Properties

Label 224.3.v.b.69.7
Level 224
Weight 3
Character 224.69
Analytic conductor 6.104
Analytic rank 0
Dimension 240
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(60\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 69.7
Character \(\chi\) \(=\) 224.69
Dual form 224.3.v.b.13.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.89176 - 0.649047i) q^{2} +(-5.08830 + 2.10764i) q^{3} +(3.15748 + 2.45567i) q^{4} +(-0.976625 + 2.35778i) q^{5} +(10.9938 - 0.684602i) q^{6} +(4.79964 - 5.09544i) q^{7} +(-4.37933 - 6.69489i) q^{8} +(15.0847 - 15.0847i) q^{9} +O(q^{10})\) \(q+(-1.89176 - 0.649047i) q^{2} +(-5.08830 + 2.10764i) q^{3} +(3.15748 + 2.45567i) q^{4} +(-0.976625 + 2.35778i) q^{5} +(10.9938 - 0.684602i) q^{6} +(4.79964 - 5.09544i) q^{7} +(-4.37933 - 6.69489i) q^{8} +(15.0847 - 15.0847i) q^{9} +(3.37785 - 3.82647i) q^{10} +(2.51817 - 6.07940i) q^{11} +(-21.2419 - 5.84038i) q^{12} +(9.18830 + 22.1825i) q^{13} +(-12.3869 + 6.52413i) q^{14} -14.0555i q^{15} +(3.93933 + 15.5075i) q^{16} -12.9448 q^{17} +(-38.3273 + 18.7459i) q^{18} +(-5.85517 - 14.1356i) q^{19} +(-8.87361 + 5.04637i) q^{20} +(-13.6827 + 36.0431i) q^{21} +(-8.70958 + 9.86633i) q^{22} +(3.80500 - 3.80500i) q^{23} +(36.3938 + 24.8355i) q^{24} +(13.0723 + 13.0723i) q^{25} +(-2.98453 - 47.9275i) q^{26} +(-25.9936 + 62.7541i) q^{27} +(27.6675 - 4.30237i) q^{28} +(10.4805 + 25.3022i) q^{29} +(-9.12267 + 26.5895i) q^{30} +26.1430i q^{31} +(2.61283 - 31.8932i) q^{32} +36.2413i q^{33} +(24.4883 + 8.40176i) q^{34} +(7.32648 + 16.2928i) q^{35} +(84.6728 - 10.5865i) q^{36} +(-22.3665 - 9.26451i) q^{37} +(1.90187 + 30.5414i) q^{38} +(-93.5057 - 93.5057i) q^{39} +(20.0620 - 3.78710i) q^{40} +(1.69723 + 1.69723i) q^{41} +(49.2779 - 59.3040i) q^{42} +(-23.2062 + 56.0247i) q^{43} +(22.8801 - 13.0118i) q^{44} +(20.8344 + 50.2986i) q^{45} +(-9.66776 + 4.72851i) q^{46} -63.8209 q^{47} +(-52.7287 - 70.6041i) q^{48} +(-2.92694 - 48.9125i) q^{49} +(-16.2451 - 33.2142i) q^{50} +(65.8669 - 27.2830i) q^{51} +(-25.4612 + 92.6042i) q^{52} +(-29.7801 + 71.8955i) q^{53} +(89.9039 - 101.844i) q^{54} +(11.8746 + 11.8746i) q^{55} +(-55.1326 - 9.81845i) q^{56} +(59.5858 + 59.5858i) q^{57} +(-3.40427 - 54.6680i) q^{58} +(25.6143 - 61.8384i) q^{59} +(34.5157 - 44.3799i) q^{60} +(46.9261 - 19.4374i) q^{61} +(16.9680 - 49.4562i) q^{62} +(-4.46202 - 149.264i) q^{63} +(-25.6430 + 58.6382i) q^{64} -61.2750 q^{65} +(23.5223 - 68.5596i) q^{66} +(-0.333590 - 0.805357i) q^{67} +(-40.8728 - 31.7881i) q^{68} +(-11.3414 + 27.3806i) q^{69} +(-3.28510 - 35.5773i) q^{70} +(48.5986 + 48.5986i) q^{71} +(-167.051 - 34.9295i) q^{72} +(69.1076 + 69.1076i) q^{73} +(36.2989 + 32.0431i) q^{74} +(-94.0679 - 38.9642i) q^{75} +(16.2249 - 59.0113i) q^{76} +(-18.8909 - 42.0101i) q^{77} +(116.200 + 237.580i) q^{78} +104.667i q^{79} +(-40.4105 - 5.85692i) q^{80} -182.100i q^{81} +(-2.10916 - 4.31231i) q^{82} +(22.3992 + 54.0765i) q^{83} +(-131.713 + 80.2050i) q^{84} +(12.6422 - 30.5209i) q^{85} +(80.2631 - 90.9231i) q^{86} +(-106.656 - 106.656i) q^{87} +(-51.7288 + 9.76483i) q^{88} +(-47.9956 + 47.9956i) q^{89} +(-6.76738 - 108.675i) q^{90} +(157.130 + 59.6497i) q^{91} +(21.3581 - 2.67036i) q^{92} +(-55.1002 - 133.024i) q^{93} +(120.734 + 41.4227i) q^{94} +39.0470 q^{95} +(53.9246 + 167.789i) q^{96} -8.86586i q^{97} +(-26.2094 + 94.4302i) q^{98} +(-53.7202 - 129.692i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} - 8q^{11} + 12q^{14} - 112q^{16} - 176q^{18} - 4q^{21} - 192q^{22} + 128q^{23} - 8q^{25} + 56q^{28} - 8q^{29} - 16q^{30} - 8q^{32} + 92q^{35} + 192q^{36} - 8q^{37} - 8q^{39} - 424q^{42} + 128q^{43} - 16q^{44} - 8q^{46} - 320q^{50} - 80q^{51} - 192q^{53} + 608q^{56} - 8q^{57} - 712q^{58} + 264q^{60} + 496q^{63} - 272q^{64} - 16q^{65} + 304q^{67} + 320q^{70} + 504q^{71} - 8q^{72} + 232q^{74} + 164q^{77} + 560q^{78} - 1000q^{84} - 208q^{85} - 8q^{86} - 800q^{88} + 188q^{91} + 1560q^{92} + 64q^{93} - 16q^{95} - 376q^{98} + 64q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.89176 0.649047i −0.945878 0.324523i
\(3\) −5.08830 + 2.10764i −1.69610 + 0.702548i −0.999883 0.0152817i \(-0.995135\pi\)
−0.696218 + 0.717830i \(0.745135\pi\)
\(4\) 3.15748 + 2.45567i 0.789369 + 0.613919i
\(5\) −0.976625 + 2.35778i −0.195325 + 0.471556i −0.990950 0.134234i \(-0.957143\pi\)
0.795625 + 0.605790i \(0.207143\pi\)
\(6\) 10.9938 0.684602i 1.83230 0.114100i
\(7\) 4.79964 5.09544i 0.685663 0.727919i
\(8\) −4.37933 6.69489i −0.547416 0.836861i
\(9\) 15.0847 15.0847i 1.67608 1.67608i
\(10\) 3.37785 3.82647i 0.337785 0.382647i
\(11\) 2.51817 6.07940i 0.228925 0.552673i −0.767122 0.641501i \(-0.778312\pi\)
0.996047 + 0.0888278i \(0.0283121\pi\)
\(12\) −21.2419 5.84038i −1.77016 0.486698i
\(13\) 9.18830 + 22.1825i 0.706792 + 1.70635i 0.707865 + 0.706348i \(0.249658\pi\)
−0.00107294 + 0.999999i \(0.500342\pi\)
\(14\) −12.3869 + 6.52413i −0.884780 + 0.466009i
\(15\) 14.0555i 0.937033i
\(16\) 3.93933 + 15.5075i 0.246208 + 0.969217i
\(17\) −12.9448 −0.761457 −0.380729 0.924687i \(-0.624327\pi\)
−0.380729 + 0.924687i \(0.624327\pi\)
\(18\) −38.3273 + 18.7459i −2.12929 + 1.04144i
\(19\) −5.85517 14.1356i −0.308167 0.743981i −0.999765 0.0216978i \(-0.993093\pi\)
0.691598 0.722283i \(1.74309\pi\)
\(20\) −8.87361 + 5.04637i −0.443681 + 0.252318i
\(21\) −13.6827 + 36.0431i −0.651555 + 1.71634i
\(22\) −8.70958 + 9.86633i −0.395890 + 0.448470i
\(23\) 3.80500 3.80500i 0.165435 0.165435i −0.619535 0.784969i \(-0.712679\pi\)
0.784969 + 0.619535i \(0.212679\pi\)
\(24\) 36.3938 + 24.8355i 1.51641 + 1.03481i
\(25\) 13.0723 + 13.0723i 0.522893 + 0.522893i
\(26\) −2.98453 47.9275i −0.114790 1.84337i
\(27\) −25.9936 + 62.7541i −0.962726 + 2.32423i
\(28\) 27.6675 4.30237i 0.988124 0.153656i
\(29\) 10.4805 + 25.3022i 0.361398 + 0.872491i 0.995096 + 0.0989110i \(0.0315359\pi\)
−0.633699 + 0.773580i \(0.718464\pi\)
\(30\) −9.12267 + 26.5895i −0.304089 + 0.886318i
\(31\) 26.1430i 0.843323i 0.906753 + 0.421661i \(0.138553\pi\)
−0.906753 + 0.421661i \(0.861447\pi\)
