Properties

Label 224.3.w.a.43.10
Level 224
Weight 3
Character 224.43
Analytic conductor 6.104
Analytic rank 0
Dimension 192
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(48\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 43.10
Character \(\chi\) \(=\) 224.43
Dual form 224.3.w.a.99.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.70535 - 1.04488i) q^{2} +(0.502742 + 1.21373i) q^{3} +(1.81645 + 3.56377i) q^{4} +(-0.0438594 + 0.105886i) q^{5} +(0.410845 - 2.59514i) q^{6} +(-1.87083 + 1.87083i) q^{7} +(0.626019 - 7.97547i) q^{8} +(5.14358 - 5.14358i) q^{9} +O(q^{10})\) \(q+(-1.70535 - 1.04488i) q^{2} +(0.502742 + 1.21373i) q^{3} +(1.81645 + 3.56377i) q^{4} +(-0.0438594 + 0.105886i) q^{5} +(0.410845 - 2.59514i) q^{6} +(-1.87083 + 1.87083i) q^{7} +(0.626019 - 7.97547i) q^{8} +(5.14358 - 5.14358i) q^{9} +(0.185434 - 0.134745i) q^{10} +(1.37483 - 3.31914i) q^{11} +(-3.41224 + 3.99634i) q^{12} +(5.53835 + 13.3708i) q^{13} +(5.14521 - 1.23563i) q^{14} -0.150567 q^{15} +(-9.40098 + 12.9469i) q^{16} +25.0349i q^{17} +(-14.1460 + 3.39720i) q^{18} +(4.85961 - 2.01292i) q^{19} +(-0.457022 + 0.0360320i) q^{20} +(-3.21122 - 1.33013i) q^{21} +(-5.81267 + 4.22377i) q^{22} +(-1.30671 - 1.30671i) q^{23} +(9.99477 - 3.24979i) q^{24} +(17.6684 + 17.6684i) q^{25} +(4.52599 - 28.5888i) q^{26} +(19.7523 + 8.18168i) q^{27} +(-10.0655 - 3.26894i) q^{28} +(15.1031 - 6.25590i) q^{29} +(0.256769 + 0.157324i) q^{30} +41.0028i q^{31} +(29.5599 - 12.2561i) q^{32} +4.71971 q^{33} +(26.1584 - 42.6933i) q^{34} +(-0.116041 - 0.280148i) q^{35} +(27.6736 + 8.98748i) q^{36} +(-9.38050 + 22.6465i) q^{37} +(-10.3906 - 1.64497i) q^{38} +(-13.4441 + 13.4441i) q^{39} +(0.817033 + 0.416086i) q^{40} +(33.4077 - 33.4077i) q^{41} +(4.08643 + 5.62368i) q^{42} +(4.08867 - 9.87092i) q^{43} +(14.3260 - 1.12947i) q^{44} +(0.319038 + 0.770227i) q^{45} +(0.863046 + 3.59375i) q^{46} +20.9665 q^{47} +(-20.4402 - 4.90129i) q^{48} -7.00000i q^{49} +(-11.6695 - 48.5921i) q^{50} +(-30.3855 + 12.5861i) q^{51} +(-37.5902 + 44.0248i) q^{52} +(71.4971 + 29.6151i) q^{53} +(-25.1358 - 34.5915i) q^{54} +(0.291151 + 0.291151i) q^{55} +(13.7496 + 16.0919i) q^{56} +(4.88626 + 4.88626i) q^{57} +(-32.2927 - 5.11238i) q^{58} +(-84.5124 - 35.0062i) q^{59} +(-0.273497 - 0.536585i) q^{60} +(-35.0338 + 14.5115i) q^{61} +(42.8430 - 69.9243i) q^{62} +19.2455i q^{63} +(-63.2162 - 9.98558i) q^{64} -1.65868 q^{65} +(-8.04877 - 4.93153i) q^{66} +(-34.1693 - 82.4920i) q^{67} +(-89.2186 + 45.4747i) q^{68} +(0.929050 - 2.24292i) q^{69} +(-0.0948298 + 0.599000i) q^{70} +(-26.1620 + 26.1620i) q^{71} +(-37.8025 - 44.2424i) q^{72} +(-22.9027 + 22.9027i) q^{73} +(39.6600 - 28.8188i) q^{74} +(-12.5619 + 30.3272i) q^{75} +(16.0009 + 13.6622i) q^{76} +(3.63746 + 8.78161i) q^{77} +(36.9744 - 8.87946i) q^{78} -120.602 q^{79} +(-0.958570 - 1.56327i) q^{80} -37.3799i q^{81} +(-91.8790 + 22.0649i) q^{82} +(-2.08476 + 0.863534i) q^{83} +(-1.09275 - 13.8602i) q^{84} +(-2.65084 - 1.09801i) q^{85} +(-17.2865 + 12.5612i) q^{86} +(15.1859 + 15.1859i) q^{87} +(-25.6110 - 13.0428i) q^{88} +(49.1699 + 49.1699i) q^{89} +(0.260721 - 1.64686i) q^{90} +(-35.3757 - 14.6531i) q^{91} +(2.28324 - 7.03039i) q^{92} +(-49.7663 + 20.6139i) q^{93} +(-35.7553 - 21.9075i) q^{94} +0.602850i q^{95} +(29.7366 + 29.7160i) q^{96} +123.684 q^{97} +(-7.31415 + 11.9375i) q^{98} +(-10.0007 - 24.1438i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192q + O(q^{10}) \) \( 192q + 80q^{10} + 96q^{12} - 20q^{16} - 60q^{18} - 260q^{22} + 64q^{23} - 144q^{24} - 200q^{26} + 192q^{27} - 40q^{30} + 40q^{32} + 120q^{34} + 464q^{36} + 504q^{38} - 384q^{39} + 360q^{40} - 96q^{43} + 52q^{44} + 64q^{46} - 104q^{48} - 312q^{50} - 384q^{51} - 320q^{52} + 160q^{53} - 576q^{54} - 512q^{55} - 196q^{56} - 360q^{58} - 872q^{60} + 128q^{61} - 408q^{62} + 832q^{66} + 160q^{67} + 856q^{68} - 384q^{69} + 336q^{70} + 1488q^{72} + 308q^{74} + 768q^{75} + 1024q^{76} - 224q^{77} - 408q^{78} + 1024q^{79} - 1040q^{80} - 240q^{82} - 1384q^{86} + 896q^{87} - 560q^{88} - 1320q^{90} - 380q^{92} - 936q^{94} - 1088q^{96} - 512q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.70535 1.04488i −0.852676 0.522440i
\(3\) 0.502742 + 1.21373i 0.167581 + 0.404576i 0.985252 0.171110i \(-0.0547353\pi\)
−0.817671 + 0.575685i \(0.804735\pi\)
\(4\) 1.81645 + 3.56377i 0.454114 + 0.890944i
\(5\) −0.0438594 + 0.105886i −0.00877188 + 0.0211772i −0.928205 0.372070i \(-0.878648\pi\)
0.919433 + 0.393247i \(0.128648\pi\)
\(6\) 0.410845 2.59514i 0.0684742 0.432523i
\(7\) −1.87083 + 1.87083i −0.267261 + 0.267261i
\(8\) 0.626019 7.97547i 0.0782523 0.996934i
\(9\) 5.14358 5.14358i 0.571509 0.571509i
\(10\) 0.185434 0.134745i 0.0185434 0.0134745i
\(11\) 1.37483 3.31914i 0.124985 0.301740i −0.848985 0.528416i \(-0.822786\pi\)
0.973970 + 0.226677i \(0.0727860\pi\)
\(12\) −3.41224 + 3.99634i −0.284353 + 0.333028i
\(13\) 5.53835 + 13.3708i 0.426027 + 1.02852i 0.980535 + 0.196342i \(0.0629064\pi\)
−0.554508 + 0.832178i \(0.687094\pi\)
\(14\) 5.14521 1.23563i 0.367515 0.0882595i
\(15\) −0.150567 −0.0100378
\(16\) −9.40098 + 12.9469i −0.587561 + 0.809180i
\(17\) 25.0349i 1.47264i 0.676634 + 0.736319i \(0.263438\pi\)
−0.676634 + 0.736319i \(0.736562\pi\)
\(18\) −14.1460 + 3.39720i −0.785891 + 0.188733i
\(19\) 4.85961 2.01292i 0.255769 0.105943i −0.251115 0.967957i \(-0.580797\pi\)
0.506884 + 0.862014i \(0.330797\pi\)
\(20\) −0.457022 + 0.0360320i −0.0228511 + 0.00180160i
\(21\) −3.21122 1.33013i −0.152915 0.0633395i
\(22\) −5.81267 + 4.22377i −0.264212 + 0.191989i
\(23\) −1.30671 1.30671i −0.0568134 0.0568134i 0.678129 0.734943i \(-0.262791\pi\)
−0.734943 + 0.678129i \(0.762791\pi\)
\(24\) 9.99477 3.24979i 0.416449 0.135408i
\(25\) 17.6684 + 17.6684i 0.706735 + 0.706735i
\(26\) 4.52599 28.5888i 0.174077 1.09957i
\(27\) 19.7523 + 8.18168i 0.731568 + 0.303025i
\(28\) −10.0655 3.26894i −0.359482 0.116748i
\(29\) 15.1031 6.25590i 0.520796 0.215721i −0.106771 0.994284i \(-0.534051\pi\)
0.627566 + 0.778563i \(0.284051\pi\)
\(30\) 0.256769 + 0.157324i 0.00855897 + 0.00524413i
