Properties

Label 224.3.v.b.69.15
Level 224
Weight 3
Character 224.69
Analytic conductor 6.104
Analytic rank 0
Dimension 240
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(60\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 69.15
Character \(\chi\) \(=\) 224.69
Dual form 224.3.v.b.13.15

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.41192 - 1.41651i) q^{2} +(-2.79421 + 1.15740i) q^{3} +(-0.0129803 + 3.99998i) q^{4} +(-1.86072 + 4.49217i) q^{5} +(5.58465 + 2.32386i) q^{6} +(0.944293 + 6.93602i) q^{7} +(5.68432 - 5.62925i) q^{8} +(0.104065 - 0.104065i) q^{9} +O(q^{10})\) \(q+(-1.41192 - 1.41651i) q^{2} +(-2.79421 + 1.15740i) q^{3} +(-0.0129803 + 3.99998i) q^{4} +(-1.86072 + 4.49217i) q^{5} +(5.58465 + 2.32386i) q^{6} +(0.944293 + 6.93602i) q^{7} +(5.68432 - 5.62925i) q^{8} +(0.104065 - 0.104065i) q^{9} +(8.99036 - 3.70685i) q^{10} +(2.63807 - 6.36886i) q^{11} +(-4.59330 - 11.1918i) q^{12} +(-3.81272 - 9.20472i) q^{13} +(8.49165 - 11.1307i) q^{14} -14.7056i q^{15} +(-15.9997 - 0.103842i) q^{16} -18.4549 q^{17} +(-0.294341 - 0.000477579i) q^{18} +(6.94428 + 16.7650i) q^{19} +(-17.9444 - 7.50114i) q^{20} +(-10.6663 - 18.2877i) q^{21} +(-12.7463 + 5.25546i) q^{22} +(-1.72229 + 1.72229i) q^{23} +(-9.36789 + 22.3083i) q^{24} +(0.960355 + 0.960355i) q^{25} +(-7.65530 + 18.3970i) q^{26} +(10.2463 - 24.7366i) q^{27} +(-27.7562 + 3.68712i) q^{28} +(-17.1745 - 41.4630i) q^{29} +(-20.8306 + 20.7632i) q^{30} -2.69268i q^{31} +(22.4431 + 22.8102i) q^{32} +20.8492i q^{33} +(26.0568 + 26.1415i) q^{34} +(-32.9148 - 8.66404i) q^{35} +(0.414908 + 0.417610i) q^{36} +(-63.1550 - 26.1596i) q^{37} +(13.9429 - 33.5073i) q^{38} +(21.3071 + 21.3071i) q^{39} +(14.7106 + 36.0094i) q^{40} +(4.62617 + 4.62617i) q^{41} +(-10.8448 + 40.9296i) q^{42} +(1.15439 - 2.78695i) q^{43} +(25.4411 + 10.6349i) q^{44} +(0.273843 + 0.661115i) q^{45} +(4.87136 + 0.00790397i) q^{46} -9.80819 q^{47} +(44.8266 - 18.2278i) q^{48} +(-47.2166 + 13.0993i) q^{49} +(0.00440728 - 2.71629i) q^{50} +(51.5668 - 21.3597i) q^{51} +(36.8682 - 15.1313i) q^{52} +(10.8678 - 26.2371i) q^{53} +(-49.5065 + 20.4122i) q^{54} +(23.7013 + 23.7013i) q^{55} +(44.4122 + 34.1109i) q^{56} +(-38.8075 - 38.8075i) q^{57} +(-34.4835 + 82.8701i) q^{58} +(30.6283 - 73.9432i) q^{59} +(58.8223 + 0.190883i) q^{60} +(25.7376 - 10.6609i) q^{61} +(-3.81420 + 3.80184i) q^{62} +(0.820067 + 0.623531i) q^{63} +(0.623044 - 63.9970i) q^{64} +48.4435 q^{65} +(29.5331 - 29.4374i) q^{66} +(29.2049 + 70.5070i) q^{67} +(0.239550 - 73.8192i) q^{68} +(2.81906 - 6.80581i) q^{69} +(34.2003 + 58.8570i) q^{70} +(33.8344 + 33.8344i) q^{71} +(0.00573093 - 1.17735i) q^{72} +(-70.7687 - 70.7687i) q^{73} +(52.1143 + 126.395i) q^{74} +(-3.79495 - 1.57192i) q^{75} +(-67.1496 + 27.5593i) q^{76} +(46.6656 + 12.2836i) q^{77} +(0.0977829 - 60.2654i) q^{78} +89.2961i q^{79} +(30.2373 - 71.6800i) q^{80} +82.3029i q^{81} +(0.0212305 - 13.0848i) q^{82} +(-54.0727 - 130.543i) q^{83} +(73.2890 - 42.4275i) q^{84} +(34.3394 - 82.9026i) q^{85} +(-5.57763 + 2.29973i) q^{86} +(95.9784 + 95.9784i) q^{87} +(-20.8563 - 51.0530i) q^{88} +(72.3174 - 72.3174i) q^{89} +(0.549830 - 1.32134i) q^{90} +(60.2437 - 35.1370i) q^{91} +(-6.86676 - 6.91148i) q^{92} +(3.11650 + 7.52391i) q^{93} +(13.8483 + 13.8934i) q^{94} -88.2324 q^{95} +(-89.1113 - 37.7609i) q^{96} +108.153i q^{97} +(85.2211 + 48.3876i) q^{98} +(-0.388246 - 0.937309i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} - 8q^{11} + 12q^{14} - 112q^{16} - 176q^{18} - 4q^{21} - 192q^{22} + 128q^{23} - 8q^{25} + 56q^{28} - 8q^{29} - 16q^{30} - 8q^{32} + 92q^{35} + 192q^{36} - 8q^{37} - 8q^{39} - 424q^{42} + 128q^{43} - 16q^{44} - 8q^{46} - 320q^{50} - 80q^{51} - 192q^{53} + 608q^{56} - 8q^{57} - 712q^{58} + 264q^{60} + 496q^{63} - 272q^{64} - 16q^{65} + 304q^{67} + 320q^{70} + 504q^{71} - 8q^{72} + 232q^{74} + 164q^{77} + 560q^{78} - 1000q^{84} - 208q^{85} - 8q^{86} - 800q^{88} + 188q^{91} + 1560q^{92} + 64q^{93} - 16q^{95} - 376q^{98} + 64q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41192 1.41651i −0.705959 0.708253i
\(3\) −2.79421 + 1.15740i −0.931403 + 0.385800i −0.796210 0.605020i \(-0.793165\pi\)
−0.135192 + 0.990819i \(0.543165\pi\)
\(4\) −0.0129803 + 3.99998i −0.00324507 + 0.999995i
\(5\) −1.86072 + 4.49217i −0.372143 + 0.898434i 0.621243 + 0.783618i \(0.286628\pi\)
−0.993387 + 0.114816i \(0.963372\pi\)
\(6\) 5.58465 + 2.32386i 0.930775 + 0.387310i
\(7\) 0.944293 + 6.93602i 0.134899 + 0.990859i
\(8\) 5.68432 5.62925i 0.710540 0.703656i
\(9\) 0.104065 0.104065i 0.0115628 0.0115628i
\(10\) 8.99036 3.70685i 0.899036 0.370685i