\(32\) 2.61283 31.8932i 0.0816510 0.996661i
\(33\) 36.2413i 1.09822i
\(34\) 24.4883 + 8.40176i 0.720245 + 0.247111i
\(35\) 7.32648 + 16.2928i 0.209328 + 0.465509i
\(36\) 84.6728 10.5865i 2.35202 0.294069i
\(37\) −22.3665 9.26451i −0.604500 0.250392i 0.0593748 0.998236i \(-0.481089\pi\)
−0.663875 + 0.747844i \(0.731089\pi\)
\(38\) 1.90187 + 30.5414i 0.0500492 + 0.803722i
\(39\) −93.5057 93.5057i −2.39758 2.39758i
\(40\) 20.0620 3.78710i 0.501551 0.0946776i
\(41\) 1.69723 + 1.69723i 0.0413957 + 0.0413957i 0.727502 0.686106i \(-0.240681\pi\)
−0.686106 + 0.727502i \(0.740681\pi\)
\(42\) 49.2779 59.3040i 1.17328 1.41200i
\(43\) −23.2062 + 56.0247i −0.539679 + 1.30290i 0.385269 + 0.922804i \(0.374109\pi\)
−0.924947 + 0.380095i \(0.875891\pi\)
\(44\) 22.8801 13.0118i 0.520002 0.295722i
\(45\) 20.8344 + 50.2986i 0.462986 + 1.11775i
\(46\) −9.66776 + 4.72851i −0.210169 + 0.102794i
\(47\) −63.8209 −1.35789 −0.678946 0.734188i \(-0.737563\pi\)
−0.678946 + 0.734188i \(0.737563\pi\)
\(48\) −52.7287 70.6041i −1.09852 1.47092i
\(49\) −2.92694 48.9125i −0.0597334 0.998214i
\(50\) −16.2451 33.2142i −0.324902 0.664284i
\(51\) 65.8669 27.2830i 1.29151 0.534960i
\(52\) −25.4612 + 92.6042i −0.489638 + 1.78085i
\(53\) −29.7801 + 71.8955i −0.561889 + 1.35652i 0.346365 + 0.938100i \(0.387416\pi\)
−0.908254 + 0.418419i \(0.862584\pi\)
\(54\) 89.9039 101.844i 1.66489 1.88601i
\(55\) 11.8746 + 11.8746i 0.215902 + 0.215902i
\(56\) −55.1326 9.81845i −0.984510 0.175329i
\(57\) 59.5858 + 59.5858i 1.04536 + 1.04536i
\(58\) −3.40427 54.6680i −0.0586943 0.942552i
\(59\) 25.6143 61.8384i 0.434141 1.04811i −0.543798 0.839216i \(-0.683014\pi\)
0.977939 0.208892i \(-0.0669858\pi\)
\(60\) 34.5157 44.3799i 0.575262 0.739665i
\(61\) 46.9261 19.4374i 0.769280 0.318646i 0.0366990 0.999326i \(-0.488316\pi\)
0.732581 + 0.680680i \(0.238316\pi\)
\(62\) 16.9680 49.4562i 0.273678 0.797680i
\(63\) −4.46202 149.264i −0.0708257 2.36928i
\(64\) −25.6430 + 58.6382i −0.400672 + 0.916222i
\(65\) −61.2750 −0.942693
\(66\) 23.5223 68.5596i 0.356398 1.03878i
\(67\) −0.333590 0.805357i −0.00497895 0.0120203i 0.921371 0.388685i \(-0.127071\pi\)
−0.926349 + 0.376665i \(0.877071\pi\)
\(68\) −40.8728 31.7881i −0.601071 0.467473i
\(69\) −11.3414 + 27.3806i −0.164368 + 0.396820i
\(70\) −3.28510 35.5773i −0.0469300 0.508247i
\(71\) 48.5986 + 48.5986i 0.684488 + 0.684488i 0.961008 0.276520i \(-0.0891813\pi\)
−0.276520 + 0.961008i \(0.589181\pi\)
\(72\) −167.051 34.9295i −2.32016 0.485132i
\(73\) 69.1076 + 69.1076i 0.946679 + 0.946679i 0.998649 0.0519698i \(-0.0165499\pi\)
−0.0519698 + 0.998649i \(0.516550\pi\)
\(74\) 36.2989 + 32.0431i 0.490525 + 0.433015i
\(75\) −94.0679 38.9642i −1.25424 0.519522i
\(76\) 16.2249 59.0113i 0.213486 0.776465i
\(77\) −18.8909 42.0101i −0.245336 0.545586i
\(78\) 116.200 + 237.580i 1.48975 + 3.04589i
\(79\) 104.667i 1.32490i 0.749107 + 0.662449i \(0.230483\pi\)
−0.749107 + 0.662449i \(0.769517\pi\)
\(80\) −40.4105 5.85692i −0.505131 0.0732115i
\(81\) 182.100i 2.24815i
\(82\) −2.10916 4.31231i −0.0257214 0.0525892i
\(83\) 22.3992 + 54.0765i 0.269870 + 0.651524i 0.999477 0.0323427i \(-0.0102968\pi\)
−0.729607 + 0.683867i \(0.760297\pi\)
\(84\) −131.713 + 80.2050i −1.56801 + 0.954822i
\(85\) 12.6422 30.5209i 0.148732 0.359070i
\(86\) 80.2631 90.9231i 0.933291 1.05725i
\(87\) −106.656 106.656i −1.22593 1.22593i
\(88\) −51.7288 + 9.76483i −0.587827 + 0.110964i
\(89\) −47.9956 + 47.9956i −0.539277 + 0.539277i −0.923317 0.384040i \(-0.874533\pi\)
0.384040 + 0.923317i \(0.374533\pi\)
\(90\) −6.76738 108.675i −0.0751932 1.20750i
\(91\) 157.130 + 59.6497i 1.72670 + 0.655491i
\(92\) 21.3581 2.67036i 0.232153 0.0290257i
\(93\) −55.1002 133.024i −0.592475 1.43036i
\(94\) 120.734 + 41.4227i 1.28440 + 0.440668i
\(95\) 39.0470 0.411021
\(96\) 53.9246 + 167.789i 0.561714 + 1.74780i
\(97\) 8.86586i 0.0914006i −0.998955 0.0457003i \(-0.985448\pi\)
0.998955 0.0457003i \(-0.0145519\pi\)
\(98\) −26.2094 + 94.4302i −0.267443 + 0.963574i
\(99\) −53.7202 129.692i −0.542628 1.31002i
\(100\) 9.17420 + 73.3770i 0.0917420 + 0.733770i
\(101\) 31.1848 75.2869i 0.308761 0.745415i −0.690985 0.722869i \(-0.742823\pi\)
0.999746 0.0225455i \(-0.00717706\pi\)
\(102\) −142.312 + 8.86202i −1.39522 + 0.0868825i
\(103\) 2.67598 2.67598i 0.0259804 0.0259804i −0.693997 0.719978i \(-0.744152\pi\)
0.719978 + 0.693997i \(0.244152\pi\)
\(104\) 108.271 158.659i 1.04107 1.52557i
\(105\) −71.6188 67.4613i −0.682084 0.642488i
\(106\) 103.000 116.680i 0.971700 1.10076i
\(107\) −69.2179 + 167.107i −0.646897 + 1.56175i 0.170303 + 0.985392i \(0.445525\pi\)
−0.817199 + 0.576355i \(0.804475\pi\)
\(108\) −236.178 + 134.313i −2.18683 + 1.24364i
\(109\) −1.47397 + 0.610540i −0.0135227 + 0.00560128i −0.389435 0.921054i \(-0.627330\pi\)
0.375912 + 0.926655i \(0.377330\pi\)
\(110\) −14.7567 30.1710i −0.134151 0.274282i
\(111\) 133.334 1.20121
\(112\) 97.9247 + 54.3577i 0.874327 + 0.485336i
\(113\) 42.7926i 0.378695i −0.981910 0.189348i \(-0.939363\pi\)
0.981910 0.189348i \(-0.0606373\pi\)
\(114\) −74.0478 151.396i −0.649542 1.32803i
\(115\) 5.25530 + 12.6874i 0.0456983 + 0.110325i
\(116\) −29.0420 + 105.628i −0.250362 + 0.910586i
\(117\) 473.220 + 196.014i 4.04461 + 1.67533i
\(118\) −88.5920 + 100.358i −0.750780 + 0.850494i
\(119\) −62.1302 + 65.9592i −0.522103 + 0.554279i
\(120\) −94.0999 + 61.5536i −0.784166 + 0.512947i
\(121\) 54.9420 + 54.9420i 0.454066 + 0.454066i
\(122\) −101.388 + 6.31363i −0.831052 + 0.0517511i
\(123\) −12.2132 5.05885i −0.0992939 0.0411289i
\(124\) −64.1987 + 82.5460i −0.517732 + 0.665693i
\(125\) −102.533 + 42.4706i −0.820264 + 0.339764i
\(126\) −88.4385 + 285.268i −0.701893 + 2.26403i
\(127\) 204.737 1.61210 0.806051 0.591846i \(-0.201601\pi\)
0.806051 + 0.591846i \(0.201601\pi\)
\(128\) 86.5692 94.2856i 0.676322 0.736607i
\(129\) 333.981i 2.58900i
\(130\) 115.917 + 39.7703i 0.891672 + 0.305926i
\(131\) −192.258 + 79.6357i −1.46761 + 0.607906i −0.966314 0.257367i \(-0.917145\pi\)