\(31\) 41.0028i 1.32267i 0.750090 + 0.661336i \(0.230010\pi\)
−0.750090 + 0.661336i \(0.769990\pi\)
\(32\) 29.5599 12.2561i 0.923747 0.383003i
\(33\) 4.71971 0.143022
\(34\) 26.1584 42.6933i 0.769365 1.25568i
\(35\) −0.116041 0.280148i −0.00331546 0.00800423i
\(36\) 27.6736 + 8.98748i 0.768712 + 0.249652i
\(37\) −9.38050 + 22.6465i −0.253527 + 0.612069i −0.998484 0.0550441i \(-0.982470\pi\)
0.744957 + 0.667113i \(0.232470\pi\)
\(38\) −10.3906 1.64497i −0.273437 0.0432888i
\(39\) −13.4441 + 13.4441i −0.344720 + 0.344720i
\(40\) 0.817033 + 0.416086i 0.0204258 + 0.0104021i
\(41\) 33.4077 33.4077i 0.814823 0.814823i −0.170530 0.985353i \(-0.554548\pi\)
0.985353 + 0.170530i \(0.0545479\pi\)
\(42\) 4.08643 + 5.62368i 0.0972961 + 0.133897i
\(43\) 4.08867 9.87092i 0.0950853 0.229556i −0.869179 0.494497i \(-0.835352\pi\)
0.964265 + 0.264941i \(0.0853523\pi\)
\(44\) 14.3260 1.12947i 0.325590 0.0256698i
\(45\) 0.319038 + 0.770227i 0.00708974 + 0.0171162i
\(46\) 0.863046 + 3.59375i 0.0187619 + 0.0781250i
\(47\) 20.9665 0.446097 0.223048 0.974807i \(-0.428399\pi\)
0.223048 + 0.974807i \(0.428399\pi\)
\(48\) −20.4402 4.90129i −0.425838 0.102110i
\(49\) 7.00000i 0.142857i
\(50\) −11.6695 48.5921i −0.233390 0.971843i
\(51\) −30.3855 + 12.5861i −0.595794 + 0.246786i
\(52\) −37.5902 + 44.0248i −0.722889 + 0.846631i
\(53\) 71.4971 + 29.6151i 1.34900 + 0.558775i 0.936014 0.351962i \(-0.114485\pi\)
0.412987 + 0.910737i \(0.364485\pi\)
\(54\) −25.1358 34.5915i −0.465478 0.640583i
\(55\) 0.291151 + 0.291151i 0.00529365 + 0.00529365i
\(56\) 13.7496 + 16.0919i 0.245528 + 0.287356i
\(57\) 4.88626 + 4.88626i 0.0857239 + 0.0857239i
\(58\) −32.2927 5.11238i −0.556771 0.0881445i
\(59\) −84.5124 35.0062i −1.43241 0.593325i −0.474467 0.880273i \(-0.657359\pi\)
−0.957946 + 0.286948i \(0.907359\pi\)
\(60\) −0.273497 0.536585i −0.00455829 0.00894309i
\(61\) −35.0338 + 14.5115i −0.574324 + 0.237893i −0.650891 0.759172i \(-0.725604\pi\)
0.0765663 + 0.997064i \(0.475604\pi\)
\(62\) 42.8430 69.9243i 0.691017 1.12781i
\(63\) 19.2455i 0.305484i
\(64\) −63.2162 9.98558i −0.987753 0.156025i
\(65\) −1.65868 −0.0255182
\(66\) −8.04877 4.93153i −0.121951 0.0747201i
\(67\) −34.1693 82.4920i −0.509989 1.23122i −0.943889 0.330262i \(-0.892863\pi\)
0.433900 0.900961i \(-0.357137\pi\)
\(68\) −89.2186 + 45.4747i −1.31204 + 0.668746i
\(69\) 0.929050 2.24292i 0.0134645 0.0325062i
\(70\) −0.0948298 + 0.599000i −0.00135471 + 0.00855714i
\(71\) −26.1620 + 26.1620i −0.368478 + 0.368478i −0.866922 0.498444i \(-0.833905\pi\)
0.498444 + 0.866922i \(0.333905\pi\)
\(72\) −37.8025 44.2424i −0.525034 0.614478i
\(73\) −22.9027 + 22.9027i −0.313735 + 0.313735i −0.846355 0.532620i \(-0.821208\pi\)
0.532620 + 0.846355i \(0.321208\pi\)
\(74\) 39.6600 28.8188i 0.535945 0.389444i
\(75\) −12.5619 + 30.3272i −0.167493 + 0.404363i
\(76\) 16.0009 + 13.6622i 0.210538 + 0.179766i
\(77\) 3.63746 + 8.78161i 0.0472398 + 0.114047i
\(78\) 36.9744 8.87946i 0.474030 0.113839i
\(79\) −120.602 −1.52661 −0.763305 0.646038i \(-0.776425\pi\)
−0.763305 + 0.646038i \(0.776425\pi\)
\(80\) −0.958570 1.56327i −0.0119821 0.0195409i
\(81\) 37.3799i 0.461480i
\(82\) −91.8790 + 22.0649i −1.12048 + 0.269084i
\(83\) −2.08476 + 0.863534i −0.0251175 + 0.0104040i −0.395207 0.918592i \(-0.629327\pi\)
0.370089 + 0.928996i \(0.379327\pi\)
\(84\) −1.09275 13.8602i −0.0130089 0.165002i
\(85\) −2.65084 1.09801i −0.0311864 0.0129178i
\(86\) −17.2865 + 12.5612i −0.201006 + 0.146061i
\(87\) 15.1859 + 15.1859i 0.174551 + 0.174551i
\(88\) −25.6110 13.0428i −0.291034 0.148213i
\(89\) 49.1699 + 49.1699i 0.552470 + 0.552470i 0.927153 0.374683i \(-0.122248\pi\)
−0.374683 + 0.927153i \(0.622248\pi\)
\(90\) 0.260721 1.64686i 0.00289690 0.0182985i
\(91\) −35.3757 14.6531i −0.388744 0.161023i
\(92\) 2.28324 7.03039i 0.0248178 0.0764173i
\(93\) −49.7663 + 20.6139i −0.535121 + 0.221654i
\(94\) −35.7553 21.9075i −0.380376 0.233059i
\(95\) 0.602850i 0.00634579i
\(96\) 29.7366 + 29.7160i 0.309756 + 0.309542i
\(97\) 123.684 1.27510 0.637548 0.770411i \(-0.279949\pi\)
0.637548 + 0.770411i \(0.279949\pi\)
\(98\) −7.31415 + 11.9375i −0.0746342 + 0.121811i
\(99\) −10.0007 24.1438i −0.101017 0.243877i
\(100\) −30.8723 + 95.0600i −0.308723 + 0.950600i
\(101\) 30.7964 74.3490i 0.304915 0.736129i −0.694940 0.719068i \(-0.744569\pi\)
0.999854 0.0170611i \(-0.00543098\pi\)
\(102\) 64.9689 + 10.2855i 0.636950 + 0.100838i
\(103\) 19.7466 19.7466i 0.191715 0.191715i −0.604722 0.796437i \(-0.706716\pi\)
0.796437 + 0.604722i \(0.206716\pi\)
\(104\) 110.105 35.8006i 1.05870 0.344237i
\(105\) 0.281684 0.281684i 0.00268271 0.00268271i
\(106\) −90.9836 125.210i −0.858336 1.18123i
\(107\) 25.0630 60.5074i 0.234234 0.565490i −0.762434 0.647067i \(-0.775996\pi\)
0.996667 + 0.0815768i \(0.0259956\pi\)
\(108\) 6.72154 + 85.2545i 0.0622365 + 0.789394i
\(109\) −63.4258 153.123i −0.581888 1.40480i −0.891099 0.453809i \(-0.850065\pi\)
0.309211 0.950994i \(-0.399935\pi\)
\(110\) −0.192297 0.800732i −0.00174816 0.00727938i
\(111\) −32.2027 −0.290114
\(112\) −6.63375 41.8090i −0.0592299 0.373295i
\(113\) 115.255i 1.01996i −0.860188 0.509978i \(-0.829654\pi\)
0.860188 0.509978i \(-0.170346\pi\)
\(114\) −3.22725 13.4384i −0.0283092 0.117880i
\(115\) 0.195674 0.0810506i 0.00170151 0.000704788i
\(116\) 49.7287 + 42.4604i 0.428696 + 0.366038i
\(117\) 97.2605 + 40.2866i 0.831287 + 0.344330i
\(118\) 107.546 + 148.003i 0.911408 + 1.25426i
\(119\) −46.8359 46.8359i −0.393579 0.393579i
\(120\) −0.0942575 + 1.20084i −0.000785479 + 0.0100070i
\(121\) 76.4334 + 76.4334i 0.631681 + 0.631681i
\(122\) 74.9077 + 11.8589i 0.613997 + 0.0972041i
\(123\) 57.3433 + 23.7524i 0.466206 + 0.193109i
\(124\) −146.125 + 74.4798i −1.17843 + 0.600644i
\(125\) −5.29291 + 2.19239i −0.0423433 + 0.0175391i
\(126\) 20.1092 32.8204i 0.159597 0.260479i
\(127\) 233.128i 1.83565i 0.396979 + 0.917827i \(0.370058\pi\)
−0.396979 + 0.917827i \(0.629942\pi\)
\(128\) 97.3722 + 83.0822i 0.760720 + 0.649080i
\(129\) 14.0361 0.108807
\(130\) 2.82864 + 1.73313i 0.0217588 + 0.0133317i