\(11\) 2.63807 6.36886i 0.239824 0.578988i −0.757440 0.652905i \(-0.773550\pi\)
0.997264 + 0.0739174i \(0.0235501\pi\)
\(12\) −4.59330 11.1918i −0.382775 0.932650i
\(13\) −3.81272 9.20472i −0.293286 0.708055i −1.00000 0.000555699i \(-0.999823\pi\)
0.706714 0.707500i \(1.74982\pi\)
\(14\) 8.49165 11.1307i 0.606546 0.795048i
\(15\) 14.7056i 0.980376i
\(16\) −15.9997 0.103842i −0.999979 0.00649010i
\(17\) −18.4549 −1.08558 −0.542791 0.839868i \(-0.682633\pi\)
−0.542791 + 0.839868i \(0.682633\pi\)
\(18\) −0.294341 0.000477579i −0.0163523 2.65322e-5i
\(19\) 6.94428 + 16.7650i 0.365488 + 0.882367i 0.994477 + 0.104952i \(0.0334690\pi\)
−0.628989 + 0.777414i \(0.716531\pi\)
\(20\) −17.9444 7.50114i −0.897221 0.375057i
\(21\) −10.6663 18.2877i −0.507918 0.870845i
\(22\) −12.7463 + 5.25546i −0.579376 + 0.238885i
\(23\) −1.72229 + 1.72229i −0.0748821 + 0.0748821i −0.743556 0.668674i \(-0.766862\pi\)
0.668674 + 0.743556i \(0.266862\pi\)
\(24\) −9.36789 + 22.3083i −0.390329 + 0.929514i
\(25\) 0.960355 + 0.960355i 0.0384142 + 0.0384142i
\(26\) −7.65530 + 18.3970i −0.294435 + 0.707579i
\(27\) 10.2463 24.7366i 0.379491 0.916172i
\(28\) −27.7562 + 3.68712i −0.991292 + 0.131683i
\(29\) −17.1745 41.4630i −0.592225 1.42976i −0.881349 0.472466i \(-0.843364\pi\)
0.289124 0.957292i \(-0.406636\pi\)
\(30\) −20.8306 + 20.7632i −0.694355 + 0.692105i
\(31\) 2.69268i 0.0868606i −0.999056 0.0434303i \(-0.986171\pi\)
0.999056 0.0434303i \(-0.0138286\pi\)
\(32\) 22.4431 + 22.8102i 0.701347 + 0.712820i
\(33\) 20.8492i 0.631795i
\(34\) 26.0568 + 26.1415i 0.766376 + 0.768867i
\(35\) −32.9148 8.66404i −0.940423 0.247544i
\(36\) 0.414908 + 0.417610i 0.0115252 + 0.0116003i
\(37\) −63.1550 26.1596i −1.70689 0.707017i −0.706891 0.707323i \(-0.749903\pi\)
−1.00000 0.000305477i \(0.999903\pi\)
\(38\) 13.9429 33.5073i 0.366919 0.881772i
\(39\) 21.3071 + 21.3071i 0.546335 + 0.546335i
\(40\) 14.7106 + 36.0094i 0.367766 + 0.900235i
\(41\) 4.62617 + 4.62617i 0.112833 + 0.112833i 0.761269 0.648436i \(-0.224577\pi\)
−0.648436 + 0.761269i \(0.724577\pi\)
\(42\) −10.8448 + 40.9296i −0.258209 + 0.974515i
\(43\) 1.15439 2.78695i 0.0268463 0.0648127i −0.909888 0.414854i \(-0.863833\pi\)
0.936734 + 0.350042i \(0.113833\pi\)
\(44\) 25.4411 + 10.6349i 0.578206 + 0.241702i
\(45\) 0.273843 + 0.661115i 0.00608540 + 0.0146915i
\(46\) 4.87136 + 0.00790397i 0.105899 + 0.000171825i
\(47\) −9.80819 −0.208685 −0.104342 0.994541i \(-0.533274\pi\)
−0.104342 + 0.994541i \(0.533274\pi\)
\(48\) 44.8266 18.2278i 0.933887 0.379747i
\(49\) −47.2166 + 13.0993i −0.963604 + 0.267332i
\(50\) 0.00440728 2.71629i 8.81457e−5 0.0543258i
\(51\) 51.5668 21.3597i 1.01111 0.418817i
\(52\) 36.8682 15.1313i 0.709003 0.290987i
\(53\) 10.8678 26.2371i 0.205052 0.495040i −0.787579 0.616213i \(-0.788666\pi\)
0.992631 + 0.121174i \(0.0386658\pi\)
\(54\) −49.5065 + 20.4122i −0.916787 + 0.378004i
\(55\) 23.7013 + 23.7013i 0.430933 + 0.430933i
\(56\) 44.4122 + 34.1109i 0.793076 + 0.609123i
\(57\) −38.8075 38.8075i −0.680833 0.680833i
\(58\) −34.4835 + 82.8701i −0.594544 + 1.42879i
\(59\) 30.6283 73.9432i 0.519124 1.25328i −0.419319 0.907839i \(-0.637731\pi\)
0.938442 0.345436i \(-0.112269\pi\)
\(60\) 58.8223 + 0.190883i 0.980371 + 0.00318139i
\(61\) 25.7376 10.6609i 0.421928 0.174768i −0.161609 0.986855i \(-0.551668\pi\)
0.583537 + 0.812087i \(0.301668\pi\)
\(62\) −3.81420 + 3.80184i −0.0615193 + 0.0613200i
\(63\) 0.820067 + 0.623531i 0.0130169 + 0.00989731i
\(64\) 0.623044 63.9970i 0.00973506 0.999953i
\(65\) 48.4435 0.745285
\(66\) 29.5331 29.4374i 0.447471 0.446021i
\(67\) 29.2049 + 70.5070i 0.435895 + 1.05234i 0.977353 + 0.211615i \(0.0678724\pi\)
−0.541458 + 0.840728i \(0.682128\pi\)
\(68\) 0.239550 73.8192i 0.00352279 1.08558i
\(69\) 2.81906 6.80581i 0.0408559 0.0986349i
\(70\) 34.2003 + 58.8570i 0.488576 + 0.840814i
\(71\) 33.8344 + 33.8344i 0.476541 + 0.476541i 0.904024 0.427483i \(-0.140599\pi\)
−0.427483 + 0.904024i \(0.640599\pi\)
\(72\) 0.00573093 1.17735i 7.95962e−5 0.0163521i
\(73\) −70.7687 70.7687i −0.969434 0.969434i 0.0301127 0.999547i \(-0.490413\pi\)
−0.999547 + 0.0301127i \(0.990413\pi\)
\(74\) 52.1143 + 126.395i 0.704247 + 1.70804i
\(75\) −3.79495 1.57192i −0.0505993 0.0209589i
\(76\) −67.1496 + 27.5593i −0.883548 + 0.362623i
\(77\) 46.6656 + 12.2836i 0.606047 + 0.159527i
\(78\) 0.0977829 60.2654i 0.00125363 0.772633i
\(79\) 89.2961i 1.13033i 0.824978 + 0.565165i \(0.191188\pi\)
−0.824978 + 0.565165i \(0.808812\pi\)
\(80\) 30.2373 71.6800i 0.377967 0.896000i
\(81\) 82.3029i 1.01608i
\(82\) 0.0212305 13.0848i 0.000258909 0.159570i
\(83\) −54.0727 130.543i −0.651479 1.57281i −0.810633 0.585555i \(-0.800877\pi\)