−0.501301 + 0.865273i \(0.667145\pi\)
\(132\) −88.9968 + 114.431i −0.674218 + 0.866901i
\(133\) −100.130 38.0113i −0.752857 0.285799i
\(134\) 0.108356 + 1.74005i 0.000808628 + 0.0129855i
\(135\) −122.574 122.574i −0.907959 0.907959i
\(136\) 56.6894 + 86.6637i 0.416834 + 0.637233i
\(137\) 16.3266 16.3266i 0.119172 0.119172i −0.645006 0.764178i \(-0.723145\pi\)
0.764178 + 0.645006i \(0.223145\pi\)
\(138\) 39.2265 44.4363i 0.284250 0.322002i
\(139\) −28.4103 11.7679i −0.204391 0.0846613i 0.278140 0.960541i \(-0.410282\pi\)
−0.482530 + 0.875879i \(0.660282\pi\)
\(140\) −16.8767 + 69.4357i −0.120548 + 0.495969i
\(141\) 324.740 134.512i 2.30312 0.953985i
\(142\) −60.3940 123.480i −0.425310 0.869574i
\(143\) 157.994 1.10485
\(144\) 293.349 + 174.502i 2.03715 + 1.21182i
\(145\) −69.8927 −0.482019
\(146\) −85.8806 175.589i −0.588223 1.20266i
\(147\) 117.983 + 242.713i 0.802608 + 1.65111i
\(148\) −47.8711 84.1773i −0.323453 0.568766i
\(149\) −17.4326 + 42.0860i −0.116997 + 0.282456i −0.971520 0.236958i \(-0.923850\pi\)
0.854523 + 0.519414i \(0.173850\pi\)
\(150\) 152.664 + 134.765i 1.01776 + 0.898434i
\(151\) 6.67074 6.67074i 0.0441771 0.0441771i −0.684673 0.728850i \(-0.740055\pi\)
0.728850 + 0.684673i \(0.240055\pi\)
\(152\) −68.9947 + 101.104i −0.453913 + 0.665160i
\(153\) −195.268 + 195.268i −1.27626 + 1.27626i
\(154\) 8.47044 + 91.7339i 0.0550028 + 0.595675i
\(155\) −61.6395 25.5319i −0.397674 0.164722i
\(156\) −65.6226 524.862i −0.420657 3.36450i
\(157\) −2.83630 + 1.17483i −0.0180656 + 0.00748301i −0.391698 0.920094i \(-0.628112\pi\)
0.373632 + 0.927577i \(0.378112\pi\)
\(158\) 67.9337 198.004i 0.429960 1.25319i
\(159\) 428.592i 2.69555i
\(160\) 72.6453 + 37.3081i 0.454033 + 0.233176i
\(161\) −1.12551 37.6508i −0.00699074 0.233856i
\(162\) −118.192 + 344.489i −0.729578 + 2.12648i
\(163\) −72.9396 176.092i −0.447482 1.08032i −0.973262 0.229697i \(-0.926227\pi\)
0.525780 0.850620i \(-0.323773\pi\)
\(164\) 1.19112 + 9.52679i 0.00726291 + 0.0580902i
\(165\) −85.4490 35.3941i −0.517873 0.214510i
\(166\) −7.27569 116.838i −0.0438294 0.703842i
\(167\) 1.99765 1.99765i 0.0119620 0.0119620i −0.701100 0.713062i \(-0.747308\pi\)
0.713062 + 0.701100i \(0.247308\pi\)
\(168\) 301.225 66.2406i 1.79301 0.394289i
\(169\) −288.138 + 288.138i −1.70496 + 1.70496i
\(170\) −43.7254 + 49.5328i −0.257208 + 0.291369i
\(171\) −301.556 124.908i −1.76348 0.730459i
\(172\) −210.851 + 119.910i −1.22588 + 0.697150i
\(173\) 70.0181 + 169.039i 0.404729 + 0.977101i 0.986502 + 0.163750i \(0.0523591\pi\)
−0.581773 + 0.813351i \(0.697641\pi\)
\(174\) 132.543 + 270.992i 0.761740 + 1.55743i
\(175\) 129.352 3.86676i 0.739153 0.0220958i
\(176\) 104.196 + 15.1017i 0.592023 + 0.0858053i
\(177\) 368.638i 2.08270i
\(178\) 121.947 59.6446i 0.685098 0.335082i
\(179\) 175.891 72.8566i 0.982634 0.407020i 0.167233 0.985917i \(-0.446517\pi\)
0.815400 + 0.578897i \(0.196517\pi\)
\(180\) −57.7329 + 209.979i −0.320739 + 1.16655i
\(181\) 116.575 + 48.2870i 0.644062 + 0.266779i 0.680714 0.732549i \(-0.261670\pi\)
−0.0366527 + 0.999328i \(0.511670\pi\)
\(182\) −258.536 214.827i −1.42053 1.18037i
\(183\) −197.807 + 197.807i −1.08091 + 1.08091i
\(184\) −42.1374 8.81070i −0.229008 0.0478842i
\(185\) 43.6874 43.6874i 0.236148 0.236148i
\(186\) 17.8976 + 287.411i 0.0962234 + 1.54522i
\(187\) −32.5971 + 78.6965i −0.174316 + 0.420837i
\(188\) −201.513 156.723i −1.07188 0.833635i
\(189\) 195.000 + 433.646i 1.03174 + 2.29442i
\(190\) −73.8675 25.3433i −0.388776 0.133386i
\(191\) 165.116 0.864482 0.432241 0.901758i \(-0.357723\pi\)
0.432241 + 0.901758i \(0.357723\pi\)
\(192\) 6.89080 352.415i 0.0358896 1.83550i
\(193\) −262.848 −1.36191 −0.680953 0.732327i \(-0.738434\pi\)
−0.680953 + 0.732327i \(0.738434\pi\)
\(194\) −5.75435 + 16.7720i −0.0296616 + 0.0864538i
\(195\) 311.786 129.146i 1.59890 0.662287i
\(196\) 110.871 161.628i 0.565671 0.824631i
\(197\) −82.6273 34.2253i −0.419428 0.173733i 0.162980 0.986629i \(-0.447889\pi\)
−0.582408 + 0.812897i \(0.697889\pi\)
\(198\) 17.4493 + 280.212i 0.0881278 + 1.41521i
\(199\) −117.305 + 117.305i −0.589475 + 0.589475i −0.937489 0.348014i \(-0.886856\pi\)
0.348014 + 0.937489i \(0.386856\pi\)
\(200\) 30.2697 144.766i 0.151349 0.723829i
\(201\) 3.39481 + 3.39481i 0.0168896 + 0.0168896i
\(202\) −107.859 + 122.184i −0.533954 + 0.604871i
\(203\) 179.229 + 68.0387i 0.882900 + 0.335166i
\(204\) 274.971 + 75.6024i 1.34790 + 0.370600i
\(205\) −5.65924 + 2.34413i −0.0276060 + 0.0114348i
\(206\) −6.79914 + 3.32546i −0.0330055 + 0.0161430i
\(207\) 114.795i 0.554564i
\(208\) −307.799 + 229.871i −1.47980 + 1.10515i
\(209\) −100.681 −0.481725
\(210\) 91.6998 + 174.104i 0.436666 + 0.829067i
\(211\) −362.717 + 150.242i −1.71904 + 0.712049i −0.719187 + 0.694817i \(0.755485\pi\)
−0.999852 + 0.0172322i \(0.994515\pi\)
\(212\) −270.582 + 153.878i −1.27633 + 0.725841i
\(213\) −349.713 144.856i −1.64185 0.680075i
\(214\) 239.404 271.200i 1.11871 1.26729i
\(215\) −109.430 109.430i −0.508978 0.508978i
\(216\) 533.966 100.797i 2.47207 0.466651i
\(217\) 133.210 + 125.477i 0.613871 + 0.578235i
\(218\) 3.18467 0.198315i 0.0146086 0.000909700i
\(219\) −497.295 205.986i −2.27075 0.940576i
\(220\) 8.33362 + 66.6539i 0.0378801 + 0.302972i
\(221\) −118.940 287.148i −0.538192 1.29931i
\(222\) −252.235 86.5399i −1.13619 0.389819i
\(223\) 27.1084i 0.121562i −0.998151 0.0607812i \(-0.980641\pi\)
0.998151 0.0607812i \(-0.0193592\pi\)
\(224\) −149.969 166.389i −0.669504 0.742809i
\(225\) 394.385 1.75282
\(226\) −27.7744 + 80.9530i −0.122895 + 0.358199i
\(227\) 197.820 81.9397i 0.871454 0.360968i 0.0982775 0.995159i \(-0.468667\pi\)
0.773176 + 0.634191i \(0.218667\pi\)
\(228\) 41.8175 + 334.464i 0.183410 + 1.46695i
\(229\) 151.031 364.622i 0.659526 1.59224i −0.139011 0.990291i \(-0.544392\pi\)
0.798537 0.601946i \(-0.205608\pi\)
\(230\) −1.70702 27.4124i −0.00742182 0.119184i
\(231\) 184.665 + 173.945i 0.799416 + 0.753009i
\(232\) 123.498 180.973i 0.532319 0.780055i
