 3.05410i 0.351107 + 0.145433i
\(22\) 16.4065 5.88280i 0.745750 0.267400i
\(23\) −7.99211 7.99211i −0.347483 0.347483i 0.511688 0.859171i \(-0.329020\pi\)
−0.859171 + 0.511688i \(0.829020\pi\)
\(24\) 20.7233 + 12.3642i 0.863470 + 0.515177i
\(25\) −30.3876 30.3876i −1.21550 1.21550i
\(26\) −5.80715 + 12.2996i −0.223352 + 0.473062i
\(27\) 24.8058 + 10.2749i 0.918734 + 0.380552i
\(28\) 6.72480 + 8.17173i 0.240171 + 0.291847i
\(29\) −5.63830 + 2.33546i −0.194424 + 0.0805330i −0.477771 0.878484i \(-0.658555\pi\)
0.283347 + 0.959017i \(0.408555\pi\)
\(30\) 33.4275 + 36.8317i 1.11425 + 1.22772i
\(31\) 39.2305i 1.26550i −0.774357 0.632749i \(-0.781926\pi\)
0.774357 0.632749i \(-0.218074\pi\)
\(32\) 16.5436 + 27.3918i 0.516987 + 0.855993i
\(33\) −26.2872 −0.796582
\(34\) 19.4994 17.6971i 0.573512 0.520504i
\(35\) 8.34760 + 20.1529i 0.238503 + 0.575797i
\(36\) −0.251368 0.305454i −0.00698245 0.00848482i
\(37\) −19.0910 + 46.0898i −0.515973 + 1.24567i 0.424385 + 0.905482i \(0.360490\pi\)
−0.940358 + 0.340187i \(0.889510\pi\)
\(38\) 52.0834 + 24.5907i 1.37062 + 0.647125i
\(39\) 14.5057 14.5057i 0.371941 0.371941i
\(40\) 16.1555 + 63.9482i 0.403888 + 1.59870i
\(41\) −19.5420 + 19.5420i −0.476634 + 0.476634i −0.904053 0.427420i \(-0.859423\pi\)
0.427420 + 0.904053i \(0.359423\pi\)
\(42\) −5.38738 15.0248i −0.128271 0.357734i
\(43\) −4.86423 + 11.7433i −0.113122 + 0.273100i −0.970294 0.241931i \(-0.922219\pi\)
0.857172 + 0.515030i \(0.172219\pi\)
\(44\) −30.7646 16.3908i −0.699196 0.372519i
\(45\) −0.312028 0.753302i −0.00693395 0.0167400i
\(46\) −1.09398 + 22.5786i −0.0237822 + 0.490839i
\(47\) 89.7695 1.90999 0.954995 0.296623i \(-0.0958605\pi\)
0.954995 + 0.296623i \(0.0958605\pi\)
\(48\) −9.54307 47.3101i −0.198814 0.985627i
\(49\) 7.00000i 0.142857i
\(50\) −4.15953 + 85.8484i −0.0831907 + 1.71697i
\(51\) −36.6924 + 15.1985i −0.719459 + 0.298010i
\(52\) 26.0212 7.93171i 0.500407 0.152533i
\(53\) −68.5324 28.3871i −1.29306 0.535605i −0.373167 0.927764i \(-0.621728\pi\)
−0.919897 + 0.392159i \(0.871728\pi\)
\(54\) −18.1248 50.5480i −0.335644 0.936074i
\(55\) −50.8052 50.8052i −0.923731 0.923731i
\(56\) 3.06341 20.9431i 0.0547037 0.373985i
\(57\) −61.4253 61.4253i −1.07764 1.07764i
\(58\) 11.0373 + 5.21118i 0.190299 + 0.0898479i
\(59\) 104.176 + 43.1511i 1.76570 + 0.731375i 0.995627 + 0.0934151i \(0.0297784\pi\)
0.770069 + 0.637960i \(0.220222\pi\)
\(60\) 9.61726 99.0121i 0.160288 1.65020i
\(61\) 27.7606 11.4988i 0.455091 0.188505i −0.143349 0.989672i \(-0.545787\pi\)
0.598440 + 0.801167i \(0.295787\pi\)
\(62\) −58.1002 + 52.7302i −0.937100 + 0.850488i
\(63\) 0.261655i 0.00415326i
\(64\) 18.3307 61.3187i 0.286417 0.958105i
\(65\) 56.0703 0.862620
\(66\) 35.3330 + 38.9313i 0.535349 + 0.589868i
\(67\) 3.80599 + 9.18847i 0.0568058 + 0.137141i 0.949734 0.313057i \(-0.101353\pi\)
−0.892928 + 0.450199i \(0.851353\pi\)
\(68\) −52.4189 5.09156i −0.770866 0.0748759i
\(69\) 13.0470 31.4982i 0.189087 0.456496i
\(70\) 18.6263 39.4506i 0.266089 0.563580i
\(71\) 10.5420 10.5420i 0.148479 0.148479i −0.628959 0.777438i \(-0.716519\pi\)
0.777438 + 0.628959i \(0.216519\pi\)
\(72\) −0.114508 + 0.782841i −0.00159039 + 0.0108728i
\(73\) −84.7899 + 84.7899i −1.16151 + 1.16151i −0.177360 + 0.984146i \(0.556756\pi\)
−0.984146 + 0.177360i \(0.943244\pi\)
\(74\) 93.9193 33.6762i 1.26918 0.455084i
\(75\) 49.6073 119.763i 0.661430 1.59683i
\(76\) −33.5873 110.188i −0.441938 1.44985i
\(77\) 8.82345 + 21.3017i 0.114590 + 0.276645i
\(78\) −40.9803 1.98558i −0.525388 0.0254561i
\(79\) −33.0781 −0.418711 −0.209355 0.977840i \(-0.567137\pi\)
−0.209355 + 0.977840i \(0.567137\pi\)
\(80\) 72.9923 109.880i 0.912403 1.37350i
\(81\) 81.8803i 1.01087i
\(82\) 55.2083 + 2.67496i 0.673272 + 0.0326214i
\(83\) 51.6399 21.3899i 0.622167 0.257710i −0.0492538 0.998786i \(-0.515684\pi\)
0.671421 + 0.741076i \(0.265684\pi\)
\(84\) −15.0105 + 28.1738i −0.178696 + 0.335402i
\(85\) −100.289 41.5413i −1.17988 0.488721i
\(86\) 23.9299 8.58043i 0.278254 0.0997724i
\(87\) −13.0170 13.0170i −0.149621 0.149621i
\(88\) 17.0764 + 67.5935i 0.194050 + 0.768108i
\(89\) 92.6239 + 92.6239i 1.04072 + 1.04072i 0.999135 + 0.0415827i \(0.0132400\pi\)
0.0415827 + 0.999135i \(0.486760\pi\)
\(90\) −0.696237 + 1.47464i −0.00773597 + 0.0163849i
\(91\) −16.6236 6.88571i −0.182677 0.0756671i
\(92\) 34.9093 28.7281i 0.379449 0.312262i
\(93\) 109.328 45.2853i 1.17557 0.486939i
\(94\) −120.661 132.948i −1.28362 1.41434i
\(95\) 237.433i 2.49930i
\(96\) −57.2392 + 77.7235i −0.596242 + 0.809620i
\(97\) 100.382 1.03486 0.517432 0.855724i \(-0.326888\pi\)
0.517432 + 0.855724i \(0.326888\pi\)
\(98\) −10.3670 + 9.40881i −0.105786 + 0.0960082i
\(99\) −0.329815 0.796243i −0.00333146 0.00804286i
\(100\) 132.732 109.230i 1.32732 1.09230i
\(101\) −60.9756 + 147.208i −0.603719 + 1.45751i 0.266006 + 0.963971i \(0.414296\pi\)
−0.869725 + 0.493536i \(0.835704\pi\)
\(102\) 71.8278 + 33.9129i 0.704194 + 0.332479i
\(103\) 38.5954 38.5954i 0.374713 0.374713i −0.494478 0.869190i \(-0.664641\pi\)
0.869190 + 0.494478i \(0.164641\pi\)
\(104\) −46.7223 27.8762i −0.449253 0.268040i
\(105\) −46.5266 + 46.5266i −0.443111 + 0.443111i
\(106\) 50.0743 + 139.652i 0.472399 + 1.31747i
\(107\) −17.1525 + 41.4098i −0.160304 + 0.387008i −0.983540 0.180692i \(-0.942166\pi\)
0.823236 + 0.567699i \(0.192166\pi\)