0.159154 0.987254i \(1.55088\pi\)
\(84\) 73.2890 42.4275i 0.872489 0.505090i
\(85\) 34.3394 82.9026i 0.403993 0.975324i
\(86\) −5.57763 + 2.29973i −0.0648562 + 0.0267411i
\(87\) 95.9784 + 95.9784i 1.10320 + 1.10320i
\(88\) −20.8563 51.0530i −0.237003 0.580148i
\(89\) 72.3174 72.3174i 0.812555 0.812555i −0.172461 0.985016i \(-0.555172\pi\)
0.985016 + 0.172461i \(0.0551719\pi\)
\(90\) 0.549830 1.32134i 0.00610923 0.0146816i
\(91\) 60.2437 35.1370i 0.662019 0.386121i
\(92\) −6.86676 6.91148i −0.0746387 0.0751247i
\(93\) 3.11650 + 7.52391i 0.0335108 + 0.0809022i
\(94\) 13.8483 + 13.8934i 0.147323 + 0.147802i
\(95\) −88.2324 −0.928762
\(96\) −89.1113 37.7609i −0.928242 0.393343i
\(97\) 108.153i 1.11498i 0.830185 + 0.557489i \(0.188235\pi\)
−0.830185 + 0.557489i \(0.811765\pi\)
\(98\) 85.2211 + 48.3876i 0.869604 + 0.493751i
\(99\) −0.388246 0.937309i −0.00392168 0.00946777i
\(100\) −3.85387 + 3.82893i −0.0385387 + 0.0382893i
\(101\) −67.0471 + 161.866i −0.663832 + 1.60263i 0.127915 + 0.991785i \(0.459171\pi\)
−0.791748 + 0.610848i \(0.790829\pi\)
\(102\) −103.064 42.8867i −1.01043 0.420457i
\(103\) −33.5902 + 33.5902i −0.326119 + 0.326119i −0.851109 0.524990i \(-0.824069\pi\)
0.524990 + 0.851109i \(0.324069\pi\)
\(104\) −73.4884 30.8598i −0.706619 0.296729i
\(105\) 101.999 13.8864i 0.971415 0.132252i
\(106\) −52.5094 + 21.6504i −0.495372 + 0.204249i
\(107\) −28.1712 + 68.0112i −0.263282 + 0.635619i −0.999138 0.0415197i \(-0.986780\pi\)
0.735856 + 0.677138i \(0.236780\pi\)
\(108\) 98.8131 + 41.3059i 0.914936 + 0.382462i
\(109\) −127.290 + 52.7253i −1.16780 + 0.483718i −0.880464 0.474113i \(-0.842769\pi\)
−0.287334 + 0.957830i \(0.592769\pi\)
\(110\) 0.108771 67.0373i 0.000988823 0.609430i
\(111\) 206.745 1.86257
\(112\) −14.3881 111.072i −0.128465 0.991714i
\(113\) 16.9678i 0.150157i −0.997178 0.0750786i \(-0.976079\pi\)
0.997178 0.0750786i \(-0.0239208\pi\)
\(114\) −0.178096 + 109.764i −0.00156225 + 0.962842i
\(115\) −4.53212 10.9415i −0.0394097 0.0951435i
\(116\) 166.074 68.1595i 1.43167 0.587582i
\(117\) −1.35466 0.561120i −0.0115783 0.00479590i
\(118\) −147.986 + 61.0165i −1.25412 + 0.517089i
\(119\) −17.4268 128.004i −0.146444 1.07566i
\(120\) −82.7818 83.5916i −0.689848 0.696597i
\(121\) 51.9569 + 51.9569i 0.429396 + 0.429396i
\(122\) −51.4405 21.4052i −0.421644 0.175453i
\(123\) −18.2808 7.57216i −0.148624 0.0615623i
\(124\) 10.7707 + 0.0349517i 0.0868602 + 0.000281868i
\(125\) −118.405 + 49.0451i −0.947242 + 0.392361i
\(126\) −0.274632 2.04200i −0.00217962 0.0162064i
\(127\) −178.949 −1.40904 −0.704522 0.709682i \(-0.748839\pi\)
−0.704522 + 0.709682i \(0.748839\pi\)
\(128\) −91.5318 + 89.4759i −0.715092 + 0.699030i
\(129\) 9.12340i 0.0707240i
\(130\) −68.3983 68.6206i −0.526141 0.527851i
\(131\) −56.9742 + 23.5995i −0.434918 + 0.180149i −0.589391 0.807848i \(-0.700632\pi\)
0.154473 + 0.987997i \(0.450632\pi\)
\(132\) −83.3965 0.270628i −0.631791 0.00205022i
\(133\) −109.725 + 63.9966i −0.824997 + 0.481178i
\(134\) 58.6386 140.919i 0.437602 1.05163i
\(135\) 92.0558 + 92.0558i 0.681895 + 0.681895i
\(136\) −104.904 + 103.887i −0.771350 + 0.763877i
\(137\) −77.2919 + 77.2919i −0.564175 + 0.564175i −0.930491 0.366316i \(-0.880619\pi\)
0.366316 + 0.930491i \(0.380619\pi\)
\(138\) −13.6207 + 5.61602i −0.0987011 + 0.0406958i
\(139\) 103.517 + 42.8781i 0.744725 + 0.308475i 0.722587 0.691280i \(-0.242953\pi\)
0.0221379 + 0.999755i \(0.492953\pi\)
\(140\) 35.0832 131.546i 0.250594 0.939615i
\(141\) 27.4061 11.3520i 0.194370 0.0805105i
\(142\) 0.155274 95.6981i 0.00109348 0.673930i
\(143\) −68.6818 −0.480292
\(144\) −1.67582 + 1.65420i −0.0116376 + 0.0114875i
\(145\) 218.216 1.50493
\(146\) −0.324773 + 200.164i −0.00222447 + 1.37098i
\(147\) 116.772 91.2505i 0.794367 0.620752i
\(148\) 105.458 252.279i 0.712553 1.70459i
\(149\) 29.7091 71.7241i 0.199390 0.481370i −0.792283 0.610154i \(-0.791107\pi\)
0.991673 + 0.128784i \(0.0411075\pi\)
\(150\) 3.13152 + 7.59498i 0.0208768 + 0.0506332i
\(151\) −90.0549 + 90.0549i −0.596390 + 0.596390i −0.939350 0.342960i \(-0.888571\pi\)
0.342960 + 0.939350i \(0.388571\pi\)
\(152\) 133.848 + 56.2064i 0.880577 + 0.369779i
\(153\) −1.92052 + 1.92052i −0.0125524 + 0.0125524i
\(154\) −48.4882 83.4456i −0.314858 0.541855i
\(155\) 12.0960 + 5.01031i 0.0780385 + 0.0323246i
\(156\) −85.5044 + 84.9512i −0.548105 + 0.544559i
\(157\) −177.979 + 73.7215i −1.13363 + 0.469563i −0.869012 0.494791i \(-0.835245\pi\)
−0.264614 + 0.964354i \(0.585245\pi\)
\(158\) 126.489 126.079i 0.800560 0.797967i
\(159\) 85.8903i 0.540190i
\(160\) −144.228 + 58.3748i −0.901423 + 0.364843i