\(233\) 235.935 235.935i 1.01260 1.01260i 0.0126786 0.999920i \(-0.495964\pi\)
0.999920 0.0126786i \(-0.00403584\pi\)
\(234\) −767.994 677.952i −3.28203 2.89723i
\(235\) 62.3291 150.476i 0.265230 0.640322i
\(236\) 232.732 132.353i 0.986151 0.560818i
\(237\) −220.601 532.577i −0.930805 2.24716i
\(238\) 160.346 84.4534i 0.673722 0.354846i
\(239\) 184.016i 0.769942i −0.922929 0.384971i \(-0.874211\pi\)
0.922929 0.384971i \(-0.125789\pi\)
\(240\) 217.965 55.3691i 0.908188 0.230705i
\(241\) 253.749 1.05290 0.526449 0.850207i \(-0.323523\pi\)
0.526449 + 0.850207i \(0.323523\pi\)
\(242\) −68.2769 139.597i −0.282136 0.576846i
\(243\) 149.860 + 361.795i 0.616709 + 1.48887i
\(244\) 195.900 + 53.8619i 0.802868 + 0.220746i
\(245\) 118.183 + 40.8681i 0.482382 + 0.166809i
\(246\) 19.8209 + 17.4970i 0.0805726 + 0.0711261i
\(247\) 259.765 259.765i 1.05168 1.05168i
\(248\) 175.024 114.489i 0.705744 0.461648i
\(249\) −227.948 227.948i −0.915455 0.915455i
\(250\) 221.533 13.7952i 0.886131 0.0551809i
\(251\) −110.097 + 265.797i −0.438632 + 1.05895i 0.537790 + 0.843079i \(0.319259\pi\)
−0.976422 + 0.215872i \(0.930741\pi\)
\(252\) 352.456 482.256i 1.39864 1.91372i
\(253\) −13.5505 32.7138i −0.0535593 0.129303i
\(254\) −387.312 132.884i −1.52485 0.523165i
\(255\) 181.945i 0.713510i
\(256\) −224.963 + 122.178i −0.878763 + 0.477258i
\(257\) 19.7298i 0.0767695i −0.999263 0.0383848i \(-0.987779\pi\)
0.999263 0.0383848i \(-0.0122213\pi\)
\(258\) −216.769 + 631.811i −0.840191 + 2.44888i
\(259\) −154.558 + 69.5008i −0.596749 + 0.268343i
\(260\) −193.475 150.472i −0.744133 0.578737i
\(261\) 539.773 + 223.581i 2.06810 + 0.856633i
\(262\) 415.392 25.8671i 1.58546 0.0987296i
\(263\) 123.704 + 123.704i 0.470357 + 0.470357i 0.902030 0.431673i \(-0.142077\pi\)
−0.431673 + 0.902030i \(0.642077\pi\)
\(264\) 242.631 158.712i 0.919057 0.601183i
\(265\) −140.430 140.430i −0.529924 0.529924i
\(266\) 164.750 + 136.897i 0.619362 + 0.514651i
\(267\) 143.059 345.374i 0.535800 1.29354i
\(268\) 0.924393 3.36209i 0.00344923 0.0125451i
\(269\) 89.1653 + 215.264i 0.331470 + 0.800238i 0.998476 + 0.0551865i \(0.0175753\pi\)
−0.667006 + 0.745052i \(0.732425\pi\)
\(270\) 152.324 + 311.438i 0.564165 + 1.15347i
\(271\) −211.034 −0.778724 −0.389362 0.921085i \(-0.627304\pi\)
−0.389362 + 0.921085i \(0.627304\pi\)
\(272\) −50.9937 200.741i −0.187477 0.738017i
\(273\) −925.246 + 27.6587i −3.38918 + 0.101314i
\(274\) −41.4827 + 20.2892i −0.151397 + 0.0740483i
\(275\) 112.390 46.5536i 0.408692 0.169286i
\(276\) −103.048 + 58.6028i −0.373363 + 0.212329i
\(277\) 119.315 288.051i 0.430738 1.03989i −0.548312 0.836274i \(-0.684729\pi\)
0.979050 0.203620i \(-0.0652708\pi\)
\(278\) 46.1074 + 40.7016i 0.165854 + 0.146409i
\(279\) 394.360 + 394.360i 1.41348 + 1.41348i
\(280\) 76.9936 120.402i 0.274977 0.430006i
\(281\) −169.721 169.721i −0.603989 0.603989i 0.337380 0.941369i \(-0.390459\pi\)
−0.941369 + 0.337380i \(0.890459\pi\)
\(282\) −701.634 + 43.6919i −2.48806 + 0.154936i
\(283\) 10.3304 24.9398i 0.0365032 0.0881265i −0.904577 0.426311i \(-0.859813\pi\)
0.941080 + 0.338185i \(0.109813\pi\)
\(284\) 34.1067 + 272.792i 0.120094 + 0.960534i
\(285\) −198.683 + 82.2973i −0.697134 + 0.288762i
\(286\) −298.886 102.546i −1.04506 0.358551i
\(287\) 16.7942 0.502035i 0.0585163 0.00174925i
\(288\) −441.685 520.513i −1.53363 1.80734i
\(289\) −121.433 −0.420183
\(290\) 132.220 + 45.3636i 0.455931 + 0.156426i
\(291\) 18.6861 + 45.1122i 0.0642133 + 0.155025i
\(292\) 48.4999 + 387.911i 0.166095 + 1.32846i
\(293\) −1.20658 + 2.91294i −0.00411802 + 0.00994178i −0.925925 0.377707i \(-0.876713\pi\)
0.921807 + 0.387649i \(0.126713\pi\)
\(294\) −65.6637 535.730i −0.223346 1.82221i
\(295\) 120.786 + 120.786i 0.409444 + 0.409444i
\(296\) 35.9254 + 190.314i 0.121370 + 0.642951i
\(297\) 316.051 + 316.051i 1.06415 + 1.06415i
\(298\) 60.2939 68.3018i 0.202329 0.229201i
\(299\) 119.366 + 49.4430i 0.399217 + 0.165361i
\(300\) −201.334 354.029i −0.671113 1.18010i
\(301\) 174.089 + 387.144i 0.578368 + 1.28619i
\(302\) −16.9490 + 8.28979i −0.0561226 + 0.0274496i
\(303\) 448.809i 1.48122i
\(304\) 196.143 146.484i 0.645206 0.481855i
\(305\) 129.624i 0.424998i
\(306\) 496.138 242.662i 1.62137 0.793012i
\(307\) −105.156 253.869i −0.342528 0.826936i −0.997459 0.0712470i \(-0.977302\pi\)
0.654931 0.755689i \(1.72730\pi\)
\(308\) 43.5156 179.036i 0.141284 0.581285i
\(309\) −7.97619 + 19.2562i −0.0258129 + 0.0623179i
\(310\) 100.035 + 88.3070i 0.322695 + 0.284861i
\(311\) 308.259 + 308.259i 0.991187 + 0.991187i 0.999962 0.00877417i \(-0.00279294\pi\)
−0.00877417 + 0.999962i \(0.502793\pi\)
\(312\) −216.518 + 1035.50i −0.693968 + 3.31892i
\(313\) −49.9640 + 49.9640i −0.159629 + 0.159629i −0.782402 0.622773i \(-0.786006\pi\)
0.622773 + 0.782402i \(0.286006\pi\)
\(314\) 6.12810 0.381607i 0.0195162 0.00121531i
\(315\) 356.291 + 135.255i 1.13108 + 0.429381i
\(316\) −257.028 + 330.483i −0.813379 + 1.04583i
\(317\) −80.6419 194.687i −0.254391 0.614154i 0.744158 0.668003i \(-0.232851\pi\)
−0.998549 + 0.0538495i \(0.982851\pi\)
\(318\) −278.176 + 810.791i −0.874768 + 2.54966i
\(319\) 180.214 0.564935
\(320\) −113.212 117.728i −0.353789 0.367900i
\(321\) 996.178i 3.10336i
\(322\) −22.3079 + 71.9566i −0.0692792 + 0.223468i
\(323\) 75.7939 + 182.983i 0.234656 + 0.566509i
\(324\) 447.179 574.978i 1.38018 1.77462i
\(325\) −169.865 + 410.090i −0.522661 + 1.26181i
\(326\) 23.6921 + 380.464i 0.0726752 + 1.16707i
\(327\) 6.21322 6.21322i 0.0190007 0.0190007i
\(328\) 3.93002 18.7954i 0.0119818 0.0573032i
\(329\) −306.317 + 325.195i −0.931056 + 0.988436i
\(330\) 138.676 + 122.417i 0.420231 + 0.370962i
\(331\) −143.604 + 346.691i −0.433849 + 1.04740i 0.544186 + 0.838965i \(0.316839\pi\)
−0.978035 + 0.208440i \(0.933161\pi\)
\(332\) −62.0693 + 225.751i −0.186956 + 0.679972i
\(333\) −477.145 + 197.640i −1.43287 + 0.593513i
\(334\) −5.07564 + 2.48250i −0.0151965 + 0.00743264i
\(335\) 2.22465 0.00664074
\(336\) −612.837 70.1980i −1.82392 0.208923i
\(337\) 438.012i 1.29974i −0.760046 0.649869i \(-0.774824\pi\)