\(131\) −36.9624 89.2351i −0.282156 0.681184i 0.717730 0.696322i \(-0.245181\pi\)
−0.999885 + 0.0151377i \(0.995181\pi\)
\(132\) 8.57314 + 16.8200i 0.0649481 + 0.127424i
\(133\) −5.32568 + 12.8573i −0.0400427 + 0.0966716i
\(134\) −27.9235 + 176.381i −0.208384 + 1.31627i
\(135\) −1.73265 + 1.73265i −0.0128344 + 0.0128344i
\(136\) 199.665 + 15.6723i 1.46812 + 0.115237i
\(137\) 154.978 154.978i 1.13123 1.13123i 0.141253 0.989973i \(-0.454887\pi\)
0.989973 0.141253i \(-0.0451132\pi\)
\(138\) −3.92794 + 2.85423i −0.0284634 + 0.0206828i
\(139\) 39.9820 96.5251i 0.287640 0.694425i −0.712332 0.701843i \(-0.752361\pi\)
0.999972 + 0.00741717i \(0.00236098\pi\)
\(140\) 0.787601 0.922420i 0.00562572 0.00658872i
\(141\) 10.5408 + 25.4477i 0.0747572 + 0.180480i
\(142\) 71.9515 17.2793i 0.506700 0.121685i
\(143\) 51.9937 0.363592
\(144\) 18.2386 + 114.948i 0.126657 + 0.798250i
\(145\) 1.87358i 0.0129213i
\(146\) 62.9877 15.1266i 0.431422 0.103607i
\(147\) 8.49609 3.51919i 0.0577965 0.0239401i
\(148\) −97.7464 + 7.70641i −0.660449 + 0.0520703i
\(149\) −212.248 87.9158i −1.42448 0.590039i −0.468498 0.883465i \(-0.655205\pi\)
−0.955982 + 0.293426i \(0.905205\pi\)
\(150\) 53.1108 38.5929i 0.354072 0.257286i
\(151\) 11.1880 + 11.1880i 0.0740926 + 0.0740926i 0.743182 0.669089i \(-0.233316\pi\)
−0.669089 + 0.743182i \(0.733316\pi\)
\(152\) −13.0118 40.0178i −0.0856036 0.263275i
\(153\) 128.769 + 128.769i 0.841626 + 0.841626i
\(154\) 2.97257 18.7765i 0.0193024 0.121925i
\(155\) −4.34163 1.79836i −0.0280105 0.0116023i
\(156\) −72.3323 23.4911i −0.463669 0.150584i
\(157\) −259.059 + 107.306i −1.65006 + 0.683477i −0.997255 0.0740493i \(-0.976408\pi\)
−0.652805 + 0.757526i \(0.726408\pi\)
\(158\) 205.669 + 126.015i 1.30170 + 0.797562i
\(159\) 101.667i 0.639413i
\(160\) 0.00126782 + 3.66752i 7.92390e−6 + 0.0229220i
\(161\) 4.88926 0.0303680
\(162\) −39.0574 + 63.7458i −0.241095 + 0.393493i
\(163\) −66.0630 159.490i −0.405295 0.978468i −0.986359 0.164610i \(-0.947363\pi\)
0.581064 0.813858i \(-0.302637\pi\)
\(164\) 179.741 + 58.3740i 1.09598 + 0.355939i
\(165\) −0.207004 + 0.499751i −0.00125457 + 0.00302879i
\(166\) 4.45753 + 0.705688i 0.0268526 + 0.00425113i
\(167\) 97.9708 97.9708i 0.586652 0.586652i −0.350071 0.936723i \(-0.613843\pi\)
0.936723 + 0.350071i \(0.113843\pi\)
\(168\) −12.6187 + 24.7783i −0.0751113 + 0.147490i
\(169\) −28.6030 + 28.6030i −0.169248 + 0.169248i
\(170\) 3.37333 + 4.64231i 0.0198431 + 0.0273077i
\(171\) 14.6422 35.3494i 0.0856269 0.206722i
\(172\) 42.6046 3.35898i 0.247701 0.0195290i
\(173\) 28.5637 + 68.9588i 0.165108 + 0.398606i 0.984680 0.174370i \(-0.0557889\pi\)
−0.819572 + 0.572976i \(0.805789\pi\)
\(174\) −10.0299 41.7648i −0.0576430 0.240027i
\(175\) −66.1090 −0.377766
\(176\) 30.0477 + 49.0029i 0.170725 + 0.278426i
\(177\) 120.174i 0.678949i
\(178\) −32.4754 135.229i −0.182446 0.759711i
\(179\) −147.104 + 60.9323i −0.821808 + 0.340404i −0.753654 0.657271i \(-0.771711\pi\)
−0.0681533 + 0.997675i \(0.521711\pi\)
\(180\) −2.16540 + 2.53606i −0.0120300 + 0.0140892i
\(181\) 51.6031 + 21.3747i 0.285100 + 0.118092i 0.520651 0.853770i \(-0.325689\pi\)
−0.235551 + 0.971862i \(0.575689\pi\)
\(182\) 45.0174 + 61.9521i 0.247348 + 0.340396i
\(183\) −35.2259 35.2259i −0.192491 0.192491i
\(184\) −11.2396 + 9.60359i −0.0610850 + 0.0521934i
\(185\) −1.98653 1.98653i −0.0107380 0.0107380i
\(186\) 106.408 + 16.8458i 0.572086 + 0.0905690i
\(187\) 83.0942 + 34.4187i 0.444354 + 0.184057i
\(188\) 38.0848 + 74.7200i 0.202579 + 0.397447i
\(189\) −52.2598 + 21.6467i −0.276507 + 0.114533i
\(190\) 0.629905 1.02807i 0.00331529 0.00541090i
\(191\) 92.5743i 0.484682i 0.970191 + 0.242341i \(0.0779153\pi\)
−0.970191 + 0.242341i \(0.922085\pi\)
\(192\) −19.6617 81.7474i −0.102405 0.425768i
\(193\) −82.3723 −0.426800 −0.213400 0.976965i \(-0.568454\pi\)
−0.213400 + 0.976965i \(0.568454\pi\)
\(194\) −210.925 129.235i −1.08724 0.666160i
\(195\) −0.833891 2.01319i −0.00427636 0.0103241i
\(196\) 24.9464 12.7152i 0.127278 0.0648734i
\(197\) 13.2647 32.0238i 0.0673334 0.162557i −0.886631 0.462478i \(-0.846960\pi\)
0.953964 + 0.299921i \(0.0969603\pi\)
\(198\) −8.17265 + 51.6232i −0.0412760 + 0.260723i
\(199\) 240.256 240.256i 1.20732 1.20732i 0.235422 0.971893i \(-0.424353\pi\)
0.971893 0.235422i \(-0.0756472\pi\)
\(200\) 151.974 129.853i 0.759872 0.649264i
\(201\) 82.9444 82.9444i 0.412659 0.412659i
\(202\) −130.204 + 94.6128i −0.644576 + 0.468380i
\(203\) −16.5516 + 39.9590i −0.0815348 + 0.196842i
\(204\) −100.048 85.4250i −0.490430 0.418750i
\(205\) 2.07217 + 5.00265i 0.0101081 + 0.0244032i
\(206\) −54.3078 + 13.0421i −0.263630 + 0.0633112i
\(207\) −13.4423 −0.0649387
\(208\) −225.176 53.9940i −1.08257 0.259587i
\(209\) 18.8971i 0.0904170i
\(210\) −0.774697 + 0.186045i −0.00368903 + 0.000885928i
\(211\) −14.5042 + 6.00783i −0.0687402 + 0.0284731i −0.416789 0.909003i \(-0.636844\pi\)
0.348048 + 0.937477i \(0.386844\pi\)
\(212\) 24.3298 + 308.594i 0.114763 + 1.45563i
\(213\) −44.9062 18.6008i −0.210827 0.0873275i
\(214\) −105.964 + 76.9987i −0.495160 + 0.359807i
\(215\) 0.865865 + 0.865865i 0.00402728 + 0.00402728i
\(216\) 77.6181 152.412i 0.359343 0.705612i
\(217\) −76.7093 76.7093i −0.353499 0.353499i
\(218\) −51.8322 + 327.402i −0.237762 + 1.50184i
\(219\) −39.3117 16.2834i −0.179506 0.0743536i
\(220\) −0.508734 + 1.56646i −0.00231243 + 0.00712026i
\(221\) −334.735 + 138.652i −1.51464 + 0.627384i
\(222\) 54.9169 + 33.6479i 0.247374 + 0.151567i
\(223\) 105.709i 0.474030i 0.971506 + 0.237015i \(0.0761690\pi\)
−0.971506 + 0.237015i \(0.923831\pi\)
\(224\) −32.3725 + 78.2306i −0.144520 + 0.349244i
\(225\) 181.757 0.807811
\(226\) −120.427 + 196.550i −0.532865 + 0.869692i
\(227\) −78.8701 190.409i −0.347445 0.838807i −0.996920 0.0784239i \(-0.975011\pi\)
0.649475 0.760383i \(-0.274989\pi\)
\(228\) −8.53787 + 26.2892i −0.0374468 + 0.115304i
\(229\) −26.3996 + 63.7343i −0.115282 + 0.278316i −0.970980 0.239160i \(-0.923128\pi\)
0.855698 + 0.517475i \(0.173128\pi\)
\(230\) −0.418380 0.0662353i −0.00181905 0.000287980i