\(161\) −13.5722 10.3195i −0.0842992 0.0640961i
\(162\) 116.583 116.205i 0.719645 0.717314i
\(163\) −21.6782 52.3359i −0.132995 0.321079i 0.843327 0.537401i \(-0.180594\pi\)
−0.976322 + 0.216322i \(0.930594\pi\)
\(164\) −18.5646 + 18.4445i −0.113199 + 0.112467i
\(165\) −93.6583 38.7945i −0.567626 0.235118i
\(166\) −108.569 + 260.910i −0.654030 + 1.57175i
\(167\) 168.495 168.495i 1.00895 1.00895i 0.00899546 0.999960i \(-0.497137\pi\)
0.999960 0.00899546i \(-0.00286338\pi\)
\(168\) −163.577 43.9102i −0.973672 0.261370i
\(169\) 49.3110 49.3110i 0.291781 0.291781i
\(170\) −165.916 + 68.4096i −0.975978 + 0.402410i
\(171\) 2.46731 + 1.02199i 0.0144287 + 0.00597657i
\(172\) 11.1327 + 4.65371i 0.0647252 + 0.0270565i
\(173\) −50.4636 121.830i −0.291697 0.704220i 0.708301 0.705910i \(-0.249462\pi\)
−0.999999 + 0.00169064i \(0.999462\pi\)
\(174\) 0.440466 271.467i 0.00253141 1.56016i
\(175\) −5.75418 + 7.56790i −0.0328810 + 0.0432451i
\(176\) −42.8696 + 101.626i −0.243577 + 0.577419i
\(177\) 242.062i 1.36758i
\(178\) −204.544 0.331881i −1.14912 0.00186450i
\(179\) −22.2421 + 9.21300i −0.124258 + 0.0514693i −0.443946 0.896054i \(-0.646422\pi\)
0.319688 + 0.947523i \(0.396422\pi\)
\(180\) −2.64800 + 1.08678i −0.0147111 + 0.00603769i
\(181\) 50.6351 + 20.9738i 0.279752 + 0.115877i 0.518148 0.855291i \(-0.326622\pi\)
−0.238396 + 0.971168i \(0.576622\pi\)
\(182\) −134.831 35.7251i −0.740830 0.196292i
\(183\) −59.5773 + 59.5773i −0.325559 + 0.325559i
\(184\) −0.0948473 + 19.4852i −0.000515474 + 0.105898i
\(185\) 235.027 235.027i 1.27042 1.27042i
\(186\) 6.25741 15.0377i 0.0336420 0.0808477i
\(187\) −48.6853 + 117.537i −0.260349 + 0.628539i
\(188\) 0.127313 39.2325i 0.000677196 0.208684i
\(189\) 181.249 + 47.7095i 0.958991 + 0.252431i
\(190\) 124.577 + 124.982i 0.655667 + 0.657799i
\(191\) −240.133 −1.25724 −0.628621 0.777711i \(-0.716380\pi\)
−0.628621 + 0.777711i \(0.716380\pi\)
\(192\) 72.3291 + 179.542i 0.376714 + 0.935114i
\(193\) −237.252 −1.22928 −0.614642 0.788806i \(-0.710700\pi\)
−0.614642 + 0.788806i \(0.710700\pi\)
\(194\) 153.199 152.703i 0.789686 0.787128i
\(195\) −135.361 + 56.0685i −0.694161 + 0.287531i
\(196\) −51.7839 189.036i −0.264204 0.964467i
\(197\) −142.584 59.0603i −0.723777 0.299798i −0.00978503 0.999952i \(-0.503115\pi\)
−0.713992 + 0.700154i \(0.753115\pi\)
\(198\) −0.779533 + 1.87336i −0.00393704 + 0.00946140i
\(199\) 7.17452 7.17452i 0.0360529 0.0360529i −0.688851 0.724903i \(-0.741884\pi\)
0.724903 + 0.688851i \(0.241884\pi\)
\(200\) 10.8650 + 0.0528872i 0.0543252 + 0.000264436i
\(201\) −163.209 163.209i −0.811987 0.811987i
\(202\) 323.949 133.569i 1.60371 0.661231i
\(203\) 271.370 158.276i 1.33680 0.779684i
\(204\) 84.7690 + 206.544i 0.415534 + 1.01247i
\(205\) −29.3895 + 12.1735i −0.143364 + 0.0593832i
\(206\) 95.0074 + 0.154153i 0.461201 + 0.000748316i
\(207\) 0.358461i 0.00173170i
\(208\) 60.0464 + 147.668i 0.288685 + 0.709944i
\(209\) 125.093 0.598532
\(210\) −163.684 124.875i −0.779447 0.594644i
\(211\) 246.417 102.069i 1.16785 0.483740i 0.287370 0.957820i \(-0.407219\pi\)
0.880482 + 0.474079i \(0.157219\pi\)
\(212\) 104.807 + 43.8114i 0.494372 + 0.206657i
\(213\) −133.700 55.3805i −0.627701 0.260002i
\(214\) 136.114 56.1215i 0.636045 0.262250i
\(215\) 10.3714 + 10.3714i 0.0482392 + 0.0482392i
\(216\) −81.0058 198.290i −0.375027 0.918008i
\(217\) 18.6765 2.54268i 0.0860667 0.0117174i
\(218\) 254.409 + 105.863i 1.16701 + 0.485612i
\(219\) 279.650 + 115.835i 1.27694 + 0.528926i
\(220\) −95.1124 + 94.4971i −0.432329 + 0.429532i
\(221\) 70.3634 + 169.872i 0.318386 + 0.768653i
\(222\) −291.907 292.856i −1.31490 1.31917i
\(223\) 90.6780i 0.406628i 0.979114 + 0.203314i \(0.0651712\pi\)
−0.979114 + 0.203314i \(0.934829\pi\)
\(224\) −137.019 + 177.205i −0.611693 + 0.791095i
\(225\) 0.199879 0.000888353
\(226\) −24.0349 + 23.9571i −0.106349 + 0.106005i
\(227\) −273.601 + 113.329i −1.20529 + 0.499248i −0.892705 0.450641i \(-0.851195\pi\)
−0.312586 + 0.949889i \(0.601195\pi\)
\(228\) 155.733 154.725i 0.683039 0.678620i
\(229\) 101.693 245.509i 0.444075 1.07209i −0.530431 0.847728i \(-0.677970\pi\)
0.974506 0.224363i \(-0.0720302\pi\)
\(230\) −9.09973 + 21.8683i −0.0395641 + 0.0950795i
\(231\) −144.611 + 19.6878i −0.626020 + 0.0852285i
\(232\) −331.031 139.009i −1.42686 0.599177i
\(233\) 298.793 298.793i 1.28237 1.28237i 0.343062 0.939313i \(-0.388536\pi\)
0.939313 0.343062i \(-0.111464\pi\)
\(234\) 1.11784 + 2.71115i 0.00477711 + 0.0115861i
\(235\) 18.2503 44.0600i 0.0776607 0.187490i
\(236\) 295.374 + 123.472i 1.25158 + 0.523188i
\(237\) −103.351 249.512i −0.436081 1.05279i