\(108\) −50.4997 + 94.7851i −0.467590 + 0.877640i
\(109\) −51.5394 124.427i −0.472839 1.14153i −0.962903 0.269847i \(-0.913027\pi\)
0.490064 0.871686i \(-0.336973\pi\)
\(110\) −6.95434 + 143.530i −0.0632213 + 1.30482i
\(111\) −150.482 −1.35569
\(112\) −35.1343 + 23.6131i −0.313699 + 0.210831i
\(113\) 50.7176i 0.448829i 0.974494 + 0.224414i \(0.0720469\pi\)
−0.974494 + 0.224414i \(0.927953\pi\)
\(114\) −8.40806 + 173.534i −0.0737549 + 1.52222i
\(115\) 86.0924 35.6607i 0.748630 0.310093i
\(116\) −7.11770 23.3507i −0.0613595 0.201299i
\(117\) 0.621378 + 0.257383i 0.00531092 + 0.00219985i
\(118\) −76.1179 212.285i −0.645067 1.79902i
\(119\) 24.6321 + 24.6321i 0.206992 + 0.206992i
\(120\) −159.563 + 118.841i −1.32970 + 0.990338i
\(121\) 31.8586 + 31.8586i 0.263295 + 0.263295i
\(122\) −54.3431 25.6576i −0.445435 0.210308i
\(123\) −77.0182 31.9020i −0.626164 0.259366i
\(124\) 156.187 + 15.1708i 1.25957 + 0.122345i
\(125\) 136.914 56.7115i 1.09531 0.453692i
\(126\) 0.387511 0.351695i 0.00307548 0.00279123i
\(127\) 98.9396i 0.779052i 0.921015 + 0.389526i \(0.127361\pi\)
−0.921015 + 0.389526i \(0.872639\pi\)
\(128\) −115.451 + 55.2717i −0.901965 + 0.431810i
\(129\) −38.3415 −0.297221
\(130\) −75.3650 83.0400i −0.579730 0.638769i
\(131\) 35.8718 + 86.6021i 0.273830 + 0.661085i 0.999641 0.0268102i \(-0.00853499\pi\)
−0.725810 + 0.687895i \(0.758535\pi\)
\(132\) 10.1655 104.656i 0.0770113 0.792850i
\(133\) −29.1579 + 70.3935i −0.219233 + 0.529274i
\(134\) 8.49242 17.9870i 0.0633763 0.134232i
\(135\) −156.530 + 156.530i −1.15948 + 1.15948i
\(136\) 62.9164 + 84.4759i 0.462621 + 0.621146i
\(137\) −114.310 + 114.310i −0.834378 + 0.834378i −0.988112 0.153734i \(-0.950870\pi\)
0.153734 + 0.988112i \(0.450870\pi\)
\(138\) −64.1855 + 23.0147i −0.465112 + 0.166773i
\(139\) 51.0888 123.339i 0.367546 0.887334i −0.626606 0.779337i \(-0.715556\pi\)
0.994151 0.107997i \(-0.0344437\pi\)
\(140\) −83.4621 + 25.4407i −0.596158 + 0.181719i
\(141\) 103.625 + 250.172i 0.734926 + 1.77427i
\(142\) −29.7823 1.44301i −0.209735 0.0101621i
\(143\) 59.2665 0.414451
\(144\) 1.31330 0.882642i 0.00912012 0.00612946i
\(145\) 50.3159i 0.347007i
\(146\) 239.541 + 11.6063i 1.64069 + 0.0794949i
\(147\) 19.5078 8.08039i 0.132706 0.0549686i
\(148\) −176.113 93.8296i −1.18995 0.633984i
\(149\) 87.3562 + 36.1841i 0.586283 + 0.242846i 0.656051 0.754717i \(-0.272226\pi\)
−0.0697677 + 0.997563i \(0.522226\pi\)
\(150\) −244.046 + 87.5064i −1.62697 + 0.583376i
\(151\) 165.794 + 165.794i 1.09797 + 1.09797i 0.994648 + 0.103323i \(0.0329474\pi\)
0.103323 + 0.994648i \(0.467053\pi\)
\(152\) −118.043 + 197.848i −0.776601 + 1.30163i
\(153\) −0.920730 0.920730i −0.00601784 0.00601784i
\(154\) 19.6880 41.6994i 0.127844 0.270776i
\(155\) 298.821 + 123.776i 1.92788 + 0.798554i
\(156\) 52.1416 + 63.3606i 0.334241 + 0.406157i
\(157\) 85.0925 35.2465i 0.541990 0.224500i −0.0948554 0.995491i \(-0.530239\pi\)
0.636846 + 0.770991i \(0.280239\pi\)
\(158\) 44.4608 + 48.9887i 0.281398 + 0.310055i
\(159\) 223.756i 1.40727i
\(160\) −260.842 + 39.5900i −1.63026 + 0.247437i
\(161\) −29.9037 −0.185737
\(162\) 121.265 110.057i 0.748546 0.679361i
\(163\) 12.1315 + 29.2879i 0.0744262 + 0.179681i 0.956714 0.291029i \(-0.0939978\pi\)
−0.882288 + 0.470710i \(0.843998\pi\)
\(164\) −70.2447 85.3588i −0.428321 0.520480i
\(165\) 82.9387 200.232i 0.502659 1.21353i
\(166\) −101.088 47.7280i −0.608966 0.287518i
\(167\) −38.4030 + 38.4030i −0.229958 + 0.229958i −0.812675 0.582717i \(-0.801990\pi\)
0.582717 + 0.812675i \(0.301990\pi\)
\(168\) 61.9011 15.6383i 0.368459 0.0930854i
\(169\) 86.7968 86.7968i 0.513590 0.513590i
\(170\) 73.2781 + 204.365i 0.431048 + 1.20215i
\(171\) 1.08990 2.63126i 0.00637371 0.0153875i
\(172\) −44.8721 23.9070i −0.260884 0.138994i
\(173\) −9.96034 24.0464i −0.0575742 0.138996i 0.892475 0.451097i \(-0.148967\pi\)
−0.950049 + 0.312101i \(0.898967\pi\)
\(174\) −1.78180 + 36.7746i −0.0102403 + 0.211348i
\(175\) −113.700 −0.649714
\(176\) 77.1531 116.144i 0.438370 0.659907i
\(177\) 340.132i 1.92165i
\(178\) 12.6786 261.673i 0.0712281 1.47007i
\(179\) −27.2072 + 11.2696i −0.151995 + 0.0629585i −0.457384 0.889269i \(-0.651214\pi\)
0.305389 + 0.952228i \(0.401214\pi\)
\(180\) 3.11976 0.950957i 0.0173320 0.00528309i
\(181\) −13.9490 5.77788i −0.0770665 0.0319220i 0.343817 0.939037i \(-0.388280\pi\)
−0.420884 + 0.907115i \(0.638280\pi\)
\(182\) 12.1463 + 33.8746i 0.0667377 + 0.186124i
\(183\) 64.0903 + 64.0903i 0.350220 + 0.350220i
\(184\) −89.4683 13.0868i −0.486241 0.0711238i
\(185\) −290.835 290.835i −1.57208 1.57208i
\(186\) −214.017 101.046i −1.15063 0.543260i
\(187\) −106.006 43.9093i −0.566879 0.234809i
\(188\) −34.7146 + 357.396i −0.184652 + 1.90104i
\(189\) 65.6300 27.1848i 0.347249 0.143835i
\(190\) −351.638 + 319.138i −1.85073 + 1.67967i
\(191\) 62.6742i 0.328137i −0.986449 0.164069i \(-0.947538\pi\)
0.986449 0.164069i \(-0.0524618\pi\)
\(192\) 192.044 19.6982i 1.00023 0.102595i
\(193\) −133.855 −0.693547 −0.346774 0.937949i \(-0.612723\pi\)
−0.346774 + 0.937949i \(0.612723\pi\)
\(194\) −134.925 148.665i −0.695488 0.766316i
\(195\) 64.7242 + 156.258i 0.331919 + 0.801324i
\(196\) 27.8688 + 2.70696i 0.142188 + 0.0138110i
\(197\) 148.756 359.129i 0.755108 1.82299i 0.226796 0.973942i \(-0.427175\pi\)
0.528313 0.849050i \(-0.322825\pi\)