\(231\) −8.82977 + 8.82977i −0.0382241 + 0.0382241i
\(232\) −40.4389 124.370i −0.174306 0.536080i
\(233\) −289.049 + 289.049i −1.24055 + 1.24055i −0.280780 + 0.959772i \(0.590593\pi\)
−0.959772 + 0.280780i \(0.909407\pi\)
\(234\) −123.769 170.328i −0.528927 0.727899i
\(235\) −0.919580 + 2.22006i −0.00391311 + 0.00944707i
\(236\) −28.7588 364.770i −0.121859 1.54564i
\(237\) −60.6318 146.378i −0.255830 0.617629i
\(238\) 30.9339 + 128.810i 0.129974 + 0.541217i
\(239\) −125.138 −0.523592 −0.261796 0.965123i \(-0.584315\pi\)
−0.261796 + 0.965123i \(0.584315\pi\)
\(240\) 1.41547 1.94937i 0.00589781 0.00812236i
\(241\) 11.1031i 0.0460710i −0.999735 0.0230355i \(-0.992667\pi\)
0.999735 0.0230355i \(-0.00733308\pi\)
\(242\) −50.4822 210.210i −0.208604 0.868635i
\(243\) 223.140 92.4276i 0.918271 0.380360i
\(244\) −115.353 98.4931i −0.472758 0.403660i
\(245\) 0.741202 + 0.307016i 0.00302531 + 0.00125313i
\(246\) −72.9722 100.423i −0.296635 0.408224i
\(247\) 53.8285 + 53.8285i 0.217929 + 0.217929i
\(248\) 327.017 + 25.6685i 1.31862 + 0.103502i
\(249\) −2.09619 2.09619i −0.00841843 0.00841843i
\(250\) 11.3171 + 1.79164i 0.0452682 + 0.00716658i
\(251\) 212.454 + 88.0014i 0.846431 + 0.350603i 0.763386 0.645943i \(-0.223535\pi\)
0.0830451 + 0.996546i \(0.473535\pi\)
\(252\) −68.5867 + 34.9586i −0.272169 + 0.138725i
\(253\) −6.13365 + 2.54064i −0.0242437 + 0.0100421i
\(254\) 243.591 397.566i 0.959019 1.56522i
\(255\) 3.76941i 0.0147820i
\(256\) −79.2430 243.427i −0.309543 0.950885i
\(257\) 11.5021 0.0447553 0.0223777 0.999750i \(-0.492876\pi\)
0.0223777 + 0.999750i \(0.492876\pi\)
\(258\) −23.9366 14.6661i −0.0927774 0.0568453i
\(259\) −24.8185 59.9171i −0.0958242 0.231340i
\(260\) −3.01293 5.91118i −0.0115882 0.0227353i
\(261\) 45.5062 109.862i 0.174353 0.420926i
\(262\) −30.2060 + 190.799i −0.115290 + 0.728239i
\(263\) −126.388 + 126.388i −0.480563 + 0.480563i −0.905312 0.424748i \(-0.860363\pi\)
0.424748 + 0.905312i \(0.360363\pi\)
\(264\) 2.95463 37.6419i 0.0111918 0.142583i
\(265\) −6.27164 + 6.27164i −0.0236666 + 0.0236666i
\(266\) 22.5165 16.3616i 0.0846486 0.0615097i
\(267\) −34.9590 + 84.3985i −0.130933 + 0.316099i
\(268\) 231.916 271.615i 0.865358 1.01349i
\(269\) −45.8563 110.707i −0.170470 0.411550i 0.815437 0.578846i \(-0.196497\pi\)
−0.985907 + 0.167295i \(0.946497\pi\)
\(270\) 4.76519 1.14437i 0.0176489 0.00423841i
\(271\) 318.563 1.17551 0.587755 0.809039i \(-0.300012\pi\)
0.587755 + 0.809039i \(0.300012\pi\)
\(272\) −324.123 235.352i −1.19163 0.865266i
\(273\) 50.3032i 0.184261i
\(274\) −426.226 + 102.359i −1.55557 + 0.373573i
\(275\) 82.9348 34.3527i 0.301581 0.124919i
\(276\) 9.68085 0.763247i 0.0350756 0.00276539i
\(277\) −66.2492 27.4413i −0.239167 0.0990661i 0.259881 0.965641i \(-0.416317\pi\)
−0.499048 + 0.866575i \(0.666317\pi\)
\(278\) −169.041 + 122.833i −0.608060 + 0.441845i
\(279\) 210.901 + 210.901i 0.755919 + 0.755919i
\(280\) −2.30695 + 0.750104i −0.00823912 + 0.00267894i
\(281\) 119.493 + 119.493i 0.425243 + 0.425243i 0.887004 0.461761i \(-0.152782\pi\)
−0.461761 + 0.887004i \(0.652782\pi\)
\(282\) 8.61401 54.4110i 0.0305461 0.192947i
\(283\) 479.828 + 198.751i 1.69550 + 0.702301i 0.999870 0.0160962i \(-0.00512379\pi\)
0.695633 + 0.718397i \(0.255124\pi\)
\(284\) −140.757 45.7133i −0.495624 0.160962i
\(285\) −0.731695 + 0.303078i −0.00256735 + 0.00106343i
\(286\) −88.6676 54.3272i −0.310027 0.189955i
\(287\) 125.000i 0.435541i
\(288\) 89.0036 215.084i 0.309040 0.746819i
\(289\) −337.744 −1.16867
\(290\) 1.95767 3.19512i 0.00675058 0.0110177i
\(291\) 62.1813 + 150.119i 0.213681 + 0.515872i
\(292\) −123.222 40.0183i −0.421992 0.137049i
\(293\) 68.8973 166.333i 0.235144 0.567688i −0.761624 0.648019i \(-0.775598\pi\)
0.996768 + 0.0803308i \(0.0255977\pi\)
\(294\) −18.1660 2.87592i −0.0617890 0.00978203i
\(295\) 7.41332 7.41332i 0.0251299 0.0251299i
\(296\) 174.744 + 88.9911i 0.590353 + 0.300645i
\(297\) 54.3123 54.3123i 0.182870 0.182870i
\(298\) 270.095 + 371.700i 0.906361 + 1.24732i
\(299\) 10.2347 24.7087i 0.0342297 0.0826378i
\(300\) −130.898 + 10.3201i −0.436325 + 0.0344003i
\(301\) 10.8176 + 26.1160i 0.0359389 + 0.0867641i
\(302\) −7.38936 30.7695i −0.0244681 0.101886i
\(303\) 105.722 0.348918
\(304\) −19.6242 + 81.8402i −0.0645531 + 0.269211i
\(305\) 4.34605i 0.0142493i
\(306\) −85.0483 354.144i −0.277936 1.15733i
\(307\) −444.545 + 184.137i −1.44803 + 0.599793i −0.961730 0.273999i \(-0.911653\pi\)
−0.486299 + 0.873792i \(0.661653\pi\)
\(308\) −24.6884 + 28.9145i −0.0801572 + 0.0938783i
\(309\) 33.8945 + 14.0395i 0.109691 + 0.0454354i
\(310\) 5.52493 + 7.60331i 0.0178224 + 0.0245268i
\(311\) −54.5820 54.5820i −0.175505 0.175505i 0.613888 0.789393i \(-0.289605\pi\)
−0.789393 + 0.613888i \(0.789605\pi\)
\(312\) 98.8067 + 115.639i 0.316688 + 0.370638i
\(313\) 285.265 + 285.265i 0.911389 + 0.911389i 0.996382 0.0849925i \(-0.0270866\pi\)
−0.0849925 + 0.996382i \(0.527087\pi\)
\(314\) 553.909 + 87.6913i 1.76404 + 0.279272i
\(315\) −2.03783 0.844096i −0.00646930 0.00267967i
\(316\) −219.069 429.799i −0.693255 1.36012i
\(317\) −209.082 + 86.6048i −0.659566 + 0.273201i −0.687256 0.726415i \(-0.741185\pi\)
0.0276898 + 0.999617i \(0.491185\pi\)
\(318\) 106.229 173.378i 0.334055 0.545212i
\(319\) 58.7300i 0.184107i
\(320\) 3.82996 6.25575i 0.0119686 0.0195492i
\(321\) 86.0397 0.268036
\(322\) −8.33790 5.10868i −0.0258941 0.0158655i
\(323\) 50.3931 + 121.660i 0.156016 + 0.376656i
\(324\) 133.213 67.8988i 0.411152 0.209564i
\(325\) −138.386 + 334.094i −0.425803 + 1.02798i
\(326\) −53.9873 + 341.015i −0.165605 + 1.04606i
\(327\) 153.963 153.963i 0.470836 0.470836i
\(328\) −245.529 287.356i −0.748563 0.876086i
\(329\) −39.2248 + 39.2248i −0.119224 + 0.119224i
\(330\) 0.875194 0.635958i 0.00265210 0.00192715i
\(331\) 165.713 400.066i 0.500642 1.20866i −0.448492 0.893787i \(-0.648039\pi\)
0.949134 0.314871i \(-0.101961\pi\)
\(332\) −6.86431 5.86103i −0.0206756 0.0176537i
\(333\) 68.2349 + 164.734i 0.204910 + 0.494695i
\(334\) −269.442 + 64.7071i −0.806714 + 0.193734i
\(335\) 10.2334 0.0305474
\(336\) 47.4096 29.0707i 0.141100 0.0865200i