\(238\) −156.713 + 205.416i −0.658456 + 0.863091i
\(239\) 277.379i 1.16058i 0.814410 + 0.580290i \(0.197061\pi\)
−0.814410 + 0.580290i \(0.802939\pi\)
\(240\) −1.52706 + 235.285i −0.00636274 + 0.980356i
\(241\) 298.909 1.24028 0.620142 0.784489i \(-0.287075\pi\)
0.620142 + 0.784489i \(0.287075\pi\)
\(242\) 0.238442 146.956i 0.000985297 0.607257i
\(243\) −3.04096 7.34154i −0.0125143 0.0302121i
\(244\) 42.3091 + 103.088i 0.173398 + 0.422493i
\(245\) 29.0127 236.479i 0.118419 0.965221i
\(246\) 15.0850 + 36.5861i 0.0613210 + 0.148724i
\(247\) 127.840 127.840i 0.517572 0.517572i
\(248\) −15.1578 15.3061i −0.0611200 0.0617180i
\(249\) 302.181 + 302.181i 1.21358 + 1.21358i
\(250\) 236.651 + 98.4742i 0.946604 + 0.393897i
\(251\) −141.027 + 340.469i −0.561861 + 1.35645i 0.346416 + 0.938081i \(0.387399\pi\)
−0.908277 + 0.418370i \(0.862601\pi\)
\(252\) −2.50475 + 3.27216i −0.00993950 + 0.0129848i
\(253\) 6.42550 + 15.5125i 0.0253973 + 0.0613144i
\(254\) 252.661 + 253.482i 0.994727 + 0.997960i
\(255\) 271.391i 1.06428i
\(256\) 255.978 + 3.32286i 0.999916 + 0.0129799i
\(257\) 56.8547i 0.221225i 0.993864 + 0.110612i \(0.0352812\pi\)
−0.993864 + 0.110612i \(0.964719\pi\)
\(258\) 12.9233 12.8815i 0.0500905 0.0499282i
\(259\) 121.807 462.746i 0.470297 1.78666i
\(260\) −0.628810 + 193.773i −0.00241850 + 0.745281i
\(261\) −6.10213 2.52758i −0.0233798 0.00968423i
\(262\) 113.872 + 47.3838i 0.434625 + 0.180854i
\(263\) −183.481 183.481i −0.697648 0.697648i 0.266255 0.963903i \(-0.414214\pi\)
−0.963903 + 0.266255i \(0.914214\pi\)
\(264\) 117.366 + 118.514i 0.444566 + 0.448916i
\(265\) 97.6397 + 97.6397i 0.368452 + 0.368452i
\(266\) 245.574 + 65.0677i 0.923209 + 0.244615i
\(267\) −118.370 + 285.770i −0.443333 + 1.07030i
\(268\) −282.405 + 115.904i −1.05375 + 0.432477i
\(269\) 106.389 + 256.846i 0.395498 + 0.954817i 0.988720 + 0.149777i \(0.0478557\pi\)
−0.593222 + 0.805039i \(0.702144\pi\)
\(270\) 0.422465 260.373i 0.00156468 0.964344i
\(271\) −481.642 −1.77728 −0.888638 0.458610i \(-0.848347\pi\)
−0.888638 + 0.458610i \(0.848347\pi\)
\(272\) 295.272 + 1.91639i 1.08556 + 0.00704554i
\(273\) −127.666 + 167.906i −0.467641 + 0.615041i
\(274\) 218.614 + 0.354710i 0.797862 + 0.00129456i
\(275\) 8.64985 3.58289i 0.0314540 0.0130287i
\(276\) 27.1865 + 11.3645i 0.0985018 + 0.0411758i
\(277\) −105.701 + 255.184i −0.381591 + 0.921242i 0.610068 + 0.792349i \(0.291142\pi\)
−0.991659 + 0.128893i \(0.958858\pi\)
\(278\) −85.4201 207.172i −0.307267 0.745225i
\(279\) −0.280215 0.280215i −0.00100435 0.00100435i
\(280\) −235.870 + 136.037i −0.842395 + 0.485845i
\(281\) 106.402 + 106.402i 0.378653 + 0.378653i 0.870616 0.491963i \(-0.163720\pi\)
−0.491963 + 0.870616i \(0.663720\pi\)
\(282\) −54.7753 22.7929i −0.194239 0.0808258i
\(283\) 129.222 311.970i 0.456616 1.10237i −0.513142 0.858303i \(-0.671519\pi\)
0.969759 0.244066i \(-0.0784813\pi\)
\(284\) −135.776 + 134.898i −0.478085 + 0.474992i
\(285\) 246.540 102.120i 0.865051 0.358316i
\(286\) 96.9730 + 97.2882i 0.339067 + 0.340169i
\(287\) −27.7187 + 36.4557i −0.0965810 + 0.127023i
\(288\) 4.70930 + 0.0382059i 0.0163518 + 0.000132659i
\(289\) 51.5836 0.178490
\(290\) −308.102 309.104i −1.06242 1.06587i
\(291\) −125.176 302.201i −0.430158 1.03849i
\(292\) 283.992 282.155i 0.972575 0.966283i
\(293\) −188.644 + 455.427i −0.643837 + 1.55436i 0.177626 + 0.984098i \(0.443158\pi\)
−0.821463 + 0.570262i \(0.806842\pi\)
\(294\) −294.129 36.5701i −1.00044 0.124388i
\(295\) 275.175 + 275.175i 0.932796 + 0.932796i
\(296\) −506.252 + 206.815i −1.71031 + 0.698700i
\(297\) −130.514 130.514i −0.439441 0.439441i
\(298\) −143.544 + 59.1854i −0.481693 + 0.198609i
\(299\) 22.4198 + 9.28658i 0.0749826 + 0.0310588i
\(300\) 6.33690 15.1593i 0.0211230 0.0505310i
\(301\) 20.4204 + 5.37518i 0.0678418 + 0.0178577i
\(302\) 254.713 + 0.413282i 0.843422 + 0.00136848i
\(303\) 529.887i 1.74880i
\(304\) −109.365 268.955i −0.359754 0.884720i
\(305\) 135.454i 0.444113i
\(306\) 5.43203 + 0.00881368i 0.0177517 + 2.88029e-5i
\(307\) −206.101 497.572i −0.671338 1.62075i −0.779338 0.626603i \(-0.784445\pi\)
0.108000 0.994151i \(1.53444\pi\)
\(308\) −49.7399 + 186.502i −0.161493 + 0.605526i
\(309\) 54.9808 132.735i 0.177931 0.429564i
\(310\) −9.98136 24.2082i −0.0321979 0.0780909i
\(311\) −72.8833 72.8833i −0.234351 0.234351i 0.580155 0.814506i \(-0.302992\pi\)
−0.814506 + 0.580155i \(0.802992\pi\)
\(312\) 241.059 + 1.17339i 0.772625 + 0.00376087i
\(313\) −410.097 + 410.097i −1.31021 + 1.31021i −0.388960 + 0.921255i \(0.627166\pi\)
−0.921255 + 0.388960i \(0.872834\pi\)
\(314\) 355.719 + 148.020i 1.13286 + 0.471402i
\(315\) −4.32692 + 2.52367i −0.0137362 + 0.00801164i