\(198\) −0.735925 + 1.55870i −0.00371679 + 0.00787221i
\(199\) −16.1486 + 16.1486i −0.0811489 + 0.0811489i −0.746516 0.665367i \(-0.768275\pi\)
0.665367 + 0.746516i \(0.268275\pi\)
\(200\) −340.177 49.7585i −1.70088 0.248793i
\(201\) −21.2133 + 21.2133i −0.105539 + 0.105539i
\(202\) 299.973 107.560i 1.48502 0.532475i
\(203\) −6.17904 + 14.9175i −0.0304386 + 0.0734854i
\(204\) −46.3200 151.960i −0.227059 0.744900i
\(205\) −87.1959 210.510i −0.425346 1.02688i
\(206\) −109.036 5.28304i −0.529303 0.0256458i
\(207\) 1.11778 0.00539991
\(208\) 21.5156 + 106.664i 0.103440 + 0.512810i
\(209\) 250.968i 1.20080i
\(210\) 131.443 + 6.36868i 0.625919 + 0.0303271i
\(211\) 339.750 140.729i 1.61019 0.666963i 0.617381 0.786664i \(-0.288194\pi\)
0.992810 + 0.119701i \(0.0381936\pi\)
\(212\) 139.518 261.868i 0.658106 1.23523i
\(213\) 41.5477 + 17.2096i 0.195060 + 0.0807964i
\(214\) 84.3828 30.2567i 0.394312 0.141387i
\(215\) −74.1025 74.1025i −0.344663 0.344663i
\(216\) 208.254 52.6121i 0.964139 0.243575i
\(217\) −73.3935 73.3935i −0.338219 0.338219i
\(218\) −115.001 + 243.574i −0.527530 + 1.11731i
\(219\) −334.171 138.418i −1.52590 0.632047i
\(220\) 221.916 182.622i 1.00871 0.830100i
\(221\) 82.7260 34.2662i 0.374326 0.155051i
\(222\) 202.265 + 222.863i 0.911102 + 1.00389i
\(223\) 108.279i 0.485557i −0.970082 0.242778i \(-0.921941\pi\)
0.970082 0.242778i \(-0.0780588\pi\)
\(224\) 82.1955 + 20.2951i 0.366944 + 0.0906033i
\(225\) 4.25003 0.0188890
\(226\) 75.1127 68.1703i 0.332357 0.301639i
\(227\) 32.1059 + 77.5105i 0.141436 + 0.341456i 0.978686 0.205364i \(-0.0658380\pi\)
−0.837250 + 0.546821i \(0.815838\pi\)
\(228\) 268.304 220.797i 1.17677 0.968407i
\(229\) 63.2537 152.708i 0.276217 0.666847i −0.723507 0.690317i \(-0.757471\pi\)
0.999725 + 0.0234695i \(0.00747127\pi\)
\(230\) −168.531 79.5707i −0.732746 0.345959i
\(231\) −49.1788 + 49.1788i −0.212895 + 0.212895i
\(232\) −25.0153 + 41.9273i −0.107825 + 0.180721i
\(233\) −229.379 + 229.379i −0.984458 + 0.984458i −0.999881 0.0154227i \(-0.995091\pi\)
0.0154227 + 0.999881i \(0.495091\pi\)
\(234\) −0.454019 1.26621i −0.00194025 0.00541116i
\(235\) −283.232 + 683.781i −1.20524 + 2.90971i
\(236\) −212.082 + 398.066i −0.898652 + 1.68672i
\(237\) −38.1834 92.1830i −0.161112 0.388958i
\(238\) 3.37170 69.5884i 0.0141668 0.292388i
\(239\) 417.935 1.74868 0.874340 0.485314i \(-0.161295\pi\)
0.874340 + 0.485314i \(0.161295\pi\)
\(240\) 390.474 + 76.5777i 1.62698 + 0.319074i
\(241\) 92.7748i 0.384958i 0.981301 + 0.192479i \(0.0616527\pi\)
−0.981301 + 0.192479i \(0.938347\pi\)
\(242\) 4.36089 90.0043i 0.0180202 0.371918i
\(243\) −4.93367 + 2.04359i −0.0203032 + 0.00840985i
\(244\) 35.0445 + 114.969i 0.143625 + 0.471183i
\(245\) 53.3196 + 22.0857i 0.217631 + 0.0901457i
\(246\) 56.2745 + 156.944i 0.228758 + 0.637982i
\(247\) 138.488 + 138.488i 0.560681 + 0.560681i
\(248\) −187.465 251.703i −0.755908 1.01493i
\(249\) 119.220 + 119.220i 0.478795 + 0.478795i
\(250\) −268.017 126.542i −1.07207 0.506168i
\(251\) −296.373 122.762i −1.18077 0.489090i −0.296030 0.955179i \(-0.595663\pi\)
−0.884738 + 0.466089i \(0.845663\pi\)
\(252\) −1.04172 0.101184i −0.00413380 0.000401525i
\(253\) 91.0000 37.6935i 0.359684 0.148986i
\(254\) 146.529 132.986i 0.576887 0.523568i
\(255\) 327.442i 1.28409i
\(256\) 237.037 + 96.6918i 0.925927 + 0.377702i
\(257\) −293.963 −1.14383 −0.571913 0.820314i \(-0.693799\pi\)
−0.571913 + 0.820314i \(0.693799\pi\)
\(258\) 51.5354 + 56.7837i 0.199750 + 0.220092i
\(259\) 50.5100 + 121.942i 0.195019 + 0.470819i
\(260\) −21.6829 + 223.231i −0.0833957 + 0.858579i
\(261\) 0.230968 0.557607i 0.000884936 0.00213643i
\(262\) 80.0417 169.529i 0.305503 0.647058i
\(263\) −32.8434 + 32.8434i −0.124880 + 0.124880i −0.766784 0.641905i \(-0.778144\pi\)
0.641905 + 0.766784i \(0.278144\pi\)
\(264\) −168.659 + 125.615i −0.638861 + 0.475814i
\(265\) 432.453 432.453i 1.63190 1.63190i
\(266\) 143.444 51.4341i 0.539264 0.193361i
\(267\) −151.207 + 365.046i −0.566318 + 1.36721i
\(268\) −38.0535 + 11.5994i −0.141991 + 0.0432813i
\(269\) 142.441 + 343.883i 0.529521 + 1.27838i 0.931838 + 0.362876i \(0.118205\pi\)
−0.402317 + 0.915501i \(0.631795\pi\)
\(270\) 442.214 + 21.4262i 1.63783 + 0.0793562i
\(271\) −119.659 −0.441545 −0.220773 0.975325i \(-0.570858\pi\)
−0.220773 + 0.975325i \(0.570858\pi\)
\(272\) 40.5417 206.724i 0.149050 0.760016i
\(273\) 54.2754i 0.198811i
\(274\) 322.938 + 15.6470i 1.17861 + 0.0571059i
\(275\) 346.000 143.318i 1.25818 0.521157i
\(276\) 120.357 + 64.1242i 0.436077 + 0.232334i
\(277\) −49.5680 20.5318i −0.178946 0.0741219i 0.291412 0.956598i \(-0.405875\pi\)
−0.470358 + 0.882476i \(0.655875\pi\)
\(278\) −251.335 + 90.1199i −0.904081 + 0.324172i
\(279\) 2.74340 + 2.74340i 0.00983297 + 0.00983297i
\(280\) 149.860 + 89.4119i 0.535215 + 0.319328i
\(281\) −335.509 335.509i −1.19398 1.19398i −0.975939 0.218045i \(-0.930032\pi\)
−0.218045 0.975939i \(-0.569968\pi\)
\(282\) 231.221 489.728i 0.819931 1.73662i
\(283\) −275.107 113.953i −0.972111 0.402661i −0.160613 0.987017i \(-0.551347\pi\)
−0.811497 + 0.584356i \(0.801347\pi\)
\(284\) 37.8937 + 46.0471i 0.133429 + 0.162138i
\(285\) 661.685 274.079i 2.32170 0.961680i
\(286\) −79.6611 87.7736i −0.278535 0.306901i
\(287\) 73.1194i 0.254771i
\(288\) −3.07241 0.758619i −0.0106681 0.00263409i
\(289\) 115.646 0.400160