0.760046 0.649869i \(-0.225176\pi\)
\(338\) 732.102 358.072i 2.16598 1.05938i
\(339\) 90.1915 + 217.742i 0.266052 + 0.642305i
\(340\) 114.867 65.3241i 0.337844 0.192130i
\(341\) 158.934 + 65.8326i 0.466082 + 0.193057i
\(342\) 489.398 + 432.020i 1.43099 + 1.26322i
\(343\) −263.279 219.848i −0.767577 0.640957i
\(344\) 476.706 89.9877i 1.38577 0.261592i
\(345\) −53.4812 53.4812i −0.155018 0.155018i
\(346\) −22.7432 365.225i −0.0657317 1.05556i
\(347\) 10.4450 + 4.32648i 0.0301010 + 0.0124682i 0.397683 0.917523i \(-0.369814\pi\)
−0.367582 + 0.929991i \(0.619814\pi\)
\(348\) −74.8517 598.678i −0.215091 1.72034i
\(349\) 34.0581 14.1073i 0.0975877 0.0404221i −0.333356 0.942801i \(-0.608181\pi\)
0.430943 + 0.902379i \(0.358181\pi\)
\(350\) −247.212 76.6403i −0.706319 0.218972i
\(351\) −1630.88 −4.64639
\(352\) −187.312 96.1969i −0.532136 0.273287i
\(353\) 549.398i 1.55637i 0.628036 + 0.778184i \(0.283859\pi\)
−0.628036 + 0.778184i \(0.716141\pi\)
\(354\) 239.264 697.374i 0.675886 1.96998i
\(355\) −162.048 + 67.1223i −0.456472 + 0.189077i
\(356\) −269.407 + 33.6835i −0.756761 + 0.0946165i
\(357\) 177.119 466.569i 0.496131 1.30692i
\(358\) −380.031 + 23.6652i −1.06154 + 0.0661038i
\(359\) −24.9930 24.9930i −0.0696183 0.0696183i 0.671440 0.741059i \(-0.265676\pi\)
−0.741059 + 0.671440i \(0.765676\pi\)
\(360\) 245.503 359.758i 0.681952 0.999327i
\(361\) 89.7324 89.7324i 0.248566 0.248566i
\(362\) −189.191 167.010i −0.522628 0.461353i
\(363\) −395.360 163.763i −1.08915 0.451139i
\(364\) 349.655 + 574.203i 0.960589 + 1.57748i
\(365\) −230.433 + 95.4483i −0.631322 + 0.261502i
\(366\) 502.588 245.816i 1.37319 0.671630i
\(367\) 334.565 0.911620 0.455810 0.890077i \(-0.349350\pi\)
0.455810 + 0.890077i \(0.349350\pi\)
\(368\) 73.9951 + 44.0168i 0.201074 + 0.119611i
\(369\) 51.2043 0.138765
\(370\) −111.001 + 54.2907i −0.300003 + 0.146732i
\(371\) 223.405 + 496.815i 0.602171 + 1.33912i
\(372\) 152.685 555.327i 0.410444 1.49281i
\(373\) −16.1104 + 38.8939i −0.0431913 + 0.104273i −0.944003 0.329937i \(-0.892972\pi\)
0.900812 + 0.434210i \(0.142972\pi\)
\(374\) 112.743 127.717i 0.301453 0.341490i
\(375\) 432.206 432.206i 1.15255 1.15255i
\(376\) 279.493 + 427.274i 0.743332 + 1.13637i
\(377\) −464.969 + 464.969i −1.23334 + 1.23334i
\(378\) −87.4354 946.916i −0.231311 2.50507i
\(379\) 264.383 + 109.511i 0.697580 + 0.288947i 0.703154 0.711037i \(-0.251774\pi\)
−0.00557400 + 0.999984i \(0.501774\pi\)
\(380\) 123.290 + 95.8868i 0.324448 + 0.252334i
\(381\) −1041.76 + 431.513i −2.73429 + 1.13258i
\(382\) −312.359 107.168i −0.817695 0.280545i
\(383\) 443.315i 1.15748i −0.815512 0.578741i \(-0.803544\pi\)
0.815512 0.578741i \(-0.196456\pi\)
\(384\) −241.770 + 662.211i −0.629608 + 1.72451i
\(385\) 117.500 3.51247i 0.305195 0.00912331i
\(386\) 497.244 + 170.601i 1.28820 + 0.441970i
\(387\) 495.058 + 1195.18i 1.27922 + 3.08831i
\(388\) 21.7717 27.9937i 0.0561125 0.0721488i
\(389\) −234.282 97.0428i −0.602268 0.249467i 0.0606509 0.998159i \(-0.480682\pi\)
−0.662918 + 0.748692i \(0.730682\pi\)
\(390\) −673.645 + 41.9490i −1.72729 + 0.107562i
\(391\) −49.2549 + 49.2549i −0.125972 + 0.125972i
\(392\) −314.646 + 233.799i −0.802667 + 0.596427i
\(393\) 810.421 810.421i 2.06214 2.06214i
\(394\) 134.097 + 118.375i 0.340347 + 0.300444i
\(395\) −246.782 102.220i −0.624764 0.258786i
\(396\) 148.861 541.419i 0.375912 1.36722i
\(397\) −227.661 549.622i −0.573453 1.38444i −0.898597 0.438774i \(-0.855413\pi\)
0.325144 0.945664i \(1.60541\pi\)
\(398\) 298.050 145.777i 0.748869 0.366273i
\(399\) 589.606 17.6253i 1.47771 0.0441737i
\(400\) −151.223 + 254.215i −0.378057 + 0.635538i
\(401\) 595.500i 1.48504i 0.669826 + 0.742518i \(0.266369\pi\)
−0.669826 + 0.742518i \(0.733631\pi\)
\(402\) −4.21877 8.62555i −0.0104944 0.0214566i
\(403\) −579.918 + 240.210i −1.43900 + 0.596054i
\(404\) 283.346 161.137i 0.701350 0.398853i
\(405\) 429.353 + 177.844i 1.06013 + 0.439120i
\(406\) −294.897 245.040i −0.726346 0.603548i
\(407\) −112.645 + 112.645i −0.276770 + 0.276770i
\(408\) −471.109 321.490i −1.15468 0.787967i
\(409\) 369.737 369.737i 0.904002 0.904002i −0.0917776 0.995780i \(-0.529255\pi\)
0.995780 + 0.0917776i \(0.0292549\pi\)
\(410\) 12.2273 0.761418i 0.0298228 0.00185712i
\(411\) −48.6641 + 117.486i −0.118404 + 0.285853i
\(412\) 15.0207 1.87801i 0.0364580 0.00455828i
\(413\) −192.154 427.318i −0.465264 1.03467i
\(414\) −74.5071 + 217.164i −0.179969 + 0.524550i
\(415\) −149.376 −0.359943
\(416\) 731.478 235.085i 1.75836 0.565107i
\(417\) 169.363 0.406146
\(418\) 190.463 + 65.3464i 0.455653 + 0.156331i
\(419\) 496.820 205.790i 1.18573 0.491145i 0.299367 0.954138i \(-0.403225\pi\)
0.886362 + 0.462993i \(0.153225\pi\)
\(420\) −60.4720 388.880i −0.143981 0.925905i
\(421\) 293.755 + 121.677i 0.697754 + 0.289019i 0.703227 0.710966i \(-0.251742\pi\)
−0.00547243 + 0.999985i \(0.501742\pi\)
\(422\) 783.686 48.8015i 1.85708 0.115643i
\(423\) −962.721 + 962.721i −2.27594 + 2.27594i
\(424\) 611.749 115.480i 1.44280 0.272358i
\(425\) −169.218 169.218i −0.398161 0.398161i
\(426\) 567.554 + 501.012i 1.33229 + 1.17609i
\(427\) 126.186 332.401i 0.295518 0.778457i
\(428\) −628.914 + 357.659i −1.46943 + 0.835653i
\(429\) −803.922 + 332.996i −1.87394 + 0.776213i
\(430\) 135.990 + 278.041i 0.316256 + 0.646606i
\(431\) 5.12246i 0.0118851i −0.999982 0.00594253i \(-0.998108\pi\)
0.999982 0.00594253i \(-0.00189158\pi\)
\(432\) −1075.56 155.886i −2.48971 0.360848i
\(433\) 684.828 1.58159 0.790795 0.612082i \(-0.209668\pi\)
0.790795 + 0.612082i \(0.209668\pi\)
\(434\) −170.560 323.831i −0.392996 0.746155i
\(435\) 355.635 147.309i 0.817552 0.338641i
\(436\) −6.15332 1.69183i −0.0141131 0.00388035i
\(437\) −76.0651 31.5072i −0.174062 0.0720988i
\(438\) 807.065 + 712.443i 1.84261 + 1.62658i
\(439\) −20.8767 20.8767i −0.0475552 0.0475552i 0.682929 0.730484i \(-0.260706\pi\)
−0.730484 + 0.682929i \(0.760706\pi\)
\(440\) 27.4963 131.502i 0.0624916 0.298868i
\(441\) −781.983 693.679i −1.77320 1.57297i