\(316\) −357.183 1.15909i −1.13032 0.00366800i
\(317\) 35.1735 + 84.9163i 0.110957 + 0.267875i 0.969598 0.244703i \(-0.0786905\pi\)
−0.858641 + 0.512578i \(0.828691\pi\)
\(318\) 121.664 121.270i 0.382591 0.381352i
\(319\) −309.380 −0.969842
\(320\) 286.326 + 121.879i 0.894768 + 0.380872i
\(321\) 222.643i 0.693591i
\(322\) 4.54517 + 33.7953i 0.0141154 + 0.104954i
\(323\) −128.156 309.396i −0.396768 0.957882i
\(324\) −329.210 1.06831i −1.01608 0.00329726i
\(325\) 5.17823 12.5014i 0.0159330 0.0384657i
\(326\) −43.5263 + 104.601i −0.133516 + 0.320863i
\(327\) 294.651 294.651i 0.901072 0.901072i
\(328\) 52.3385 + 0.254765i 0.159569 + 0.000776724i
\(329\) −9.26181 68.0297i −0.0281514 0.206777i
\(330\) 77.2850 + 187.442i 0.234197 + 0.568007i
\(331\) −125.459 + 302.885i −0.379030 + 0.915060i 0.613118 + 0.789991i \(0.289915\pi\)
−0.992148 + 0.125068i \(0.960085\pi\)
\(332\) 522.871 214.595i 1.57491 0.646371i
\(333\) −9.29455 + 3.84993i −0.0279116 + 0.0115614i
\(334\) −476.577 0.773263i −1.42688 0.00231516i
\(335\) −371.071 −1.10768
\(336\) 168.758 + 293.705i 0.502256 + 0.874123i
\(337\) 151.596i 0.449839i −0.974377 0.224919i \(-0.927788\pi\)
0.974377 0.224919i \(-0.0722119\pi\)
\(338\) −139.472 0.226299i −0.412640 0.000669524i
\(339\) 19.6385 + 47.4114i 0.0579306 + 0.139857i
\(340\) 331.163 + 138.433i 0.974008 + 0.407155i
\(341\) −17.1493 7.10347i −0.0502912 0.0208313i
\(342\) −2.03598 4.93793i −0.00595315 0.0144384i
\(343\) −135.443 315.126i −0.394878 0.918734i
\(344\) −9.12649 22.3403i −0.0265305 0.0649426i
\(345\) 25.3274 + 25.3274i 0.0734127 + 0.0734127i
\(346\) −101.322 + 243.496i −0.292840 + 0.703745i
\(347\) −242.136 100.296i −0.697798 0.289037i 0.00544685 0.999985i \(-0.498266\pi\)
−0.703245 + 0.710948i \(0.748266\pi\)
\(348\) −385.157 + 382.666i −1.10677 + 1.09961i
\(349\) 265.623 110.025i 0.761098 0.315257i 0.0318374 0.999493i \(-0.489864\pi\)
0.729261 + 0.684236i \(0.239864\pi\)
\(350\) 18.8444 2.53441i 0.0538411 0.00724116i
\(351\) −266.760 −0.760000
\(352\) 204.482 82.7621i 0.580914 0.235120i
\(353\) 218.450i 0.618838i −0.950926 0.309419i \(-0.899865\pi\)
0.950926 0.309419i \(-0.100135\pi\)
\(354\) 342.882 341.771i 0.968594 0.965456i
\(355\) −214.946 + 89.0336i −0.605482 + 0.250799i
\(356\) 288.329 + 290.207i 0.809914 + 0.815188i
\(357\) 196.845 + 337.499i 0.551388 + 0.945374i
\(358\) 44.4543 + 18.4982i 0.124174 + 0.0516708i
\(359\) −172.506 172.506i −0.480517 0.480517i 0.424780 0.905297i \(-0.360352\pi\)
−0.905297 + 0.424780i \(0.860352\pi\)
\(360\) 5.27820 + 2.21646i 0.0146617 + 0.00615684i
\(361\) 22.4245 22.4245i 0.0621177 0.0621177i
\(362\) −41.7831 101.338i −0.115423 0.279940i
\(363\) −205.313 85.0436i −0.565601 0.234280i
\(364\) 139.765 + 241.430i 0.383971 + 0.663269i
\(365\) 449.585 186.224i 1.23174 0.510204i
\(366\) 168.510 + 0.273414i 0.460410 + 0.000747032i
\(367\) 440.096 1.19917 0.599586 0.800310i \(-0.295332\pi\)
0.599586 + 0.800310i \(0.295332\pi\)
\(368\) 27.7349 27.3772i 0.0753665 0.0743946i
\(369\) 0.962848 0.00260934
\(370\) −664.756 1.07859i −1.79664 0.00291511i
\(371\) 192.243 + 50.6035i 0.518176 + 0.136397i
\(372\) −30.1359 + 12.3683i −0.0810105 + 0.0332481i
\(373\) 156.000 376.618i 0.418232 1.00970i −0.564628 0.825346i \(-0.690980\pi\)
0.982860 0.184355i \(-0.0590197\pi\)
\(374\) 235.231 96.9891i 0.628960 0.259329i
\(375\) 274.084 274.084i 0.730891 0.730891i
\(376\) −55.7529 + 55.2128i −0.148279 + 0.146842i
\(377\) −316.173 + 316.173i −0.838656 + 0.838656i
\(378\) −188.328 324.103i −0.498222 0.857414i
\(379\) 15.6501 + 6.48247i 0.0412931 + 0.0171042i 0.403234 0.915097i \(-0.367886\pi\)
−0.361941 + 0.932201i \(0.617886\pi\)
\(380\) 1.14528 352.928i 0.00301389 0.928757i
\(381\) 500.020 207.115i 1.31239 0.543609i
\(382\) 339.048 + 340.150i 0.887561 + 0.890446i
\(383\) 494.019i 1.28987i 0.764239 + 0.644933i \(0.223115\pi\)
−0.764239 + 0.644933i \(0.776885\pi\)
\(384\) 152.200 355.953i 0.396353 0.926961i
\(385\) −142.012 + 186.774i −0.368861 + 0.485126i
\(386\) 334.980 + 336.069i 0.867824 + 0.870644i
\(387\) −0.169892 0.410156i −0.000438998 0.00105984i
\(388\) −432.609 1.40385i −1.11497 0.00361818i
\(389\) −676.486 280.209i −1.73904 0.720333i −0.998851 0.0479314i \(-0.984737\pi\)
−0.740187 0.672401i \(-0.765263\pi\)
\(390\) 270.540 + 112.576i 0.693693 + 0.288657i
\(391\) 31.7847 31.7847i 0.0812907 0.0812907i
\(392\) −194.655 + 340.255i −0.496570 + 0.867997i
\(393\) 131.884 131.884i 0.335582 0.335582i
\(394\) 117.658 + 285.359i 0.298624 + 0.724263i
\(395\) −401.133 166.155i −1.01553 0.420645i
\(396\) 3.75426 1.54081i 0.00948045 0.00389094i