\(290\) −74.5178 + 67.6304i −0.256958 + 0.233208i
\(291\) 115.875 + 279.747i 0.398195 + 0.961328i
\(292\) −304.782 370.360i −1.04377 1.26836i
\(293\) −181.294 + 437.683i −0.618751 + 1.49380i 0.234404 + 0.972139i \(0.424686\pi\)
−0.853155 + 0.521658i \(0.825314\pi\)
\(294\) −38.1877 18.0300i −0.129890 0.0613265i
\(295\) −657.372 + 657.372i −2.22838 + 2.22838i
\(296\) 97.7544 + 386.940i 0.330251 + 1.30723i
\(297\) −165.452 + 165.452i −0.557079 + 0.557079i
\(298\) −63.8282 178.010i −0.214188 0.597349i
\(299\) −29.4155 + 71.0152i −0.0983795 + 0.237509i
\(300\) 457.623 + 243.813i 1.52541 + 0.812710i
\(301\) 12.8695 + 31.0698i 0.0427560 + 0.103222i
\(302\) 22.6942 468.385i 0.0751465 1.55095i
\(303\) −480.630 −1.58624
\(304\) 451.677 91.1091i 1.48578 0.299701i
\(305\) 247.734i 0.812243i
\(306\) −0.126032 + 2.60117i −0.000411869 + 0.00850054i
\(307\) 54.1759 22.4404i 0.176469 0.0730957i −0.292700 0.956204i \(-0.594554\pi\)
0.469169 + 0.883109i \(0.344554\pi\)
\(308\) −88.2198 + 26.8909i −0.286428 + 0.0873082i
\(309\) 152.111 + 63.0064i 0.492269 + 0.203904i
\(310\) −218.339 608.923i −0.704318 1.96427i
\(311\) −370.201 370.201i −1.19036 1.19036i −0.976967 0.213390i \(-0.931550\pi\)
−0.213390 0.976967i \(-0.568450\pi\)
\(312\) 23.7525 162.385i 0.0761300 0.520466i
\(313\) 157.592 + 157.592i 0.503490 + 0.503490i 0.912521 0.409031i \(-0.134133\pi\)
−0.409031 + 0.912521i \(0.634133\pi\)
\(314\) −166.574 78.6465i −0.530490 0.250466i
\(315\) −1.99305 0.825548i −0.00632714 0.00262079i
\(316\) 12.7916 131.693i 0.0404798 0.416749i
\(317\) −425.824 + 176.382i −1.34329 + 0.556410i −0.934417 0.356180i \(-0.884079\pi\)
−0.408876 + 0.912590i \(0.634079\pi\)
\(318\) −331.382 + 300.754i −1.04208 + 0.945768i
\(319\) 53.1842i 0.166721i
\(320\) 409.234 + 333.093i 1.27886 + 1.04092i
\(321\) −135.202 −0.421189
\(322\) 40.1941 + 44.2874i 0.124826 + 0.137538i
\(323\) −145.102 350.308i −0.449233 1.08455i
\(324\) −325.987 31.6638i −1.00613 0.0977278i
\(325\) −111.844 + 270.014i −0.344134 + 0.830813i
\(326\) 27.0693 57.3330i 0.0830347 0.175868i
\(327\) 287.263 287.263i 0.878479 0.878479i
\(328\) −31.9992 + 218.764i −0.0975586 + 0.666964i
\(329\) 167.943 167.943i 0.510466 0.510466i
\(330\) −408.022 + 146.302i −1.23643 + 0.443341i
\(331\) 192.166 463.930i 0.580562 1.40160i −0.311742 0.950167i \(-0.600913\pi\)
0.892304 0.451434i \(-0.149087\pi\)
\(332\) 65.1894 + 213.864i 0.196354 + 0.644167i
\(333\) −1.88803 4.55811i −0.00566976 0.0136880i
\(334\) 108.493 + 5.25670i 0.324829 + 0.0157386i
\(335\) −81.9976 −0.244769
\(336\) −106.363 70.6557i −0.316555 0.210285i
\(337\) 26.4780i 0.0785697i 0.999228 + 0.0392849i \(0.0125080\pi\)
−0.999228 + 0.0392849i \(0.987492\pi\)
\(338\) −245.211 11.8810i −0.725475 0.0351508i
\(339\) −141.341 + 58.5454i −0.416936 + 0.172700i
\(340\) 204.169 383.214i 0.600499 1.12710i
\(341\) 315.856 + 130.832i 0.926263 + 0.383670i
\(342\) −5.36185 + 1.92257i −0.0156779 + 0.00562156i
\(343\) −13.0958 13.0958i −0.0381802 0.0381802i
\(344\) 24.9070 + 98.5893i 0.0724042 + 0.286597i
\(345\) 198.760 + 198.760i 0.576116 + 0.576116i
\(346\) −22.2248 + 47.0724i −0.0642335 + 0.136047i
\(347\) −325.739 134.926i −0.938730 0.388835i −0.139746 0.990187i \(-0.544629\pi\)
−0.798984 + 0.601353i \(0.794629\pi\)
\(348\) 56.8580 46.7904i 0.163385 0.134455i
\(349\) 117.463 48.6546i 0.336569 0.139411i −0.207997 0.978129i \(-0.566694\pi\)
0.544566 + 0.838718i \(0.316694\pi\)
\(350\) 152.826 + 168.389i 0.436645 + 0.481113i
\(351\) 182.599i 0.520225i
\(352\) −275.711 + 41.8468i −0.783270 + 0.118883i
\(353\) 634.453 1.79732 0.898658 0.438650i \(-0.144543\pi\)
0.898658 + 0.438650i \(0.144543\pi\)
\(354\) 503.734 457.176i 1.42298 1.29146i
\(355\) 47.0382 + 113.560i 0.132502 + 0.319888i
\(356\) −404.579 + 332.942i −1.13646 + 0.935229i
\(357\) −40.2115 + 97.0790i −0.112637 + 0.271930i
\(358\) 53.2598 + 25.1461i 0.148770 + 0.0702406i
\(359\) −13.1405 + 13.1405i −0.0366031 + 0.0366031i −0.725171 0.688568i \(-0.758240\pi\)
0.688568 + 0.725171i \(0.258240\pi\)
\(360\) −5.60168 3.34216i −0.0155602 0.00928377i
\(361\) 331.171 331.171i 0.917372 0.917372i
\(362\) 10.1921 + 28.4246i 0.0281549 + 0.0785210i
\(363\) −52.0087 + 125.560i −0.143275 + 0.345896i
\(364\) 33.8423 63.5200i 0.0929733 0.174506i
\(365\) −378.331 913.372i −1.03652 2.50239i
\(366\) 8.77284 181.062i 0.0239695 0.494706i
\(367\) −106.732 −0.290824 −0.145412 0.989371i \(-0.546451\pi\)
−0.145412 + 0.989371i \(0.546451\pi\)
\(368\) 100.874 + 150.093i 0.274115 + 0.407860i
\(369\) 2.73315i 0.00740692i
\(370\) −39.8103 + 821.643i −0.107595 + 2.22066i
\(371\) −181.320 + 75.1051i −0.488733 + 0.202440i
\(372\) 138.014 + 452.777i 0.371007 + 1.21714i
\(373\) −461.735 191.257i −1.23790 0.512753i −0.334839 0.942275i \(-0.608682\pi\)
−0.903056 + 0.429522i \(0.858682\pi\)
\(374\) 77.4552 + 216.014i 0.207100 + 0.577578i
\(375\) 316.090 + 316.090i 0.842907 + 0.842907i
\(376\) 575.963 428.969i 1.53182 1.14088i
\(377\) 29.3479 + 29.3479i 0.0778459 + 0.0778459i
\(378\) −128.475 60.6584i −0.339881 0.160472i
\(379\) −83.8393 34.7274i −0.221212 0.0916290i 0.269325 0.963049i \(-0.413199\pi\)
−0.490537 + 0.871420i \(0.663199\pi\)
\(380\) 945.284 + 91.8175i 2.48759 + 0.241625i
\(381\) −275.727 + 114.210i −0.723694 + 0.299764i
\(382\) −92.8204 + 84.2413i −0.242985 + 0.220527i