\(337\) 361.400i 1.07240i −0.844090 0.536202i \(-0.819859\pi\)
0.844090 0.536202i \(-0.180141\pi\)
\(338\) 78.6648 18.8915i 0.232736 0.0558920i
\(339\) 139.888 57.9435i 0.412649 0.170925i
\(340\) −0.902057 11.4415i −0.00265311 0.0336514i
\(341\) 136.094 + 56.3720i 0.399103 + 0.165314i
\(342\) −61.9060 + 44.9839i −0.181012 + 0.131532i
\(343\) 13.0958 + 13.0958i 0.0381802 + 0.0381802i
\(344\) −76.1656 38.7884i −0.221412 0.112757i
\(345\) 0.196747 + 0.196747i 0.000570280 + 0.000570280i
\(346\) 23.3425 147.445i 0.0674638 0.426141i
\(347\) −251.891 104.337i −0.725911 0.300682i −0.0110405 0.999939i \(-0.503514\pi\)
−0.714870 + 0.699257i \(0.753514\pi\)
\(348\) −26.5346 + 81.7037i −0.0762490 + 0.234781i
\(349\) −163.743 + 67.8246i −0.469178 + 0.194340i −0.604730 0.796430i \(-0.706719\pi\)
0.135553 + 0.990770i \(0.456719\pi\)
\(350\) 112.739 + 69.0760i 0.322112 + 0.197360i
\(351\) 309.417i 0.881529i
\(352\) −0.0397416 114.963i −0.000112902 0.326601i
\(353\) −516.062 −1.46193 −0.730965 0.682414i \(-0.760930\pi\)
−0.730965 + 0.682414i \(0.760930\pi\)
\(354\) −125.567 + 204.939i −0.354710 + 0.578924i
\(355\) −1.62274 3.91763i −0.00457109 0.0110356i
\(356\) −85.9155 + 264.545i −0.241336 + 0.743104i
\(357\) 33.2996 80.3924i 0.0932763 0.225189i
\(358\) 314.530 + 49.7944i 0.878576 + 0.139091i
\(359\) −59.5942 + 59.5942i −0.166000 + 0.166000i −0.785219 0.619218i \(-0.787450\pi\)
0.619218 + 0.785219i \(0.287450\pi\)
\(360\) 6.34264 2.06230i 0.0176185 0.00572862i
\(361\) −235.702 + 235.702i −0.652913 + 0.652913i
\(362\) −65.6674 90.3703i −0.181402 0.249642i
\(363\) −54.3430 + 131.196i −0.149705 + 0.361420i
\(364\) −12.0380 152.688i −0.0330715 0.419472i
\(365\) −1.42057 3.42957i −0.00389198 0.00939608i
\(366\) 23.2658 + 96.8794i 0.0635677 + 0.264698i
\(367\) 112.975 0.307834 0.153917 0.988084i \(-0.450811\pi\)
0.153917 + 0.988084i \(0.450811\pi\)
\(368\) 29.2021 4.63344i 0.0793536 0.0125909i
\(369\) 343.671i 0.931357i
\(370\) 1.31205 + 5.46341i 0.00354608 + 0.0147660i
\(371\) −189.164 + 78.3541i −0.509875 + 0.211197i
\(372\) −163.861 139.912i −0.440487 0.376106i
\(373\) 297.236 + 123.119i 0.796879 + 0.330078i 0.743706 0.668507i \(-0.233066\pi\)
0.0531735 + 0.998585i \(0.483066\pi\)
\(374\) −105.741 145.519i −0.282731 0.389089i
\(375\) −5.32193 5.32193i −0.0141918 0.0141918i
\(376\) 13.1254 167.218i 0.0349081 0.444729i
\(377\) 167.292 + 167.292i 0.443746 + 0.443746i
\(378\) 111.739 + 17.6899i 0.295607 + 0.0467986i
\(379\) 547.024 + 226.585i 1.44333 + 0.597849i 0.960604 0.277921i \(-0.0896452\pi\)
0.482730 + 0.875769i \(0.339645\pi\)
\(380\) −2.14842 + 1.09505i −0.00565374 + 0.00288171i
\(381\) −282.954 + 117.203i −0.742661 + 0.307620i
\(382\) 96.7289 157.872i 0.253217 0.413277i
\(383\) 399.124i 1.04210i 0.853526 + 0.521050i \(0.174459\pi\)
−0.853526 + 0.521050i \(0.825541\pi\)
\(384\) −51.8860 + 159.952i −0.135120 + 0.416542i
\(385\) −1.08939 −0.00282957
\(386\) 140.474 + 86.0691i 0.363922 + 0.222977i
\(387\) −29.7415 71.8022i −0.0768513 0.185535i
\(388\) 224.667 + 440.783i 0.579038 + 1.13604i
\(389\) 235.318 568.107i 0.604930 1.46043i −0.263520 0.964654i \(-0.584884\pi\)
0.868450 0.495776i \(-0.165116\pi\)
\(390\) −0.681463 + 4.30451i −0.00174734 + 0.0110372i
\(391\) 32.7133 32.7133i 0.0836656 0.0836656i
\(392\) −55.8283 4.38213i −0.142419 0.0111789i
\(393\) 89.7245 89.7245i 0.228307 0.228307i
\(394\) −56.0819 + 40.7518i −0.142340 + 0.103431i
\(395\) 5.28954 12.7701i 0.0133912 0.0323293i
\(396\) 67.8773 79.4963i 0.171407 0.200748i
\(397\) 192.537 + 464.826i 0.484981 + 1.17085i 0.957216 + 0.289374i \(0.0934472\pi\)
−0.472236 + 0.881472i \(0.656553\pi\)
\(398\) −660.759 + 158.682i −1.66020 + 0.398700i
\(399\) −18.2827 −0.0458214
\(400\) −394.850 + 62.6501i −0.987126 + 0.156625i
\(401\) 178.008i 0.443911i −0.975057 0.221956i \(-0.928756\pi\)
0.975057 0.221956i \(-0.0712440\pi\)
\(402\) −228.116 + 54.7825i −0.567453 + 0.136275i
\(403\) −548.239 + 227.088i −1.36040 + 0.563494i
\(404\) 320.903 25.3003i 0.794315 0.0626245i
\(405\) 3.95800 + 1.63946i 0.00977284 + 0.00404804i
\(406\) 69.9786 50.8498i 0.172361 0.125246i
\(407\) 62.2704 + 62.2704i 0.152998 + 0.152998i
\(408\) 81.3580 + 250.218i 0.199407 + 0.613278i
\(409\) −128.627 128.627i −0.314490 0.314490i 0.532156 0.846646i \(-0.321382\pi\)
−0.846646 + 0.532156i \(0.821382\pi\)
\(410\) 1.69339 10.6965i 0.00413023 0.0260889i
\(411\) 266.015 + 110.187i 0.647239 + 0.268095i
\(412\) 106.241 + 34.5037i 0.257867 + 0.0837468i
\(413\) 223.599 92.6176i 0.541401 0.224256i
\(414\) 22.9239 + 14.0456i 0.0553717 + 0.0339266i
\(415\) 0.258621i 0.000623182i
\(416\) 327.586 + 327.360i 0.787468 + 0.786923i
\(417\) 137.256 0.329151
\(418\) −19.7452 + 32.2263i −0.0472374 + 0.0770964i
\(419\) −86.1029 207.871i −0.205496 0.496112i 0.787208 0.616688i \(-0.211526\pi\)
−0.992704 + 0.120576i \(0.961526\pi\)
\(420\) 1.51553 + 0.492193i 0.00360840 + 0.00117189i
\(421\) 105.929 255.735i 0.251613 0.607447i −0.746722 0.665137i \(-0.768373\pi\)
0.998335 + 0.0576893i \(0.0183733\pi\)
\(422\) 31.0122 + 4.90965i 0.0734886 + 0.0116342i
\(423\) 107.843 107.843i 0.254948 0.254948i
\(424\) 280.953 551.683i 0.662624 1.30114i
\(425\) −442.326 + 442.326i −1.04077 + 1.04077i
\(426\) 57.1453 + 78.6424i 0.134144 + 0.184607i
\(427\) 38.3937 92.6907i 0.0899151 0.217074i
\(428\) 261.161 20.5901i 0.610188 0.0481077i
\(429\) 26.1394 + 63.1062i 0.0609311 + 0.147101i
\(430\) −0.571881 2.38133i −0.00132996 0.00553798i
\(431\) −601.428 −1.39543 −0.697713 0.716378i \(-0.745799\pi\)
−0.697713 + 0.716378i \(0.745799\pi\)
\(432\) −291.619 + 178.815i −0.675043 + 0.413924i
\(433\) 307.274i 0.709639i 0.934935 + 0.354819i \(0.115458\pi\)
−0.934935 + 0.354819i \(0.884542\pi\)
\(434\) 50.6644 + 210.968i 0.116738 + 0.486102i
\(435\) −2.27402 + 0.941929i −0.00522763 + 0.00216535i
\(436\) 430.487 504.177i 0.987357 1.15637i
\(437\) −8.98039 3.71980i −0.0205501 0.00851213i
\(438\) 50.0261 + 68.8450i 0.114215 + 0.157180i
\(439\) 93.6494 + 93.6494i 0.213324 + 0.213324i 0.805678 0.592354i \(-0.201801\pi\)