\(397\) 55.2516 + 133.389i 0.139173 + 0.335993i 0.978064 0.208307i \(-0.0667953\pi\)
−0.838891 + 0.544300i \(0.816795\pi\)
\(398\) −20.2926 0.0329255i −0.0509864 8.27274e-5i
\(399\) 232.524 305.815i 0.582766 0.766454i
\(400\) −15.2656 15.4651i −0.0381641 0.0386627i
\(401\) 249.583i 0.622400i −0.950344 0.311200i \(-0.899269\pi\)
0.950344 0.311200i \(-0.100731\pi\)
\(402\) −0.749004 + 461.625i −0.00186319 + 1.14832i
\(403\) −24.7854 + 10.2664i −0.0615021 + 0.0254750i
\(404\) −646.590 270.288i −1.60047 0.669030i
\(405\) −369.718 153.142i −0.912885 0.378129i
\(406\) −607.351 160.925i −1.49594 0.396366i
\(407\) −333.214 + 333.214i −0.818708 + 0.818708i
\(408\) 172.884 411.698i 0.423734 1.00906i
\(409\) 416.788 416.788i 1.01904 1.01904i 0.0192276 0.999815i \(-0.493879\pi\)
0.999815 0.0192276i \(-0.00612071\pi\)
\(410\) 58.7395 + 24.4424i 0.143267 + 0.0596157i
\(411\) 126.512 305.427i 0.307815 0.743132i
\(412\) −133.924 134.796i −0.325059 0.327175i
\(413\) 541.793 + 142.614i 1.31185 + 0.345313i
\(414\) 0.507762 0.506117i 0.00122648 0.00122251i
\(415\) 687.036 1.65551
\(416\) 124.393 293.552i 0.299021 0.705653i
\(417\) −338.875 −0.812649
\(418\) −176.621 177.195i −0.422539 0.423912i
\(419\) −122.245 + 50.6356i −0.291755 + 0.120849i −0.523760 0.851866i \(-0.675471\pi\)
0.232006 + 0.972714i \(0.425471\pi\)
\(420\) 54.2215 + 408.172i 0.129099 + 0.971839i
\(421\) 187.554 + 77.6873i 0.445496 + 0.184530i 0.594142 0.804360i \(-0.297492\pi\)
−0.148647 + 0.988890i \(0.547492\pi\)
\(422\) −492.502 204.938i −1.16707 0.485635i
\(423\) −1.02069 + 1.02069i −0.00241298 + 0.00241298i
\(424\) −85.9194 210.318i −0.202640 0.496032i
\(425\) −17.7233 17.7233i −0.0417018 0.0417018i
\(426\) 110.327 + 267.580i 0.258983 + 0.628122i
\(427\) 98.2477 + 168.449i 0.230088 + 0.394495i
\(428\) −271.678 113.567i −0.634761 0.265343i
\(429\) 191.911 79.4923i 0.447346 0.185297i
\(430\) 0.0475968 29.3348i 0.000110690 0.0682205i
\(431\) 372.076i 0.863285i −0.902045 0.431642i \(-0.857934\pi\)
0.902045 0.431642i \(-0.142066\pi\)
\(432\) −166.505 + 394.714i −0.385429 + 0.913690i
\(433\) −3.47840 −0.00803326 −0.00401663 0.999992i \(-0.501279\pi\)
−0.00401663 + 0.999992i \(0.501279\pi\)
\(434\) −29.9713 22.8653i −0.0690584 0.0526850i
\(435\) −609.740 + 252.562i −1.40170 + 0.580603i
\(436\) −209.248 509.842i −0.479926 1.16936i
\(437\) −40.8342 16.9141i −0.0934420 0.0387049i
\(438\) −230.762 559.675i −0.526853 1.27780i
\(439\) −61.4292 61.4292i −0.139930 0.139930i 0.633672 0.773602i \(-0.281547\pi\)
−0.773602 + 0.633672i \(0.781547\pi\)
\(440\) 268.147 + 1.30524i 0.609424 + 0.00296646i
\(441\) −3.55043 + 6.27679i −0.00805087 + 0.0142331i
\(442\) 141.278 339.516i 0.319633 0.768135i
\(443\) −296.808 122.942i −0.669995 0.277521i 0.0216428 0.999766i \(-0.493110\pi\)
−0.691637 + 0.722245i \(0.743110\pi\)
\(444\) −2.68361 + 826.977i −0.00604416 + 1.86256i
\(445\) 190.300 + 459.424i 0.427640 + 1.03241i
\(446\) 128.446 128.030i 0.287995 0.287062i
\(447\) 234.797i 0.525274i
\(448\) 444.472 56.1105i 0.992126 0.125247i
\(449\) −648.742 −1.44486 −0.722430 0.691444i \(-0.756975\pi\)
−0.722430 + 0.691444i \(0.756975\pi\)
\(450\) −0.282213 0.283130i −0.000627140 0.000629179i
\(451\) 41.6676 17.2593i 0.0923894 0.0382689i
\(452\) 67.8707 + 0.220246i 0.150156 + 0.000487270i
\(453\) 147.403 355.862i 0.325392 0.785567i
\(454\) 546.834 + 227.546i 1.20448 + 0.501203i
\(455\) 45.7449 + 336.005i 0.100538 + 0.738473i
\(456\) −439.052 2.13715i −0.962832 0.00468673i
\(457\) 83.0513 83.0513i 0.181731 0.181731i −0.610378 0.792110i \(-0.708983\pi\)
0.792110 + 0.610378i \(0.208983\pi\)
\(458\) −491.347 + 202.589i −1.07281 + 0.442335i
\(459\) −189.094 + 456.513i −0.411969 + 0.994581i
\(460\) 43.8246 17.9864i 0.0952709 0.0391008i
\(461\) −114.561 276.576i −0.248506 0.599947i 0.749571 0.661923i \(-0.230260\pi\)
−0.998078 + 0.0619765i \(0.980260\pi\)
\(462\) 232.066 + 177.044i 0.502307 + 0.383213i
\(463\) 312.147i 0.674184i 0.941472 + 0.337092i \(0.109443\pi\)
−0.941472 + 0.337092i \(0.890557\pi\)
\(464\) 270.481 + 665.177i 0.582933 + 1.43357i
\(465\) −39.5976 −0.0851561
\(466\) −845.114 1.37123i −1.81355 0.00294255i
\(467\) 301.498 + 727.881i 0.645606 + 1.55863i 0.819009 + 0.573781i \(0.194524\pi\)
−0.173403 + 0.984851i \(0.555476\pi\)
\(468\) 2.26205 5.41134i 0.00483345 0.0115627i
\(469\) −461.459 + 269.145i −0.983922 + 0.573870i
\(470\) −88.1792 + 36.3575i −0.187615 + 0.0773564i
\(471\) 411.986 411.986i 0.874705 0.874705i
\(472\) −242.144 592.731i −0.513017 1.25579i
\(473\) −14.7043 14.7043i −0.0310873 0.0310873i
\(474\) −207.512 + 498.688i −0.437789 + 1.05208i
\(475\) −9.43135 + 22.7693i −0.0198555 + 0.0479353i