\(383\) 190.575i 0.497585i −0.968557 0.248792i \(-0.919966\pi\)
0.968557 0.248792i \(-0.0800337\pi\)
\(384\) −287.303 257.941i −0.748185 0.671720i
\(385\) −190.096 −0.493755
\(386\) 179.916 + 198.238i 0.466104 + 0.513571i
\(387\) −0.481055 1.16137i −0.00124304 0.00300096i
\(388\) −38.8185 + 399.646i −0.100048 + 1.03002i
\(389\) 49.0792 118.488i 0.126168 0.304595i −0.848156 0.529746i \(-0.822287\pi\)
0.974324 + 0.225150i \(0.0722873\pi\)
\(390\) 144.421 305.885i 0.370311 0.784322i
\(391\) 105.227 105.227i 0.269123 0.269123i
\(392\) −33.4499 44.9122i −0.0853315 0.114572i
\(393\) −199.937 + 199.937i −0.508745 + 0.508745i
\(394\) −731.816 + 262.404i −1.85740 + 0.665999i
\(395\) 104.365 251.959i 0.264215 0.637871i
\(396\) 3.29760 1.00516i 0.00832726 0.00253830i
\(397\) −14.4280 34.8323i −0.0363425 0.0877387i 0.904666 0.426121i \(-0.140120\pi\)
−0.941009 + 0.338382i \(0.890120\pi\)
\(398\) 45.6217 + 2.21047i 0.114627 + 0.00555393i
\(399\) −229.833 −0.576021
\(400\) 383.544 + 570.682i 0.958861 + 1.42670i
\(401\) 58.9852i 0.147095i 0.997292 + 0.0735477i \(0.0234321\pi\)
−0.997292 + 0.0735477i \(0.976568\pi\)
\(402\) 59.9299 + 2.90373i 0.149079 + 0.00722320i
\(403\) −246.489 + 102.099i −0.611636 + 0.253348i
\(404\) −562.495 299.687i −1.39231 0.741799i
\(405\) −623.689 258.340i −1.53997 0.637877i
\(406\) 30.3982 10.8997i 0.0748723 0.0268466i
\(407\) −307.414 307.414i −0.755317 0.755317i
\(408\) −162.793 + 272.851i −0.399001 + 0.668752i
\(409\) −362.707 362.707i −0.886814 0.886814i 0.107401 0.994216i \(-0.465747\pi\)
−0.994216 + 0.107401i \(0.965747\pi\)
\(410\) −194.563 + 412.086i −0.474544 + 1.00509i
\(411\) −450.514 186.609i −1.09614 0.454037i
\(412\) 138.733 + 168.584i 0.336731 + 0.409184i
\(413\) 275.624 114.167i 0.667371 0.276434i
\(414\) −1.50243 1.65543i −0.00362905 0.00399863i
\(415\) 460.832i 1.11044i
\(416\) 129.050 175.234i 0.310217 0.421235i
\(417\) 402.699 0.965705
\(418\) −371.683 + 337.330i −0.889193 + 0.807009i
\(419\) 138.737 + 334.942i 0.331116 + 0.799384i 0.998504 + 0.0546742i \(0.0174120\pi\)
−0.667389 + 0.744710i \(0.732588\pi\)
\(420\) −167.242 203.227i −0.398196 0.483874i
\(421\) −41.9112 + 101.183i −0.0995516 + 0.240339i −0.965807 0.259263i \(-0.916520\pi\)
0.866255 + 0.499602i \(0.166520\pi\)
\(422\) −665.083 314.013i −1.57603 0.744107i
\(423\) −6.27761 + 6.27761i −0.0148407 + 0.0148407i
\(424\) −575.355 + 145.354i −1.35697 + 0.342817i
\(425\) 400.095 400.095i 0.941400 0.941400i
\(426\) −30.3575 84.6638i −0.0712617 0.198741i
\(427\) 30.4230 73.4475i 0.0712481 0.172008i
\(428\) −158.230 84.3022i −0.369697 0.196968i
\(429\) 68.4138 + 165.165i 0.159473 + 0.385001i
\(430\) −10.1433 + 209.348i −0.0235892 + 0.486856i
\(431\) 469.988 1.09046 0.545230 0.838287i \(-0.316442\pi\)
0.545230 + 0.838287i \(0.316442\pi\)
\(432\) −357.836 237.707i −0.828323 0.550248i
\(433\) 590.818i 1.36448i 0.731130 + 0.682238i \(0.238993\pi\)
−0.731130 + 0.682238i \(0.761007\pi\)
\(434\) −10.0463 + 207.345i −0.0231481 + 0.477753i
\(435\) 140.222 58.0817i 0.322349 0.133521i
\(436\) 515.308 157.075i 1.18190 0.360264i
\(437\) 300.718 + 124.562i 0.688143 + 0.285038i
\(438\) 244.167 + 680.957i 0.557460 + 1.55470i
\(439\) 416.011 + 416.011i 0.947632 + 0.947632i 0.998695 0.0510630i \(-0.0162609\pi\)
−0.0510630 + 0.998695i \(0.516261\pi\)
\(440\) −568.743 83.1915i −1.29260 0.189072i
\(441\) 0.489512 + 0.489512i 0.00111001 + 0.00111001i
\(442\) −161.941 76.4592i −0.366383 0.172985i
\(443\) −154.385 63.9482i −0.348498 0.144353i 0.201566 0.979475i \(-0.435397\pi\)
−0.550064 + 0.835122i \(0.685397\pi\)
\(444\) 58.1926 599.107i 0.131064 1.34934i
\(445\) −997.761 + 413.286i −2.24216 + 0.928733i
\(446\) −160.361 + 145.540i −0.359554 + 0.326322i
\(447\) 285.215i 0.638065i
\(448\) −80.4232 149.010i −0.179516 0.332613i
\(449\) 850.462 1.89412 0.947062 0.321050i \(-0.104036\pi\)
0.947062 + 0.321050i \(0.104036\pi\)
\(450\) −5.71253 6.29428i −0.0126945 0.0139873i
\(451\) −92.1665 222.510i −0.204360 0.493369i
\(452\) −201.920 19.6130i −0.446726 0.0433915i
\(453\) −270.655 + 653.420i −0.597473 + 1.44243i
\(454\) 71.6389 151.732i 0.157795 0.334211i
\(455\) 104.898 104.898i 0.230545 0.230545i
\(456\) −687.631 100.582i −1.50796 0.220574i
\(457\) 338.251 338.251i 0.740156 0.740156i −0.232452 0.972608i \(-0.574675\pi\)
0.972608 + 0.232452i \(0.0746749\pi\)
\(458\) −311.180 + 111.578i −0.679433 + 0.243621i
\(459\) −135.283 + 326.603i −0.294735 + 0.711554i
\(460\) 108.682 + 356.547i 0.236265 + 0.775102i
\(461\) −254.247 613.805i −0.551511 1.33147i −0.916344 0.400392i \(-0.868874\pi\)
0.364833 0.931073i \(-0.381126\pi\)
\(462\) 138.936 + 6.73173i 0.300727 + 0.0145708i
\(463\) 430.775 0.930399 0.465199 0.885206i \(-0.345983\pi\)
0.465199 + 0.885206i \(0.345983\pi\)
\(464\) 95.7177 19.3075i 0.206288 0.0416110i
\(465\) 975.643i 2.09816i
\(466\) 648.021 + 31.3980i 1.39060 + 0.0673776i
\(467\) 739.924 306.487i 1.58442 0.656288i 0.595314 0.803493i \(-0.297028\pi\)
0.989106 + 0.147205i \(0.0470278\pi\)
\(468\) −1.26500 + 2.37434i −0.00270300 + 0.00507337i
\(469\) 24.3104 + 10.0697i 0.0518346 + 0.0214706i
\(470\) 1393.37 499.616i 2.96463 1.06301i
\(471\) 196.451 + 196.451i 0.417094 + 0.417094i
\(472\) 874.597 220.953i 1.85296 0.468121i
\(473\) −78.3266 78.3266i −0.165595 0.165595i
\(474\) −85.1999 + 180.454i −0.179747 + 0.380705i