\(442\) 38.6340 + 620.411i 0.0874073 + 1.40364i
\(443\) 188.599 + 78.1204i 0.425732 + 0.176344i 0.585253 0.810851i \(-0.300995\pi\)
−0.159521 + 0.987194i \(0.550995\pi\)
\(444\) 420.999 + 327.425i 0.948195 + 0.737443i
\(445\) −66.2895 160.037i −0.148965 0.359634i
\(446\) −17.5946 + 51.2825i −0.0394498 + 0.114983i
\(447\) 250.888i 0.561270i
\(448\) 175.710 + 412.104i 0.392210 + 0.919876i
\(449\) 111.048 0.247323 0.123661 0.992324i \(-0.460536\pi\)
0.123661 + 0.992324i \(0.460536\pi\)
\(450\) −746.080 255.974i −1.65796 0.568832i
\(451\) 14.5920 6.04421i 0.0323548 0.0134018i
\(452\) 105.085 135.117i 0.232488 0.298930i
\(453\) −19.8832 + 48.0023i −0.0438923 + 0.105965i
\(454\) −427.410 + 26.6155i −0.941431 + 0.0586246i
\(455\) −294.098 + 312.223i −0.646369 + 0.686204i
\(456\) 137.974 659.866i 0.302575 1.44707i
\(457\) 144.681 144.681i 0.316588 0.316588i −0.530867 0.847455i \(-0.678134\pi\)
0.847455 + 0.530867i \(0.178134\pi\)
\(458\) −522.371 + 591.750i −1.14055 + 1.29203i
\(459\) 336.481 812.338i 0.733075 1.76980i
\(460\) −14.5627 + 52.9656i −0.0316580 + 0.115143i
\(461\) −220.262 531.760i −0.477792 1.15349i −0.960642 0.277790i \(-0.910398\pi\)
0.482850 0.875703i \(1.66040\pi\)
\(462\) −236.443 448.918i −0.511781 0.971683i
\(463\) 756.952i 1.63489i −0.576009 0.817443i \(-0.695391\pi\)
0.576009 0.817443i \(-0.304609\pi\)
\(464\) −351.088 + 262.200i −0.756654 + 0.565087i
\(465\) 367.453 0.790221
\(466\) −599.465 + 293.199i −1.28641 + 0.629182i
\(467\) 263.945 + 637.220i 0.565193 + 1.36450i 0.905566 + 0.424206i \(0.139447\pi\)
−0.340373 + 0.940291i \(0.610553\pi\)
\(468\) 1012.83 + 1780.98i 2.16418 + 3.80552i
\(469\) −5.70476 2.16564i −0.0121637 0.00461757i
\(470\) −215.577 + 244.209i −0.458675 + 0.519593i
\(471\) 11.9558 11.9558i 0.0253839 0.0253839i
\(472\) −526.174 + 99.3258i −1.11478 + 0.210436i
\(473\) 282.160 + 282.160i 0.596532 + 0.596532i
\(474\) 71.6552 + 1150.69i 0.151171 + 2.42761i
\(475\) 108.245 261.327i 0.227884 0.550161i
\(476\) −358.149 + 55.6932i −0.752414 + 0.117003i
\(477\) 635.299 + 1533.75i 1.33186 + 3.21540i
\(478\) −119.435 + 348.114i −0.249864 + 0.728271i
\(479\) 381.484i 0.796417i 0.917295 + 0.398209i \(0.130368\pi\)
−0.917295 + 0.398209i \(0.869632\pi\)
\(480\) −448.274 36.7246i −0.933904 0.0765096i
\(481\) 581.270i 1.20846i
\(482\) −480.030 164.695i −0.995913 0.341690i
\(483\) 85.0814 + 189.206i 0.176152 + 0.391732i
\(484\) 38.5584 + 308.398i 0.0796662 + 0.637185i
\(485\) 20.9038 + 8.65862i 0.0431005 + 0.0178528i
\(486\) −48.6774 781.694i −0.100159 1.60842i
\(487\) 72.7819 + 72.7819i 0.149449 + 0.149449i 0.777872 0.628423i \(-0.216299\pi\)
−0.628423 + 0.777872i \(0.716299\pi\)
\(488\) −335.636 229.042i −0.687778 0.469348i
\(489\) 742.277 + 742.277i 1.51795 + 1.51795i
\(490\) −197.049 154.019i −0.402141 0.314325i
\(491\) 40.6981 98.2539i 0.0828882 0.200110i −0.877002 0.480488i \(-0.840460\pi\)
0.959890 + 0.280378i \(0.0904597\pi\)
\(492\) −26.1398 45.9647i −0.0531298 0.0934243i
\(493\) −135.668 327.532i −0.275189 0.664364i
\(494\) −660.011 + 322.812i −1.33605 + 0.653466i
\(495\) 358.250 0.723737
\(496\) −405.412 + 102.986i −0.817363 + 0.207633i
\(497\) 480.887 14.3754i 0.967580 0.0289242i
\(498\) 283.273 + 579.171i 0.568822 + 1.16299i
\(499\) −121.759 + 50.4340i −0.244005 + 0.101070i −0.501335 0.865253i \(-0.667157\pi\)
0.257330 + 0.966324i \(0.417157\pi\)
\(500\) −428.039 117.688i −0.856079 0.235376i
\(501\) −5.95433 + 14.3750i −0.0118849 + 0.0286926i
\(502\) 380.790 431.364i 0.758546 0.859292i
\(503\) 265.041 + 265.041i 0.526920 + 0.526920i 0.919653 0.392733i \(-0.128470\pi\)
−0.392733 + 0.919653i \(0.628470\pi\)
\(504\) −979.767 + 683.551i −1.94398 + 1.35625i
\(505\) 147.054 + 147.054i 0.291196 + 0.291196i
\(506\) 4.40145 + 70.6814i 0.00869852 + 0.139687i
\(507\) 858.841 2073.43i 1.69397 4.08960i
\(508\) 646.452 + 502.767i 1.27254 + 0.989700i
\(509\) 238.605 98.8333i 0.468771 0.194171i −0.135778 0.990739i \(-0.543353\pi\)
0.604549 + 0.796568i \(0.293353\pi\)
\(510\) 118.091 344.196i 0.231551 0.674893i
\(511\) 683.824 20.4418i 1.33821 0.0400036i
\(512\) 504.875 85.1191i 0.986084 0.166248i
\(513\) 1039.27 2.02586
\(514\) −12.8055 + 37.3239i −0.0249135 + 0.0726146i
\(515\) 3.69595 + 8.92280i 0.00717659 + 0.0173258i
\(516\) 820.149 1054.54i 1.58944 2.04368i
\(517\) −160.712 + 387.993i −0.310855 + 0.750470i
\(518\) 337.495 31.1633i 0.651535 0.0601608i
\(519\) −712.546 712.546i −1.37292 1.37292i
\(520\) 268.343 + 410.229i 0.516045 + 0.788902i
\(521\) 304.312 + 304.312i 0.584092 + 0.584092i 0.936025 0.351933i \(-0.114476\pi\)
−0.351933 + 0.936025i \(0.614476\pi\)
\(522\) −876.004 773.299i −1.67817 1.48142i
\(523\) −655.653 271.580i −1.25364 0.519274i −0.345687 0.938350i \(-0.612354\pi\)
−0.907951 + 0.419076i \(0.862354\pi\)
\(524\) −802.608 220.674i −1.53170 0.421134i
\(525\) −650.031 + 292.303i −1.23815 + 0.556767i
\(526\) −153.728 314.307i −0.292258 0.597542i
\(527\) 338.415i 0.642154i
\(528\) −562.010 + 142.766i −1.06441 + 0.270390i
\(529\) 500.044i 0.945263i
\(530\) 174.513 + 356.805i 0.329271 + 0.673216i
\(531\) −546.430 1319.20i −1.02906 2.48437i
\(532\) −222.815 365.906i −0.418825 0.687794i
\(533\) −22.0541 + 53.2433i −0.0413773 + 0.0998937i
\(534\) −494.796 + 560.512i −0.926584 + 1.04965i
\(535\) −326.402 326.402i −0.610096 0.610096i
\(536\) −3.93088 + 5.76027i −0.00733372 + 0.0107468i
\(537\) −741.433 + 741.433i −1.38069 + 1.38069i
\(538\) −28.9626 465.100i −0.0538337 0.864497i
\(539\) −304.729 105.376i −0.565361 0.195503i
\(540\) −86.0231 688.029i −0.159302 1.27413i
\(541\) −36.8197 88.8907i −0.0680586 0.164308i 0.886190 0.463321i \(-0.153342\pi\)
−0.954249 + 0.299013i \(0.903342\pi\)
\(542\) 399.225 + 136.971i 0.736578 + 0.252714i
\(543\) −694.942 −1.27982
\(544\) −33.8225 + 412.849i −0.0621737 + 0.758915i
\(545\) 4.07157i 0.00747078i
\(546\) 1768.29 + 548.204i 3.23863 + 1.00404i
\(547\) −158.179 381.878i −0.289176 0.698132i 0.710811 0.703383i \(-0.248328\pi\)
−0.999986 + 0.00525185i \(0.998328\pi\)