−0.592354 + 0.805678i \(0.701801\pi\)
\(440\) 2.50433 2.13980i 0.00569166 0.00486318i
\(441\) −36.0050 36.0050i −0.0816441 0.0816441i
\(442\) 715.716 + 113.308i 1.61927 + 0.256352i
\(443\) 486.277 + 201.423i 1.09769 + 0.454679i 0.856683 0.515844i \(-0.172522\pi\)
0.241009 + 0.970523i \(0.422522\pi\)
\(444\) −58.4947 114.763i −0.131745 0.258475i
\(445\) −7.36296 + 3.04984i −0.0165460 + 0.00685357i
\(446\) 110.453 180.270i 0.247652 0.404194i
\(447\) 301.809i 0.675189i
\(448\) 136.948 99.5854i 0.305687 0.222289i
\(449\) 27.5182 0.0612877 0.0306439 0.999530i \(-0.490244\pi\)
0.0306439 + 0.999530i \(0.490244\pi\)
\(450\) −309.960 189.915i −0.688801 0.422032i
\(451\) −64.9549 156.815i −0.144024 0.347705i
\(452\) 410.743 209.355i 0.908723 0.463176i
\(453\) −7.95448 + 19.2038i −0.0175596 + 0.0423925i
\(454\) −64.4533 + 407.124i −0.141968 + 0.896750i
\(455\) 3.10312 3.10312i 0.00682003 0.00682003i
\(456\) 42.0291 35.9114i 0.0921692 0.0787530i
\(457\) 74.1666 74.1666i 0.162290 0.162290i −0.621290 0.783580i \(-0.713391\pi\)
0.783580 + 0.621290i \(0.213391\pi\)
\(458\) 111.615 81.1051i 0.243702 0.177085i
\(459\) −204.827 + 494.497i −0.446247 + 1.07734i
\(460\) 0.644278 + 0.550112i 0.00140060 + 0.00119589i
\(461\) −270.858 653.908i −0.587543 1.41846i −0.885844 0.463983i \(-0.846420\pi\)
0.298300 0.954472i \(-0.403580\pi\)
\(462\) 24.2839 5.83183i 0.0525626 0.0126230i
\(463\) 44.7224 0.0965927 0.0482964 0.998833i \(-0.484621\pi\)
0.0482964 + 0.998833i \(0.484621\pi\)
\(464\) −60.9895 + 254.349i −0.131443 + 0.548167i
\(465\) 6.17366i 0.0132767i
\(466\) 794.951 190.909i 1.70590 0.409676i
\(467\) 296.025 122.618i 0.633887 0.262565i −0.0425167 0.999096i \(-0.513538\pi\)
0.676404 + 0.736531i \(0.263538\pi\)
\(468\) 33.0969 + 419.793i 0.0707198 + 0.896995i
\(469\) 218.253 + 90.4035i 0.465359 + 0.192758i
\(470\) 3.88790 2.82514i 0.00827214 0.00601093i
\(471\) −260.480 260.480i −0.553036 0.553036i
\(472\) −332.097 + 652.111i −0.703595 + 1.38159i
\(473\) −27.1417 27.1417i −0.0573820 0.0573820i
\(474\) −49.5489 + 312.979i −0.104533 + 0.660294i
\(475\) 121.426 + 50.2965i 0.255635 + 0.105887i
\(476\) 81.8374 251.988i 0.171927 0.529387i
\(477\) 520.078 215.423i 1.09031 0.451622i
\(478\) 213.405 + 130.755i 0.446454 + 0.273545i
\(479\) 676.370i 1.41205i −0.708189 0.706023i \(-0.750488\pi\)
0.708189 0.706023i \(-0.249512\pi\)
\(480\) −4.45073 + 1.84536i −0.00927236 + 0.00384449i
\(481\) −354.754 −0.737534
\(482\) −11.6014 + 18.9347i −0.0240693 + 0.0392836i
\(483\) 2.45803 + 5.93422i 0.00508910 + 0.0122862i
\(484\) −133.554 + 411.229i −0.275937 + 0.849647i
\(485\) −5.42472 + 13.0964i −0.0111850 + 0.0270029i
\(486\) −477.108 75.5327i −0.981703 0.155417i
\(487\) 630.190 630.190i 1.29402 1.29402i 0.361750 0.932275i \(-0.382180\pi\)
0.932275 0.361750i \(-0.117820\pi\)
\(488\) 93.8039 + 288.495i 0.192221 + 0.591179i
\(489\) 160.365 160.365i 0.327945 0.327945i
\(490\) −0.943216 1.29804i −0.00192493 0.00264905i
\(491\) −41.5293 + 100.261i −0.0845810 + 0.204197i −0.960511 0.278241i \(-0.910249\pi\)
0.875930 + 0.482438i \(0.160249\pi\)
\(492\) 19.5134 + 247.504i 0.0396614 + 0.503057i
\(493\) 156.616 + 378.104i 0.317679 + 0.766944i
\(494\) −35.5523 148.041i −0.0719682 0.299678i
\(495\) 2.99511 0.00605073
\(496\) −530.859 385.467i −1.07028 0.777151i
\(497\) 97.8891i 0.196960i
\(498\) 1.38448 + 5.76501i 0.00278008 + 0.0115763i
\(499\) 627.249 259.815i 1.25701 0.520671i 0.348021 0.937487i \(-0.386854\pi\)
0.908991 + 0.416815i \(0.136854\pi\)
\(500\) −17.4275 14.8803i −0.0348550 0.0297607i
\(501\) 168.164 + 69.6558i 0.335656 + 0.139033i
\(502\) −270.358 372.062i −0.538563 0.741160i
\(503\) −668.772 668.772i −1.32957 1.32957i −0.905747 0.423819i \(-0.860689\pi\)
−0.423819 0.905747i \(-0.639311\pi\)
\(504\) 153.492 + 12.0480i 0.304547 + 0.0239049i
\(505\) 6.52181 + 6.52181i 0.0129145 + 0.0129145i
\(506\) 13.1147 + 2.07623i 0.0259184 + 0.00410323i
\(507\) −49.0961 20.3363i −0.0968365 0.0401110i
\(508\) −830.816 + 423.467i −1.63547 + 0.833596i
\(509\) 454.172 188.124i 0.892283 0.369596i 0.111035 0.993816i \(-0.464583\pi\)
0.781248 + 0.624221i \(0.214583\pi\)
\(510\) −3.93858 + 6.42818i −0.00772271 + 0.0126043i
\(511\) 85.6940i 0.167699i
\(512\) −119.214 + 497.928i −0.232840 + 0.972515i
\(513\) 112.458 0.219216
\(514\) −19.6152 12.0183i −0.0381618 0.0233819i
\(515\) 1.22481 + 2.95696i 0.00237828 + 0.00574168i
\(516\) 25.4960 + 50.0217i 0.0494109 + 0.0969412i
\(517\) 28.8255 69.5908i 0.0557553 0.134605i
\(518\) −20.2819 + 128.112i −0.0391542 + 0.247321i
\(519\) −69.3370 + 69.3370i −0.133597 + 0.133597i
\(520\) −1.03837 + 13.2288i −0.00199686 + 0.0254400i
\(521\) −665.541 + 665.541i −1.27743 + 1.27743i −0.335329 + 0.942101i \(0.608847\pi\)
−0.942101 + 0.335329i \(0.891153\pi\)
\(522\) −192.396 + 139.804i −0.368575 + 0.267824i
\(523\) −76.5057 + 184.701i −0.146282 + 0.353157i −0.979989 0.199050i \(-0.936214\pi\)
0.833707 + 0.552207i \(0.186214\pi\)
\(524\) 250.873 293.817i 0.478766 0.560720i
\(525\) −33.2358 80.2383i −0.0633063 0.152835i
\(526\) 347.597 83.4760i 0.660830 0.158700i
\(527\) −1026.50 −1.94782
\(528\) −44.3699 + 61.1055i −0.0840340 + 0.115730i
\(529\) 525.585i 0.993544i
\(530\) 17.2485 4.14225i 0.0325443 0.00781557i
\(531\) −614.753 + 254.639i −1.15773 + 0.479546i
\(532\) −55.4945 + 4.37523i −0.104313 + 0.00822412i
\(533\) 631.711 + 261.663i 1.18520 + 0.490925i
\(534\) 147.804 107.401i 0.276786 0.201126i
\(535\) 5.30764 + 5.30764i 0.00992081 + 0.00992081i
\(536\) −679.303 + 220.875i −1.26736 + 0.412080i
\(537\) −147.910 147.910i −0.275438 0.275438i
\(538\) −37.4742 + 236.709i −0.0696547 + 0.439979i
\(539\) −23.2340 9.62382i −0.0431057 0.0178550i
\(540\) −9.32206 3.02750i −0.0172631 0.00560647i
\(541\) −319.044 + 132.153i −0.589731 + 0.244275i −0.657535 0.753424i \(-0.728401\pi\)
0.0678039 + 0.997699i \(0.478401\pi\)
\(542\) −543.262 332.860i −1.00233 0.614133i
\(543\) 73.3780i 0.135134i
\(544\) 306.830 + 740.028i 0.564025 + 1.36035i
\(545\) 18.9954 0.0348540
\(546\) −52.5608 + 85.7847i −0.0962651 + 0.157115i