\(475\) 1143.39 + 473.608i 2.40714 + 0.997070i
\(476\) −107.592 + 88.5413i −0.226034 + 0.186011i
\(477\) 6.77761 2.80738i 0.0142088 0.00588549i
\(478\) −561.752 618.960i −1.17521 1.29490i
\(479\) 211.427i 0.441392i 0.975343 + 0.220696i \(0.0708329\pi\)
−0.975343 + 0.220696i \(0.929167\pi\)
\(480\) −411.431 681.221i −0.857148 1.41921i
\(481\) 339.273 0.705349
\(482\) 137.399 124.700i 0.285061 0.258714i
\(483\) −34.5191 83.3365i −0.0714681 0.172539i
\(484\) −139.158 + 114.518i −0.287516 + 0.236607i
\(485\) −316.714 + 764.616i −0.653020 + 1.57653i
\(486\) 9.65798 + 4.55993i 0.0198724 + 0.00938257i
\(487\) −469.676 + 469.676i −0.964427 + 0.964427i −0.999389 0.0349614i \(-0.988869\pi\)
0.0349614 + 0.999389i \(0.488869\pi\)
\(488\) 123.165 206.432i 0.252387 0.423016i
\(489\) −67.6165 + 67.6165i −0.138275 + 0.138275i
\(490\) −38.9588 108.652i −0.0795077 0.221738i
\(491\) 126.905 306.376i 0.258463 0.623984i −0.740375 0.672194i \(-0.765352\pi\)
0.998837 + 0.0482107i \(0.0153519\pi\)
\(492\) 156.794 294.293i 0.318686 0.598156i
\(493\) −30.7496 74.2360i −0.0623723 0.150580i
\(494\) 18.9566 391.245i 0.0383737 0.791994i
\(495\) 7.10564 0.0143548
\(496\) −120.798 + 615.954i −0.243543 + 1.24184i
\(497\) 39.4445i 0.0793652i
\(498\) 16.3191 336.810i 0.0327694 0.676325i
\(499\) 407.940 168.974i 0.817516 0.338626i 0.0655673 0.997848i \(-0.479114\pi\)
0.751948 + 0.659222i \(0.229114\pi\)
\(500\) 172.838 + 567.020i 0.345675 + 1.13404i
\(501\) −151.353 62.6923i −0.302101 0.125134i
\(502\) 216.549 + 603.933i 0.431373 + 1.20305i
\(503\) −80.4574 80.4574i −0.159955 0.159955i 0.622592 0.782547i \(-0.286080\pi\)
−0.782547 + 0.622592i \(0.786080\pi\)
\(504\) 1.25034 + 1.67879i 0.00248083 + 0.00333093i
\(505\) −928.913 928.913i −1.83943 1.83943i
\(506\) −178.138 84.1065i −0.352052 0.166218i
\(507\) 342.080 + 141.694i 0.674715 + 0.279476i
\(508\) −393.905 38.2608i −0.775403 0.0753166i
\(509\) 717.709 297.285i 1.41004 0.584057i 0.457701 0.889106i \(-0.348673\pi\)
0.952337 + 0.305049i \(0.0986730\pi\)
\(510\) −484.941 + 440.120i −0.950864 + 0.862980i
\(511\) 317.255i 0.620851i
\(512\) −175.405 481.017i −0.342588 0.939486i
\(513\) −773.226 −1.50726
\(514\) 395.121 + 435.359i 0.768717 + 0.847002i
\(515\) 172.212 + 415.757i 0.334392 + 0.807295i
\(516\) 14.8270 152.648i 0.0287345 0.295829i
\(517\) −299.377 + 722.760i −0.579066 + 1.39799i
\(518\) 112.705 238.709i 0.217576 0.460829i
\(519\) 55.5155 55.5155i 0.106966 0.106966i
\(520\) 359.748 267.935i 0.691824 0.515260i
\(521\) 165.478 165.478i 0.317616 0.317616i −0.530235 0.847851i \(-0.677896\pi\)
0.847851 + 0.530235i \(0.177896\pi\)
\(522\) −1.13626 + 0.407424i −0.00217675 + 0.000780507i
\(523\) −144.378 + 348.558i −0.276057 + 0.666460i −0.999719 0.0236943i \(-0.992457\pi\)
0.723663 + 0.690154i \(0.242457\pi\)
\(524\) −358.658 + 109.325i −0.684461 + 0.208636i
\(525\) −131.249 316.862i −0.249997 0.603547i
\(526\) 92.7863 + 4.49569i 0.176400 + 0.00854694i
\(527\) 516.524 0.980120
\(528\) 412.733 + 80.9430i 0.781691 + 0.153301i
\(529\) 401.252i 0.758511i
\(530\) −1221.73 59.1953i −2.30515 0.111689i
\(531\) −10.3026 + 4.26749i −0.0194023 + 0.00803671i
\(532\) −268.979 143.307i −0.505600 0.269374i
\(533\) 173.644 + 71.9255i 0.325785 + 0.134945i
\(534\) 743.872 266.727i 1.39302 0.499488i
\(535\) −261.304 261.304i −0.488419 0.488419i
\(536\) 68.3270 + 40.7663i 0.127476 + 0.0760565i
\(537\) −62.8127 62.8127i −0.116970 0.116970i
\(538\) 317.833 673.174i 0.590768 1.25125i
\(539\) 56.3590 + 23.3447i 0.104562 + 0.0433111i
\(540\) −562.654 683.717i −1.04195 1.26614i
\(541\) 320.276 132.663i 0.592008 0.245218i −0.0665065 0.997786i \(-0.521185\pi\)
0.658514 + 0.752568i \(0.271185\pi\)
\(542\) 160.835 + 177.214i 0.296744 + 0.326964i
\(543\) 45.5431i 0.0838732i
\(544\) −360.651 + 217.819i −0.662961 + 0.400403i
\(545\) 1110.38 2.03740
\(546\) −80.3818 + 72.9524i −0.147219 + 0.133612i
\(547\) −230.161 555.657i −0.420769 1.01583i −0.982121 0.188249i \(-0.939719\pi\)
0.561353 0.827577i \(-0.310281\pi\)
\(548\) −410.893 499.302i −0.749805 0.911135i
\(549\) −1.13719 + 2.74542i −0.00207138 + 0.00500076i
\(550\) −677.318 319.790i −1.23149 0.581436i
\(551\) 124.276 124.276i 0.225545 0.225545i
\(552\) −66.8064 264.439i −0.121026 0.479057i
\(553\) −61.8835 + 61.8835i −0.111905 + 0.111905i
\(554\) 36.2177 + 101.007i 0.0653749 + 0.182323i
\(555\) 474.784 1146.23i 0.855467 2.06528i
\(556\) 471.290 + 251.095i 0.847644 + 0.451609i
\(557\) 357.250 + 862.477i 0.641382 + 1.54843i 0.824817 + 0.565400i \(0.191278\pi\)
−0.183435 + 0.983032i \(0.558722\pi\)
\(558\) 0.375523 7.75041i 0.000672981 0.0138896i
\(559\) 86.4439 0.154640
\(560\) −69.0106 342.123i −0.123233 0.610933i
\(561\) 346.107i 0.616947i
\(562\) −45.9254 + 947.852i −0.0817178 + 1.68657i
\(563\) −536.117 + 222.067i −0.952250 + 0.394435i −0.804076 0.594527i \(-0.797340\pi\)
−0.148174 + 0.988961i \(0.547340\pi\)
\(564\) −1036.07 + 315.813i −1.83701 + 0.559952i
\(565\) −386.320 160.019i −0.683753 0.283220i
\(566\) 201.012 + 560.600i 0.355144 + 0.990459i
\(567\) 153.184 + 153.184i 0.270166 + 0.270166i
\(568\) 17.2621 118.013i 0.0303910 0.207770i
\(569\) −43.2608 43.2608i −0.0760295 0.0760295i 0.668069 0.744099i \(-0.267121\pi\)
−0.744099 + 0.668069i \(0.767121\pi\)
\(570\) −1295.29 611.560i −2.27244 1.07291i