\(548\) 91.6438 11.4581i 0.167233 0.0209089i
\(549\) 414.658 1001.07i 0.755298 1.82345i
\(550\) −242.831 + 15.1215i −0.441510 + 0.0274936i
\(551\) 296.298 296.298i 0.537746 0.537746i
\(552\) 232.978 43.9791i 0.422061 0.0796724i
\(553\) 533.324 + 502.363i 0.964419 + 0.908433i
\(554\) −412.672 + 467.481i −0.744896 + 0.843828i
\(555\) −130.217 + 314.372i −0.234626 + 0.566436i
\(556\) −60.8066 106.923i −0.109364 0.192308i
\(557\) 911.509 377.560i 1.63646 0.677845i 0.640528 0.767935i \(-0.278715\pi\)
0.995934 + 0.0900898i \(0.0287154\pi\)
\(558\) −490.075 1001.99i −0.878270 1.79568i
\(559\) −1455.99 −2.60464
\(560\) −223.799 + 177.798i −0.399641 + 0.317496i
\(561\) 469.135i 0.836247i
\(562\) 210.914 + 431.227i 0.375291 + 0.767308i
\(563\) −84.5886 204.215i −0.150246 0.362726i 0.830780 0.556601i \(-0.187895\pi\)
−0.981026 + 0.193874i \(0.937895\pi\)
\(564\) 1355.68 + 372.738i 2.40368 + 0.660884i
\(565\) 100.895 + 41.7923i 0.178576 + 0.0739686i
\(566\) −35.7297 + 40.4751i −0.0631267 + 0.0715108i
\(567\) −927.881 874.016i −1.63647 1.54147i
\(568\) 112.533 538.192i 0.198121 0.947521i
\(569\) 437.146 + 437.146i 0.768271 + 0.768271i 0.977802 0.209531i \(-0.0671937\pi\)
−0.209531 + 0.977802i \(0.567194\pi\)
\(570\) 429.275 26.7317i 0.753114 0.0468977i
\(571\) −174.532 72.2933i −0.305659 0.126608i 0.224581 0.974455i \(-0.427899\pi\)
−0.530241 + 0.847847i \(0.677899\pi\)
\(572\) 498.863 + 387.982i 0.872138 + 0.678291i
\(573\) −840.161 + 348.006i −1.46625 + 0.607341i
\(574\) −32.0963 9.95047i −0.0559169 0.0173353i
\(575\) 99.4805 0.173010
\(576\) 497.724 + 1271.36i 0.864103 + 2.20722i
\(577\) 92.1486i 0.159703i −0.996807 0.0798515i \(-0.974555\pi\)
0.996807 0.0798515i \(-0.0254446\pi\)
\(578\) 229.721 + 78.8156i 0.397442 + 0.136359i
\(579\) 1337.45 553.990i 2.30993 0.956805i
\(580\) −220.685 171.634i −0.380491 0.295920i
\(581\) 383.052 + 145.414i 0.659297 + 0.250282i
\(582\) −6.06959 97.4694i −0.0104288 0.167473i
\(583\) 362.090 + 362.090i 0.621081 + 0.621081i
\(584\) 160.023 765.312i 0.274011 1.31047i
\(585\) −924.317 + 924.317i −1.58003 + 1.58003i
\(586\) 4.17319 4.72745i 0.00712148 0.00806731i
\(587\) 539.361 + 223.411i 0.918843 + 0.380597i 0.791435 0.611253i \(-0.209334\pi\)
0.127408 + 0.991850i \(0.459334\pi\)
\(588\) −223.494 + 1056.09i −0.380092 + 1.79607i
\(589\) 369.548 153.072i 0.627416 0.259884i
\(590\) −150.102 306.893i −0.254410 0.520157i
\(591\) 492.568 0.833448
\(592\) 55.5602 383.344i 0.0938517 0.647540i
\(593\) −446.001 −0.752110 −0.376055 0.926597i \(-0.622720\pi\)
−0.376055 + 0.926597i \(0.622720\pi\)
\(594\) −392.760 803.024i −0.661212 1.35189i
\(595\) −94.8395 210.907i −0.159394 0.354465i
\(596\) −158.392 + 90.0767i −0.265759 + 0.151135i
\(597\) 349.648 844.124i 0.585675 1.41394i
\(598\) −193.720 171.008i −0.323947 0.285967i
\(599\) 262.791 262.791i 0.438716 0.438716i −0.452864 0.891580i \(-0.649598\pi\)
0.891580 + 0.452864i \(0.149598\pi\)
\(600\) 151.093 + 800.410i 0.251822 + 1.33402i
\(601\) 21.0456 21.0456i 0.0350177 0.0350177i −0.689381 0.724399i \(-0.742117\pi\)
0.724399 + 0.689381i \(0.242117\pi\)
\(602\) −78.0593 845.373i −0.129667 1.40427i
\(603\) −17.1807 7.11648i −0.0284920 0.0118018i
\(604\) 37.4439 4.68154i 0.0619932 0.00775090i
\(605\) −183.199 + 75.8834i −0.302808 + 0.125427i
\(606\) 291.298 849.037i 0.480690 1.40105i
\(607\) 261.327i 0.430523i 0.976556 + 0.215261i \(0.0690604\pi\)
−0.976556 + 0.215261i \(0.930940\pi\)
\(608\) −466.129 + 149.806i −0.766659 + 0.246391i
\(609\) −1055.37 + 31.5486i −1.73296 + 0.0518040i
\(610\) 84.1323 245.218i 0.137922 0.401996i
\(611\) −586.406 1415.71i −0.959747 2.31704i
\(612\) −1096.07 + 137.040i −1.79096 + 0.223921i
\(613\) −776.638 321.694i −1.26695 0.524786i −0.354911 0.934900i \(-0.615489\pi\)
−0.912034 + 0.410114i \(0.865489\pi\)
\(614\) 34.1567 + 548.510i 0.0556297 + 0.893339i
\(615\) 23.8553 23.8553i 0.0387892 0.0387892i
\(616\) −198.523 + 310.448i −0.322278 + 0.503975i
\(617\) −69.8903 + 69.8903i −0.113274 + 0.113274i −0.761472 0.648198i \(-0.775523\pi\)
0.648198 + 0.761472i \(0.275523\pi\)
\(618\) 27.5872 31.2511i 0.0446394 0.0505682i
\(619\) −243.628 100.914i −0.393583 0.163027i 0.177110 0.984191i \(-0.443325\pi\)
−0.570693 + 0.821164i \(0.693325\pi\)
\(620\) −131.927 231.983i −0.212786 0.374166i
\(621\) 139.874 + 337.685i 0.225240 + 0.543777i
\(622\) −383.077 783.226i −0.615879 1.25921i
\(623\) 14.1970 + 474.920i 0.0227881 + 0.762312i
\(624\) 1081.69 1818.39i 1.73347 2.91408i
\(625\) 178.949i 0.286318i
\(626\) 126.949 62.0907i 0.202793 0.0991864i
\(627\) 512.293 212.199i 0.817055 0.338435i
\(628\) −11.8405 3.25551i −0.0188544 0.00518394i
\(629\) 289.529 + 119.927i 0.460301 + 0.190663i
\(630\) −586.228 487.118i −0.930520 0.773204i
\(631\) −722.309 + 722.309i −1.14471 + 1.14471i −0.157127 + 0.987578i \(0.550223\pi\)
−0.987578 + 0.157127i \(0.949777\pi\)
\(632\) 700.733 458.371i 1.10875 0.725270i
\(633\) 1528.96 1528.96i 2.41541 2.41541i
\(634\) 26.1940 + 420.640i 0.0413154 + 0.663470i
\(635\) −199.951 + 482.725i −0.314884 + 0.760197i
\(636\) 1052.48 1353.27i 1.65485 2.12778i
\(637\) 1058.11 514.349i 1.66108 0.807456i
\(638\) −340.921 116.967i −0.534359 0.183335i
\(639\) 1466.19 2.29451
\(640\) 137.759 + 296.193i 0.215249 + 0.462801i
\(641\) −685.507 −1.06943 −0.534717 0.845031i \(-0.679582\pi\)
−0.534717 + 0.845031i \(0.679582\pi\)
\(642\) −646.566 + 1884.52i −1.00711 + 2.93540i
\(643\) −336.431 + 139.354i −0.523220 + 0.216725i −0.628631 0.777704i \(-0.716384\pi\)
0.105411 + 0.994429i \(0.466384\pi\)
\(644\) 88.9043 121.645i 0.138050 0.188890i
\(645\) 787.454 + 326.174i 1.22086 + 0.505697i
\(646\) −24.6192 395.352i −0.0381103 0.612000i
\(647\) 262.641 262.641i 0.405936 0.405936i −0.474383 0.880319i \(-0.657329\pi\)
0.880319 + 0.474383i \(0.157329\pi\)
\(648\) −1219.14 + 797.477i −1.88139 + 1.23067i
\(649\) −311.439 311.439i −0.479876 0.479876i
\(650\) 587.510 665.539i 0.903861 1.02391i
\(651\) −942.274 357.706i −1.44743 0.549471i