\(547\) −299.065 722.007i −0.546737 1.31994i −0.919892 0.392171i \(-0.871724\pi\)
0.373155 0.927769i \(-0.378276\pi\)
\(548\) 833.818 + 270.796i 1.52157 + 0.494154i
\(549\) −105.558 + 254.840i −0.192273 + 0.464189i
\(550\) −177.328 28.0734i −0.322414 0.0510425i
\(551\) 60.8025 60.8025i 0.110349 0.110349i
\(552\) −17.3068 8.81372i −0.0313528 0.0159669i
\(553\) 225.626 225.626i 0.408004 0.408004i
\(554\) 84.3054 + 116.019i 0.152176 + 0.209421i
\(555\) 1.41239 3.40981i 0.00254485 0.00614380i
\(556\) 416.619 32.8466i 0.749315 0.0590767i
\(557\) −101.235 244.402i −0.181750 0.438783i 0.806578 0.591128i \(-0.201317\pi\)
−0.988327 + 0.152346i \(0.951317\pi\)
\(558\) −139.295 580.028i −0.249632 1.03948i
\(559\) 154.626 0.276612
\(560\) 4.71794 + 1.13130i 0.00842489 + 0.00202017i
\(561\) 118.157i 0.210619i
\(562\) −78.9222 328.634i −0.140431 0.584759i
\(563\) −888.243 + 367.922i −1.57770 + 0.653503i −0.988047 0.154155i \(-0.950734\pi\)
−0.589650 + 0.807659i \(0.700734\pi\)
\(564\) −71.5429 + 83.7894i −0.126849 + 0.148563i
\(565\) 12.2039 + 5.05501i 0.0215998 + 0.00894692i
\(566\) −610.604 840.303i −1.07881 1.48463i
\(567\) 69.9313 + 69.9313i 0.123336 + 0.123336i
\(568\) 192.276 + 225.032i 0.338514 + 0.396183i
\(569\) −467.459 467.459i −0.821546 0.821546i 0.164784 0.986330i \(-0.447307\pi\)
−0.986330 + 0.164784i \(0.947307\pi\)
\(570\) 1.56448 + 0.247678i 0.00274470 + 0.000434523i
\(571\) −549.011 227.408i −0.961491 0.398263i −0.153953 0.988078i \(-0.549200\pi\)
−0.807538 + 0.589816i \(0.799200\pi\)
\(572\) 94.4442 + 185.294i 0.165112 + 0.323940i
\(573\) −112.360 + 46.5410i −0.196091 + 0.0812234i
\(574\) 130.610 213.170i 0.227544 0.371376i
\(575\) 46.1748i 0.0803041i
\(576\) −376.519 + 273.796i −0.653679 + 0.475340i
\(577\) −141.741 −0.245652 −0.122826 0.992428i \(-0.539196\pi\)
−0.122826 + 0.992428i \(0.539196\pi\)
\(578\) 575.973 + 352.902i 0.996493 + 0.610557i
\(579\) −41.4120 99.9775i −0.0715234 0.172673i
\(580\) −6.67703 + 3.40328i −0.0115121 + 0.00586772i
\(581\) 2.28470 5.51575i 0.00393235 0.00949354i
\(582\) 50.8151 320.978i 0.0873112 0.551508i
\(583\) 196.593 196.593i 0.337209 0.337209i
\(584\) 168.322 + 196.997i 0.288223 + 0.337324i
\(585\) −8.53158 + 8.53158i −0.0145839 + 0.0145839i
\(586\) −291.292 + 211.667i −0.497085 + 0.361206i
\(587\) −446.045 + 1076.85i −0.759873 + 1.83450i −0.269439 + 0.963018i \(0.586838\pi\)
−0.490434 + 0.871478i \(0.663162\pi\)
\(588\) 27.9744 + 23.8857i 0.0475755 + 0.0406219i
\(589\) 82.5354 + 199.258i 0.140128 + 0.338299i
\(590\) −20.3884 + 4.89630i −0.0345565 + 0.00829882i
\(591\) 45.5368 0.0770504
\(592\) −205.016 334.348i −0.346311 0.564777i
\(593\) 881.498i 1.48651i −0.669011 0.743253i \(-0.733282\pi\)
0.669011 0.743253i \(-0.266718\pi\)
\(594\) −149.371 + 35.8718i −0.251467 + 0.0603902i
\(595\) 7.01346 2.90507i 0.0117873 0.00488247i
\(596\) −72.2259 916.097i −0.121184 1.53708i
\(597\) 412.391 + 170.818i 0.690773 + 0.286128i
\(598\) −43.2714 + 31.4430i −0.0723601 + 0.0525803i
\(599\) −22.3963 22.3963i −0.0373895 0.0373895i 0.688165 0.725554i \(-0.258417\pi\)
−0.725554 + 0.688165i \(0.758417\pi\)
\(600\) 234.010 + 119.173i 0.390016 + 0.198621i
\(601\) 214.917 + 214.917i 0.357599 + 0.357599i 0.862927 0.505328i \(-0.168629\pi\)
−0.505328 + 0.862927i \(0.668629\pi\)
\(602\) 8.84024 55.8401i 0.0146848 0.0927576i
\(603\) −600.056 248.551i −0.995118 0.412191i
\(604\) −19.5490 + 60.1939i −0.0323659 + 0.0996588i
\(605\) −11.4455 + 4.74090i −0.0189183 + 0.00783620i
\(606\) −180.293 110.467i −0.297514 0.182288i
\(607\) 544.542i 0.897103i −0.893757 0.448552i \(-0.851940\pi\)
0.893757 0.448552i \(-0.148060\pi\)
\(608\) 118.979 119.062i 0.195690 0.195825i
\(609\) −56.8205 −0.0933012
\(610\) −4.54110 + 7.41155i −0.00744442 + 0.0121501i
\(611\) 116.120 + 280.339i 0.190049 + 0.458820i
\(612\) −225.000 + 692.806i −0.367648 + 1.13204i
\(613\) 350.821 846.957i 0.572302 1.38166i −0.327289 0.944924i \(-0.606135\pi\)
0.899591 0.436734i \(-0.143865\pi\)
\(614\) 950.506 + 150.478i 1.54806 + 0.245078i
\(615\) −5.03009 + 5.03009i −0.00817901 + 0.00817901i
\(616\) 72.3146 23.5130i 0.117394 0.0381705i
\(617\) 281.218 281.218i 0.455783 0.455783i −0.441485 0.897269i \(-0.645548\pi\)
0.897269 + 0.441485i \(0.145548\pi\)
\(618\) −43.1324 59.3580i −0.0697935 0.0960485i
\(619\) 381.822 921.800i 0.616837 1.48918i −0.238520 0.971138i \(-0.576662\pi\)
0.855357 0.518039i \(-0.173338\pi\)
\(620\) −1.47742 18.7392i −0.00238293 0.0302245i
\(621\) −15.1195 36.5016i −0.0243470 0.0587788i
\(622\) 36.0500 + 150.113i 0.0579581 + 0.241340i
\(623\) −183.977 −0.295308
\(624\) −47.6713 300.447i −0.0763962 0.481485i
\(625\) 624.015i 0.998424i
\(626\) −188.410 784.544i −0.300974 1.25327i
\(627\) 22.9360 9.50039i 0.0365805 0.0151521i
\(628\) −852.984 728.313i −1.35825 1.15973i
\(629\) −566.953 234.840i −0.901356 0.373354i
\(630\) 2.59324 + 3.56877i 0.00411625 + 0.00566471i
\(631\) −521.466 521.466i −0.826413 0.826413i 0.160606 0.987019i \(-0.448655\pi\)
−0.987019 + 0.160606i \(0.948655\pi\)
\(632\) −75.4992 + 961.859i −0.119461 + 1.52193i
\(633\) −14.5837 14.5837i −0.0230390 0.0230390i
\(634\) 447.051 + 70.7742i 0.705128 + 0.111631i
\(635\) −24.6850 10.2249i −0.0388740 0.0161021i
\(636\) −362.317 + 184.673i −0.569681 + 0.290366i
\(637\) 93.5954 38.7685i 0.146931 0.0608610i
\(638\) −61.3658 + 100.155i −0.0961846 + 0.156983i
\(639\) 269.132i 0.421177i
\(640\) −13.0679 + 6.66641i −0.0204186 + 0.0104163i
\(641\) 337.238 0.526112 0.263056 0.964781i \(-0.415270\pi\)
0.263056 + 0.964781i \(0.415270\pi\)
\(642\) −146.728 89.9011i −0.228548 0.140033i
\(643\) 316.087 + 763.103i 0.491582 + 1.18678i 0.953915 + 0.300078i \(0.0970127\pi\)
−0.462332 + 0.886707i \(0.652987\pi\)
\(644\) 8.88111 + 17.4242i 0.0137905 + 0.0270562i
\(645\) −0.615617 + 1.48623i −0.000954445 + 0.00230423i
\(646\) 41.1817 260.127i 0.0637488 0.402674i
\(647\) 428.698 428.698i 0.662594 0.662594i −0.293397 0.955991i \(-0.594786\pi\)
0.955991 + 0.293397i \(0.0947858\pi\)
\(648\) −298.122 23.4005i −0.460065 0.0361119i
\(649\) −232.381 + 232.381i −0.358060 + 0.358060i
\(650\) 585.084 425.150i 0.900130 0.654078i