\(571\) −766.876 317.651i −1.34304 0.556306i −0.408694 0.912671i \(-0.634016\pi\)
−0.934347 + 0.356366i \(0.884016\pi\)
\(572\) −22.9189 + 235.956i −0.0400680 + 0.412510i
\(573\) 174.662 72.3474i 0.304820 0.126261i
\(574\) 108.290 98.2809i 0.188658 0.171221i
\(575\) 485.722i 0.844734i
\(576\) 3.00617 + 5.56991i 0.00521904 + 0.00966998i
\(577\) −3.00993 −0.00521652 −0.00260826 0.999997i \(-0.500830\pi\)
−0.00260826 + 0.999997i \(0.500830\pi\)
\(578\) −155.442 171.272i −0.268930 0.296318i
\(579\) −154.514 373.029i −0.266863 0.644265i
\(580\) 200.321 + 19.4576i 0.345381 + 0.0335476i
\(581\) 56.5925 136.626i 0.0974053 0.235157i
\(582\) 258.555 547.622i 0.444252 0.940931i
\(583\) 457.105 457.105i 0.784056 0.784056i
\(584\) −138.840 + 949.188i −0.237740 + 1.62532i
\(585\) −3.92101 + 3.92101i −0.00670259 + 0.00670259i
\(586\) 891.887 319.800i 1.52199 0.545733i
\(587\) −20.6005 + 49.7340i −0.0350945 + 0.0847257i −0.940455 0.339918i \(-0.889601\pi\)
0.905361 + 0.424644i \(0.139601\pi\)
\(588\) 24.6263 + 80.7903i 0.0418815 + 0.137399i
\(589\) 432.346 + 1043.77i 0.734033 + 1.77211i
\(590\) 1857.15 + 89.9827i 3.14771 + 0.152513i
\(591\) 1172.55 1.98400
\(592\) 441.665 664.867i 0.746055 1.12309i
\(593\) 958.109i 1.61570i −0.589389 0.807849i \(-0.700632\pi\)
0.589389 0.807849i \(-0.299368\pi\)
\(594\) 467.422 + 22.6475i 0.786905 + 0.0381272i
\(595\) −265.341 + 109.908i −0.445951 + 0.184719i
\(596\) −177.840 + 333.795i −0.298389 + 0.560059i
\(597\) −63.6444 26.3624i −0.106607 0.0441581i
\(598\) 144.711 51.8884i 0.241992 0.0867699i
\(599\) −501.211 501.211i −0.836746 0.836746i 0.151683 0.988429i \(-0.451531\pi\)
−0.988429 + 0.151683i \(0.951531\pi\)
\(600\) −254.011 1005.45i −0.423352 1.67575i
\(601\) 316.904 + 316.904i 0.527294 + 0.527294i 0.919765 0.392470i \(-0.128379\pi\)
−0.392470 + 0.919765i \(0.628379\pi\)
\(602\) 28.7162 60.8212i 0.0477013 0.101032i
\(603\) −0.908707 0.376399i −0.00150698 0.000624210i
\(604\) −724.182 + 595.954i −1.19898 + 0.986679i
\(605\) −343.187 + 142.153i −0.567251 + 0.234963i
\(606\) 646.022 + 711.812i 1.06604 + 1.17461i
\(607\) 172.500i 0.284184i −0.989853 0.142092i \(-0.954617\pi\)
0.989853 0.142092i \(-0.0453830\pi\)
\(608\) −742.038 546.471i −1.22046 0.898801i
\(609\) −48.7053 −0.0799758
\(610\) 366.894 332.983i 0.601465 0.545874i
\(611\) −233.630 564.032i −0.382373 0.923130i
\(612\) 4.02172 3.30961i 0.00657144 0.00540787i
\(613\) 394.188 951.654i 0.643047 1.55245i −0.179501 0.983758i \(-0.557448\pi\)
0.822548 0.568696i \(-0.192552\pi\)
\(614\) −106.053 50.0719i −0.172724 0.0815503i
\(615\) 486.000 486.000i 0.790243 0.790243i
\(616\) 158.403 + 94.5088i 0.257148 + 0.153423i
\(617\) 227.784 227.784i 0.369181 0.369181i −0.497998 0.867178i \(-0.665931\pi\)
0.867178 + 0.497998i \(0.165931\pi\)
\(618\) −111.142 309.964i −0.179842 0.501560i
\(619\) −249.265 + 601.778i −0.402689 + 0.972177i 0.584322 + 0.811522i \(0.301361\pi\)
−0.987011 + 0.160655i \(0.948639\pi\)
\(620\) −608.341 + 1141.82i −0.981196 + 1.84165i
\(621\) −116.133 280.369i −0.187009 0.451480i
\(622\) −50.6741 + 1045.86i −0.0814696 + 1.68145i
\(623\) 346.567 0.556287
\(624\) −272.419 + 183.087i −0.436568 + 0.293409i
\(625\) 147.449i 0.235918i
\(626\) 21.5716 445.216i 0.0344595 0.711208i
\(627\) 699.403 289.702i 1.11548 0.462045i
\(628\) 107.419 + 352.406i 0.171050 + 0.561155i
\(629\) −606.836 251.360i −0.964763 0.399618i
\(630\) 1.45625 + 4.06133i 0.00231151 + 0.00644656i
\(631\) 151.151 + 151.151i 0.239542 + 0.239542i 0.816660 0.577119i \(-0.195823\pi\)
−0.577119 + 0.816660i \(0.695823\pi\)
\(632\) −212.230 + 158.066i −0.335807 + 0.250104i
\(633\) 784.375 + 784.375i 1.23914 + 1.23914i
\(634\) 833.578 + 393.567i 1.31479 + 0.620767i
\(635\) −753.631 312.164i −1.18682 0.491597i
\(636\) 890.832 + 86.5285i 1.40068 + 0.136051i
\(637\) −43.9818 + 18.2179i −0.0690452 + 0.0285995i
\(638\) −78.7656 + 71.4856i −0.123457 + 0.112046i
\(639\) 1.47441i 0.00230737i
\(640\) −56.7483 1053.79i −0.0886692 1.64655i
\(641\) −410.075 −0.639742 −0.319871 0.947461i \(-0.603640\pi\)
−0.319871 + 0.947461i \(0.603640\pi\)
\(642\) 181.727 + 200.234i 0.283063 + 0.311890i
\(643\) 290.542 + 701.432i 0.451854 + 1.09087i 0.971616 + 0.236562i \(0.0760207\pi\)
−0.519762 + 0.854311i \(0.673979\pi\)
\(644\) 11.5640 119.055i 0.0179566 0.184867i
\(645\) 120.971 292.050i 0.187552 0.452791i
\(646\) −323.771 + 685.751i −0.501194 + 1.06153i
\(647\) 634.076 634.076i 0.980024 0.980024i −0.0197801 0.999804i \(-0.506297\pi\)
0.999804 + 0.0197801i \(0.00629661\pi\)
\(648\) 391.270 + 525.346i 0.603812 + 0.810719i
\(649\) −694.844 + 694.844i −1.07064 + 1.07064i
\(650\) 550.221 197.290i 0.846494 0.303523i
\(651\) 119.814 289.256i 0.184046 0.444325i
\(652\) −121.294 + 36.9727i −0.186034 + 0.0567065i
\(653\) 246.657 + 595.483i 0.377729 + 0.911919i 0.992391 + 0.123128i \(0.0392926\pi\)
−0.614661 + 0.788791i \(0.710707\pi\)
\(654\) −811.550 39.3213i −1.24090 0.0601242i
\(655\) −772.834 −1.17990
\(656\) 367.000 246.654i 0.559451 0.375996i
\(657\) 11.8588i 0.0180499i
\(658\) −474.459 22.9885i −0.721062 0.0349370i
\(659\) −835.228 + 345.963i −1.26742 + 0.524981i −0.912178 0.409794i \(-0.865601\pi\)
−0.355239 + 0.934776i \(0.615601\pi\)
\(660\) 765.102 + 407.632i 1.15925 + 0.617624i
\(661\) 740.861 + 306.875i 1.12082 + 0.464258i 0.864650 0.502374i \(-0.167540\pi\)
0.256168 + 0.966632i \(0.417540\pi\)