\(652\) 202.119 735.121i 0.309998 1.12749i
\(653\) 639.834 265.028i 0.979838 0.405862i 0.165472 0.986214i \(-0.447085\pi\)
0.814366 + 0.580352i \(0.197085\pi\)
\(654\) −15.7866 + 7.72123i −0.0241385 + 0.0118062i
\(655\) 531.075i 0.810802i
\(656\) −19.6338 + 33.0056i −0.0299295 + 0.0503134i
\(657\) 2084.94 3.17342
\(658\) 790.545 416.376i 1.20144 0.632790i
\(659\) −695.726 + 288.179i −1.05573 + 0.437297i −0.841934 0.539581i \(-0.818583\pi\)
−0.213796 + 0.976878i \(0.568583\pi\)
\(660\) −182.887 321.591i −0.277101 0.487259i
\(661\) −595.117 246.506i −0.900329 0.372928i −0.115982 0.993251i \(-0.537002\pi\)
−0.784347 + 0.620323i \(0.787002\pi\)
\(662\) 496.682 562.649i 0.750275 0.849923i
\(663\) 1210.41 + 1210.41i 1.82566 + 1.82566i
\(664\) 263.943 386.779i 0.397504 0.582499i
\(665\) 187.412 198.962i 0.281822 0.299191i
\(666\) 1030.92 64.1971i 1.54793 0.0963921i
\(667\) 136.153 + 56.3966i 0.204128 + 0.0845527i
\(668\) 11.2131 1.40196i 0.0167861 0.00209874i
\(669\) 57.1349 + 137.936i 0.0854034 + 0.206182i
\(670\) −4.20849 1.44390i −0.00628133 0.00215508i
\(671\) 334.229i 0.498106i
\(672\) 1113.78 + 530.557i 1.65741 + 0.789520i
\(673\) −124.014 −0.184271 −0.0921355 0.995746i \(-0.529369\pi\)
−0.0921355 + 0.995746i \(0.529369\pi\)
\(674\) −284.290 + 828.612i −0.421795 + 1.22939i
\(675\) −1160.14 + 480.546i −1.71873 + 0.711920i
\(676\) −1617.36 + 202.216i −2.39255 + 0.299136i
\(677\) −235.888 + 569.484i −0.348431 + 0.841188i 0.648374 + 0.761322i \(0.275449\pi\)
−0.996806 + 0.0798661i \(0.974551\pi\)
\(678\) −29.2959 470.452i −0.0432093 0.693882i
\(679\) −45.1754 42.5529i −0.0665323 0.0626700i
\(680\) −259.698 + 49.0232i −0.381909 + 0.0720929i
\(681\) −833.869 + 833.869i −1.22448 + 1.22448i
\(682\) −257.936 227.695i −0.378205 0.333863i
\(683\) −473.632 + 1143.45i −0.693459 + 1.67416i 0.0442338 + 0.999021i \(0.485915\pi\)
−0.737693 + 0.675137i \(0.764085\pi\)
\(684\) −645.421 1134.92i −0.943598 1.65924i
\(685\) 22.5496 + 54.4396i 0.0329191 + 0.0794738i
\(686\) 355.367 + 586.779i 0.518028 + 0.855364i
\(687\) 2173.63i 3.16394i
\(688\) −960.218 139.170i −1.39567 0.202282i
\(689\) −1868.45 −2.71183
\(690\) 66.4615 + 135.885i 0.0963210 + 0.196935i
\(691\) −318.457 768.824i −0.460864 1.11262i −0.968043 0.250784i \(-0.919312\pi\)
0.507179 0.861841i \(1.66931\pi\)
\(692\) −194.023 + 705.677i −0.280380 + 1.01976i
\(693\) −918.675 348.747i −1.32565 0.503242i
\(694\) −16.9514 14.9639i −0.0244256 0.0215619i
\(695\) 55.4924 55.4924i 0.0798452 0.0798452i
\(696\) −246.969 + 1181.13i −0.354840 + 1.69703i
\(697\) −21.9702 21.9702i −0.0315211 0.0315211i
\(698\) −73.5859 + 4.58232i −0.105424 + 0.00656493i
\(699\) −703.243 + 1697.78i −1.00607 + 2.42887i
\(700\) 417.921 + 305.437i 0.597029 + 0.436338i
\(701\) −488.956 1180.44i −0.697512 1.68394i −0.729069 0.684441i \(-0.760047\pi\)
0.0315568 0.999502i \(-0.489953\pi\)
\(702\) 3085.23 + 1058.52i 4.39491 + 1.50786i
\(703\) 370.410i 0.526899i
\(704\) 291.912 + 303.555i 0.414647 + 0.431186i
\(705\) 897.034i 1.27239i
\(706\) 356.585 1039.33i 0.505078 1.47213i
\(707\) −233.943 520.250i −0.330896 0.735856i
\(708\) −905.256 + 1163.97i −1.27861 + 1.64402i
\(709\) −463.982 192.187i −0.654417 0.271068i 0.0306702 0.999530i \(-0.490236\pi\)
−0.685087 + 0.728461i \(0.740236\pi\)
\(710\) 350.120 21.8026i 0.493127 0.0307078i
\(711\) 1578.87 + 1578.87i 2.22063 + 2.22063i
\(712\) 531.514 + 111.137i 0.746508 + 0.156091i
\(713\) 99.4742 + 99.4742i 0.139515 + 0.139515i
\(714\) −637.891 + 767.676i −0.893404 + 1.07518i
\(715\) −154.301 + 372.516i −0.215806 + 0.521001i
\(716\) 734.285 + 201.889i 1.02554 + 0.281968i
\(717\) 387.841 + 936.331i 0.540922 + 1.30590i
\(718\) 31.0590 + 63.5022i 0.0432576 + 0.0884431i
\(719\) −713.239 −0.991987 −0.495994 0.868326i \(-0.665196\pi\)
−0.495994 + 0.868326i \(0.665196\pi\)
\(720\) −697.931 + 521.231i −0.969348 + 0.723931i
\(721\) −0.791548 26.4790i −0.00109785 0.0367254i
\(722\) −227.992 + 111.511i −0.315779 + 0.154448i
\(723\) −1291.15 + 534.812i −1.78582 + 0.739712i
\(724\) 249.506 + 438.736i 0.344622 + 0.605989i
\(725\) −193.754 + 467.764i −0.267247 + 0.645192i
\(726\) 641.634 + 566.407i 0.883793 + 0.780175i
\(727\) 118.043 + 118.043i 0.162370 + 0.162370i 0.783616 0.621246i \(-0.213373\pi\)
−0.621246 + 0.783616i \(0.713373\pi\)
\(728\) −288.776 1313.19i −0.396671 1.80384i
\(729\) −366.191 366.191i −0.502319 0.502319i
\(730\) 497.873 31.0034i 0.682017 0.0424704i
\(731\) 300.399 725.227i 0.410942 0.992102i
\(732\) −1110.32 + 138.821i −1.51683 + 0.189647i
\(733\) −92.9778 + 38.5127i −0.126846 + 0.0525411i −0.445203 0.895429i \(-0.646869\pi\)
0.318358 + 0.947971i \(0.396869\pi\)
\(734\) −632.914 217.148i −0.862281 0.295842i
\(735\) −687.489 + 41.1395i −0.935359 + 0.0559722i
\(736\) −111.412 131.295i −0.151375 0.178390i
\(737\) −5.73613 −0.00778308
\(738\) −96.8661 33.2340i −0.131255 0.0450325i
\(739\) −270.592 653.266i −0.366159 0.883987i −0.994372 0.105945i \(-0.966213\pi\)
0.628213 0.778042i \(-0.283787\pi\)
\(740\) 245.224 30.6599i 0.331384 0.0414323i
\(741\) −774.271 + 1869.25i −1.04490 + 2.52261i
\(742\) −100.172 1084.85i −0.135003 1.46207i
\(743\) −296.350 296.350i −0.398856 0.398856i 0.478973 0.877829i \(-0.341009\pi\)
−0.877829 + 0.478973i \(0.841009\pi\)
\(744\) −649.276 + 951.443i −0.872683 + 1.27882i
\(745\) −82.2044 82.2044i −0.110341 0.110341i
\(746\) 55.7208 63.1213i 0.0746927 0.0846130i
\(747\) 1153.62 + 477.843i 1.54433 + 0.639683i
\(748\) −296.178 + 168.434i −0.395959 + 0.225180i
\(749\) 519.261 + 1154.75i 0.693273 + 1.54172i
\(750\) −1098.15 + 537.107i −1.46420 + 0.716142i
\(751\) 240.176i 0.319809i −0.987133 0.159904i \(-0.948881\pi\)
0.987133 0.159904i \(-0.0511186\pi\)
\(752\) −251.411 989.701i −0.334324 1.31609i
\(753\) 1584.50i 2.10425i
\(754\) 1181.39 577.821i 1.56684 0.766341i
\(755\) 9.21333 + 22.2430i 0.0122031 + 0.0294609i
\(756\) −449.186 + 1848.08i −0.594162 + 2.44455i
\(757\) −110.643 + 267.117i −0.146160 + 0.352863i −0.979957 0.199209i \(-0.936163\pi\)
0.833797 + 0.552072i