\(651\) 54.5391 131.669i 0.0837775 0.202257i
\(652\) 448.387 525.141i 0.687710 0.805430i
\(653\) 201.780 + 487.139i 0.309004 + 0.746002i 0.999738 + 0.0228926i \(0.00728757\pi\)
−0.690734 + 0.723109i \(0.742712\pi\)
\(654\) −423.435 + 101.689i −0.647453 + 0.155487i
\(655\) 11.0699 0.0169006
\(656\) 118.460 + 746.591i 0.180579 + 1.13810i
\(657\) 235.603i 0.358605i
\(658\) 107.877 25.9069i 0.163947 0.0393723i
\(659\) 7.55233 3.12828i 0.0114603 0.00474701i −0.376946 0.926235i \(-0.623026\pi\)
0.388406 + 0.921488i \(0.373026\pi\)
\(660\) −2.15701 + 0.170061i −0.00326820 + 0.000257668i
\(661\) −134.823 55.8457i −0.203969 0.0844867i 0.278360 0.960477i \(-0.410209\pi\)
−0.482329 + 0.875990i \(0.660209\pi\)
\(662\) −700.619 + 509.103i −1.05834 + 0.769038i
\(663\) −336.571 336.571i −0.507649 0.507649i
\(664\) 5.58200 + 17.1675i 0.00840662 + 0.0258547i
\(665\) −1.12783 1.12783i −0.00169598 0.00169598i
\(666\) 55.7622 352.226i 0.0837270 0.528868i
\(667\) −27.9100 11.5607i −0.0418440 0.0173324i
\(668\) 527.106 + 171.186i 0.789080 + 0.256267i
\(669\) −128.301 + 53.1442i −0.191781 + 0.0794382i
\(670\) −17.4515 10.6927i −0.0260471 0.0159592i
\(671\) 136.233i 0.203029i
\(672\) −111.226 + 0.0384495i −0.165514 + 5.72165e-5i
\(673\) −652.697 −0.969832 −0.484916 0.874561i \(-0.661150\pi\)
−0.484916 + 0.874561i \(0.661150\pi\)
\(674\) −377.619 + 616.314i −0.560266 + 0.914413i
\(675\) 204.435 + 493.549i 0.302866 + 0.731183i
\(676\) −153.891 49.9786i −0.227649 0.0739328i
\(677\) 100.307 242.162i 0.148163 0.357698i −0.832321 0.554293i \(-0.812989\pi\)
0.980485 + 0.196595i \(0.0629885\pi\)
\(678\) −299.102 47.3520i −0.441154 0.0698406i
\(679\) −231.392 + 231.392i −0.340784 + 0.340784i
\(680\) −10.4167 + 20.4543i −0.0153186 + 0.0300799i
\(681\) 191.453 191.453i 0.281136 0.281136i
\(682\) −173.186 238.336i −0.253939 0.349466i
\(683\) −91.1509 + 220.058i −0.133457 + 0.322193i −0.976454 0.215724i \(-0.930789\pi\)
0.842998 + 0.537917i \(0.180789\pi\)
\(684\) 152.574 12.0291i 0.223062 0.0175864i
\(685\) 9.61276 + 23.2072i 0.0140332 + 0.0338792i
\(686\) −8.64943 36.0165i −0.0126085 0.0525022i
\(687\) −90.6283 −0.131919
\(688\) 89.3600 + 145.732i 0.129884 + 0.211820i
\(689\) 1119.99i 1.62553i
\(690\) −0.129946 0.541099i −0.000188327 0.000784201i
\(691\) 149.012 61.7227i 0.215646 0.0893237i −0.272245 0.962228i \(-0.587766\pi\)
0.487892 + 0.872904i \(0.337766\pi\)
\(692\) −193.869 + 227.055i −0.280158 + 0.328114i
\(693\) 63.8785 + 26.4593i 0.0921767 + 0.0381809i
\(694\) 320.544 + 441.127i 0.461879 + 0.635629i
\(695\) 8.46707 + 8.46707i 0.0121828 + 0.0121828i
\(696\) 130.621 111.608i 0.187674 0.160356i
\(697\) 836.358 + 836.358i 1.19994 + 1.19994i
\(698\) 350.108 + 55.4269i 0.501587 + 0.0794081i
\(699\) −496.143 205.509i −0.709790 0.294005i
\(700\) −120.084 235.598i −0.171549 0.336568i
\(701\) 1082.83 448.521i 1.54469 0.639830i 0.562341 0.826906i \(-0.309901\pi\)
0.982346 + 0.187076i \(0.0599009\pi\)
\(702\) 323.303 527.665i 0.460546 0.751659i
\(703\) 128.936i 0.183408i
\(704\) −120.055 + 196.095i −0.170533 + 0.278544i
\(705\) −3.15686 −0.00447782
\(706\) 880.067 + 539.222i 1.24655 + 0.763771i
\(707\) 81.4795 + 196.709i 0.115247 + 0.278231i
\(708\) 428.273 218.291i 0.604906 0.308320i
\(709\) 77.1824 186.335i 0.108861 0.262813i −0.860056 0.510199i \(-0.829572\pi\)
0.968917 + 0.247386i \(0.0795716\pi\)
\(710\) −1.32611 + 8.37651i −0.00186777 + 0.0117979i
\(711\) −620.327 + 620.327i −0.872471 + 0.872471i
\(712\) 422.934 361.371i 0.594008 0.507544i
\(713\) 53.5788 53.5788i 0.0751455 0.0751455i
\(714\) −140.788 + 102.303i −0.197182 + 0.143282i
\(715\) −2.28041 + 5.50540i −0.00318939 + 0.00769987i
\(716\) −484.356 413.563i −0.676475 0.577602i
\(717\) −62.9123 151.884i −0.0877439 0.211832i
\(718\) 163.898 39.3604i 0.228270 0.0548194i
\(719\) 151.151 0.210224 0.105112 0.994460i \(-0.466480\pi\)
0.105112 + 0.994460i \(0.466480\pi\)
\(720\) −12.9713 3.11034i −0.0180157 0.00431992i
\(721\) 73.8851i 0.102476i
\(722\) 648.234 155.675i 0.897831 0.215616i
\(723\) 13.4761 5.58200i 0.0186392 0.00772061i
\(724\) 17.5601 + 222.728i 0.0242542 + 0.307635i
\(725\) 377.379 + 156.315i 0.520522 + 0.215607i
\(726\) 229.757 166.953i 0.316470 0.229963i
\(727\) −164.336 164.336i −0.226047 0.226047i 0.584992 0.811039i \(-0.301098\pi\)
−0.811039 + 0.584992i \(0.801098\pi\)
\(728\) −139.011 + 272.965i −0.190949 + 0.374952i
\(729\) −13.5203 13.5203i −0.0185463 0.0185463i
\(730\) −1.16091 + 7.33295i −0.00159028 + 0.0100451i
\(731\) 247.117 + 102.359i 0.338053 + 0.140026i
\(732\) 61.5509 189.523i 0.0840860 0.258912i
\(733\) 125.388 51.9372i 0.171061 0.0708557i −0.295510 0.955340i \(-0.595489\pi\)
0.466570 + 0.884484i \(0.345489\pi\)
\(734\) −192.662 118.045i −0.262483 0.160825i
\(735\) 1.05397i 0.00143397i
\(736\) −54.6413 22.6111i −0.0742409 0.0307215i
\(737\) −320.779 −0.435250
\(738\) −359.094 + 586.080i −0.486578 + 0.794146i
\(739\) 498.598 + 1203.72i 0.674693 + 1.62885i 0.773539 + 0.633749i \(0.218485\pi\)
−0.0988460 + 0.995103i \(0.531515\pi\)
\(740\) 3.47110 10.6880i 0.00469067 0.0144432i
\(741\) −38.2712 + 92.3949i −0.0516481 + 0.124690i
\(742\) 404.461 + 64.0317i 0.545096 + 0.0862961i
\(743\) −738.261 + 738.261i −0.993622 + 0.993622i −0.999980 0.00635773i \(-0.997976\pi\)
0.00635773 + 0.999980i \(0.497976\pi\)
\(744\) 133.251 + 409.814i 0.179100 + 0.550825i
\(745\) 18.6181 18.6181i 0.0249907 0.0249907i
\(746\) −378.247 520.537i −0.507034 0.697771i
\(747\) −6.28145 + 15.1648i −0.00840890 + 0.0203009i
\(748\) 28.2762 + 358.649i 0.0378024 + 0.479477i
\(749\) 66.3104 + 160.088i 0.0885319 + 0.213735i
\(750\) 3.51500 + 14.6366i 0.00468666 + 0.0195154i
\(751\) 1212.63 1.61469 0.807344 0.590081i \(-0.200904\pi\)
0.807344 + 0.590081i \(0.200904\pi\)
\(752\) −197.106 + 271.451i −0.262109 + 0.360972i
\(753\) 302.103i 0.401200i
\(754\) −110.492 460.093i −0.146541 0.610203i
\(755\) −1.67535 + 0.693952i −0.00221900 + 0.000919142i
\(756\) −172.071 146.922i −0.227608 0.194341i
\(757\) 507.696 + 210.295i 0.670669 + 0.277800i 0.691920 0.721974i \(-0.256765\