\(662\) −945.372 + 338.978i −1.42805 + 0.512051i
\(663\) 190.988 + 190.988i 0.288066 + 0.288066i
\(664\) 229.109 384.003i 0.345044 0.578317i
\(665\) −444.197 444.197i −0.667965 0.667965i
\(666\) −4.21282 + 8.92280i −0.00632556 + 0.0133976i
\(667\) 63.7271 + 26.3966i 0.0955429 + 0.0395752i
\(668\) −138.042 167.743i −0.206649 0.251113i
\(669\) 301.755 124.991i 0.451054 0.186833i
\(670\) 110.214 + 121.438i 0.164499 + 0.181251i
\(671\) 261.856i 0.390247i
\(672\) 38.3227 + 252.492i 0.0570278 + 0.375732i
\(673\) 603.464 0.896677 0.448338 0.893864i \(-0.352016\pi\)
0.448338 + 0.893864i \(0.352016\pi\)
\(674\) 39.2138 35.5895i 0.0581808 0.0528034i
\(675\) −441.560 1066.02i −0.654162 1.57929i
\(676\) 311.996 + 379.126i 0.461532 + 0.560837i
\(677\) −496.442 + 1198.52i −0.733296 + 1.77033i −0.102011 + 0.994783i \(0.532528\pi\)
−0.631285 + 0.775551i \(0.717472\pi\)
\(678\) 276.684 + 130.634i 0.408089 + 0.192676i
\(679\) 187.797 187.797i 0.276579 0.276579i
\(680\) −841.967 + 212.710i −1.23819 + 0.312808i
\(681\) −178.947 + 178.947i −0.262771 + 0.262771i
\(682\) −230.785 643.634i −0.338394 0.943745i
\(683\) 332.336 802.330i 0.486583 1.17471i −0.469846 0.882748i \(-0.655691\pi\)
0.956429 0.291966i \(-0.0943095\pi\)
\(684\) 10.0543 + 5.35673i 0.0146992 + 0.00783147i
\(685\) −510.048 1231.37i −0.744596 1.79761i
\(686\) −1.79259 + 36.9971i −0.00261310 + 0.0539317i
\(687\) 498.587 0.725745
\(688\) 112.533 169.403i 0.163565 0.246225i
\(689\) 504.476i 0.732186i
\(690\) 27.2068 561.519i 0.0394301 0.813796i
\(691\) 1072.19 444.114i 1.55164 0.642712i 0.568032 0.823006i \(-0.307705\pi\)
0.983613 + 0.180294i \(0.0577049\pi\)
\(692\) 99.5867 30.3558i 0.143911 0.0438667i
\(693\) −2.10666 0.872608i −0.00303992 0.00125917i
\(694\) 238.007 + 663.775i 0.342949 + 0.956448i
\(695\) 778.296 + 778.296i 1.11985 + 1.11985i
\(696\) −145.720 21.3149i −0.209368 0.0306248i
\(697\) −257.297 257.297i −0.369150 0.369150i
\(698\) −229.941 108.564i −0.329428 0.155536i
\(699\) −904.020 374.457i −1.29330 0.535704i
\(700\) 43.9688 452.670i 0.0628125 0.646671i
\(701\) −90.0536 + 37.3014i −0.128465 + 0.0532118i −0.445990 0.895038i \(-0.647148\pi\)
0.317525 + 0.948250i \(0.397148\pi\)
\(702\) −270.428 + 245.434i −0.385226 + 0.349621i
\(703\) 1436.67i 2.04363i
\(704\) 432.562 + 352.081i 0.614435 + 0.500115i
\(705\) −2232.52 −3.16670
\(706\) −852.777 939.623i −1.20790 1.33091i
\(707\) 161.326 + 389.476i 0.228184 + 0.550886i
\(708\) −1354.15 131.532i −1.91265 0.185780i
\(709\) 329.626 795.788i 0.464917 1.12241i −0.501437 0.865194i \(-0.667195\pi\)
0.966354 0.257215i \(-0.0828048\pi\)
\(710\) 104.958 222.301i 0.147828 0.313100i
\(711\) 2.31316 2.31316i 0.00325340 0.00325340i
\(712\) 1036.89 + 151.668i 1.45630 + 0.213017i
\(713\) −313.534 + 313.534i −0.439739 + 0.439739i
\(714\) 197.823 70.9323i 0.277063 0.0993450i
\(715\) −186.992 + 451.438i −0.261527 + 0.631382i
\(716\) −34.3459 112.677i −0.0479691 0.157370i
\(717\) 482.439 + 1164.71i 0.672858 + 1.62442i
\(718\) 37.1235 + 1.79871i 0.0517040 + 0.00250516i
\(719\) 216.927 0.301706 0.150853 0.988556i \(-0.451798\pi\)
0.150853 + 0.988556i \(0.451798\pi\)
\(720\) 2.57957 + 12.7883i 0.00358274 + 0.0177615i
\(721\) 144.411i 0.200292i
\(722\) −935.597 45.3316i −1.29584 0.0627861i
\(723\) −258.547 + 107.094i −0.357603 + 0.148124i
\(724\) 28.3975 53.3004i 0.0392230 0.0736193i
\(725\) 242.303 + 100.365i 0.334211 + 0.138435i
\(726\) 255.860 91.7425i 0.352424 0.126367i
\(727\) 552.405 + 552.405i 0.759842 + 0.759842i 0.976293 0.216452i \(-0.0694484\pi\)
−0.216452 + 0.976293i \(0.569448\pi\)
\(728\) −139.561 + 35.2579i −0.191705 + 0.0484311i
\(729\) 509.693 + 509.693i 0.699167 + 0.699167i
\(730\) −844.181 + 1787.98i −1.15641 + 2.44929i
\(731\) −154.617 64.0444i −0.211514 0.0876120i
\(732\) −279.945 + 230.376i −0.382438 + 0.314721i
\(733\) −1066.05 + 441.572i −1.45436 + 0.602417i −0.963233 0.268669i \(-0.913416\pi\)
−0.491131 + 0.871086i \(0.663416\pi\)
\(734\) 143.461 + 158.070i 0.195450 + 0.215355i
\(735\) 174.087i 0.236853i
\(736\) 86.7001 351.136i 0.117799 0.477087i
\(737\) −86.6718 −0.117601
\(738\) −4.04779 + 3.67367i −0.00548481 + 0.00497788i
\(739\) 259.060 + 625.426i 0.350555 + 0.846314i 0.996552 + 0.0829741i \(0.0264419\pi\)
−0.645997 + 0.763340i \(0.723558\pi\)
\(740\) 1270.36 1045.42i 1.71670 1.41273i
\(741\) −226.080 + 545.805i −0.305101 + 0.736579i
\(742\) 354.945 + 167.584i 0.478363 + 0.225855i
\(743\) −891.549 + 891.549i −1.19993 + 1.19993i −0.225744 + 0.974187i \(0.572481\pi\)
−0.974187 + 0.225744i \(0.927519\pi\)
\(744\) 485.055 812.984i 0.651956 1.09272i
\(745\) −551.234 + 551.234i −0.739912 + 0.739912i
\(746\) 337.374 + 940.900i 0.452244 + 1.26126i
\(747\) −2.11539 + 5.10700i −0.00283184 + 0.00683668i
\(748\) 215.808 405.059i 0.288513 0.541523i
\(749\) 45.3813 + 109.560i 0.0605892 + 0.146275i
\(750\) 43.2672 892.990i 0.0576896 1.19065i
\(751\) −1288.46 −1.71566 −0.857830 0.513934i \(-0.828188\pi\)
−0.857830 + 0.513934i \(0.828188\pi\)
\(752\) −1409.46 276.416i −1.87429 0.367575i
\(753\) 967.647i 1.28506i
\(754\) 4.01722 82.9112i 0.00532787 0.109962i
\(755\) −1785.96 + 739.768i −2.36551 + 0.979825i
\(756\) 82.8503 + 271.803i 0.109590 + 0.359528i
\(757\) −44.3420 18.3671i −0.0585760 0.0242630i 0.353203 0.935547i \(-0.385092\pi\)
−0.411779 + 0.911284i \(0.635092\pi\)