\(476\) 512.238 68.0455i 1.07613 0.142953i
\(477\) −1.59942 3.86133i −0.00335307 0.00809503i
\(478\) 392.908 391.635i 0.821984 0.819321i
\(479\) 519.705i 1.08498i 0.840063 + 0.542489i \(0.182518\pi\)
−0.840063 + 0.542489i \(0.817482\pi\)
\(480\) 335.439 330.040i 0.698832 0.687584i
\(481\) 681.063i 1.41593i
\(482\) −422.034 423.406i −0.875590 0.878436i
\(483\) 49.8672 + 13.1264i 0.103245 + 0.0271767i
\(484\) −208.501 + 207.152i −0.430787 + 0.428000i
\(485\) −485.841 201.242i −1.00173 0.414932i
\(486\) −6.10574 + 14.6732i −0.0125633 + 0.0301917i
\(487\) 576.480 + 576.480i 1.18374 + 1.18374i 0.978769 + 0.204968i \(0.0657089\pi\)
0.204968 + 0.978769i \(0.434291\pi\)
\(488\) 86.2881 205.483i 0.176820 0.421072i
\(489\) 121.147 + 121.147i 0.247745 + 0.247745i
\(490\) −375.938 + 292.792i −0.767220 + 0.597535i
\(491\) −166.968 + 403.095i −0.340056 + 0.820968i 0.657653 + 0.753321i \(0.271549\pi\)
−0.997709 + 0.0676473i \(0.978451\pi\)
\(492\) 30.5258 73.0246i 0.0620442 0.148424i
\(493\) 316.954 + 765.195i 0.642909 + 1.55212i
\(494\) −361.586 0.586687i −0.731956 0.00118763i
\(495\) 4.93297 0.00996559
\(496\) −0.279612 + 43.0820i −0.000563734 + 0.0868588i
\(497\) −202.726 + 266.626i −0.407900 + 0.536470i
\(498\) 1.38678 854.695i 0.00278469 1.71626i
\(499\) 342.105 141.704i 0.685581 0.283977i −0.0125767 0.999921i \(-0.504003\pi\)
0.698158 + 0.715944i \(0.254003\pi\)
\(500\) −194.642 474.255i −0.389285 0.948510i
\(501\) −275.795 + 665.828i −0.550489 + 1.32900i
\(502\) 681.395 280.949i 1.35736 0.559659i
\(503\) 46.8393 + 46.8393i 0.0931198 + 0.0931198i 0.752132 0.659012i \(-0.229026\pi\)
−0.659012 + 0.752132i \(0.729026\pi\)
\(504\) 8.17154 1.07201i 0.0162134 0.00212701i
\(505\) −602.374 602.374i −1.19282 1.19282i
\(506\) 12.9013 31.0042i 0.0254967 0.0612731i
\(507\) −80.7127 + 194.858i −0.159197 + 0.384335i
\(508\) 2.32280 715.791i 0.00457244 1.40904i
\(509\) −505.608 + 209.430i −0.993335 + 0.411453i −0.819349 0.573295i \(-0.805665\pi\)
−0.173986 + 0.984748i \(0.555665\pi\)
\(510\) 384.428 383.182i 0.753780 0.751337i
\(511\) 424.026 557.679i 0.829797 1.09135i
\(512\) −356.713 367.287i −0.696706 0.717357i
\(513\) 485.862 0.947099
\(514\) 80.5351 80.2741i 0.156683 0.156175i
\(515\) −88.3911 213.395i −0.171633 0.414359i
\(516\) −36.4934 0.118424i −0.0707236 0.000229504i
\(517\) −25.8747 + 62.4670i −0.0500477 + 0.120826i
\(518\) −827.464 + 480.819i −1.59742 + 0.928222i
\(519\) 282.012 + 282.012i 0.543375 + 0.543375i
\(520\) 275.369 272.701i 0.529555 0.524425i
\(521\) −275.780 275.780i −0.529328 0.529328i 0.391044 0.920372i \(-0.372114\pi\)
−0.920372 + 0.391044i \(0.872114\pi\)
\(522\) 5.03536 + 12.2124i 0.00964629 + 0.0233955i
\(523\) 580.923 + 240.626i 1.11075 + 0.460089i 0.861197 0.508272i \(-0.169715\pi\)
0.249556 + 0.968360i \(0.419715\pi\)
\(524\) −93.6580 228.202i −0.178737 0.435500i
\(525\) 7.31931 27.8062i 0.0139415 0.0529641i
\(526\) −0.842037 + 518.963i −0.00160083 + 0.986622i
\(527\) 49.6931i 0.0942944i
\(528\) 2.16502 333.581i 0.00410041 0.631781i
\(529\) 523.067i 0.988785i
\(530\) 0.448090 276.166i 0.000845453 0.521069i
\(531\) −4.50758 10.8823i −0.00848886 0.0204939i
\(532\) −254.561 439.727i −0.478498 0.826554i
\(533\) 24.9443 60.2209i 0.0467998 0.112985i
\(534\) 571.923 235.812i 1.07102 0.441595i
\(535\) −253.099 253.099i −0.473083 0.473083i
\(536\) 562.912 + 236.382i 1.05021 + 0.441012i
\(537\) 51.4861 51.4861i 0.0958772 0.0958772i
\(538\) 213.611 513.345i 0.397047 0.954174i
\(539\) −41.1333 + 335.273i −0.0763141 + 0.622028i
\(540\) −369.416 + 367.026i −0.684104 + 0.679679i
\(541\) −217.598 525.327i −0.402214 0.971030i −0.987128 0.159935i \(-0.948872\pi\)
0.584914 0.811096i \(-0.301128\pi\)
\(542\) 680.038 + 682.248i 1.25468 + 1.25876i
\(543\) −165.760 −0.305267
\(544\) −414.185 420.961i −0.761370 0.773825i
\(545\) 669.915i 1.22920i
\(546\) 418.094 56.2300i 0.765740 0.102985i
\(547\) 320.292 + 773.253i 0.585543 + 1.41362i 0.887725 + 0.460375i \(0.152285\pi\)
−0.302182 + 0.953250i \(0.597715\pi\)
\(548\) −308.163 310.169i −0.562341 0.566002i
\(549\) 1.56897 3.78782i 0.00285786 0.00689949i
\(550\) −17.2881 7.19383i −0.0314328 0.0130797i
\(551\) 575.860 575.860i 1.04512 1.04512i
\(552\) −22.2872 54.5556i −0.0403753 0.0988326i
\(553\) −619.359 + 84.3218i −1.12000 + 0.152481i
\(554\) 510.710 210.573i 0.921860 0.380096i
\(555\) −384.694 + 928.735i −0.693143 + 1.67340i
\(556\) −172.855 + 413.509i −0.310890 + 0.743720i
\(557\) 190.205 78.7854i 0.341481 0.141446i −0.205351 0.978688i \(-0.565834\pi\)
0.546832 + 0.837242i \(0.315834\pi\)
\(558\) −0.00128597 + 0.792565i −2.30460e−6 + 0.00142037i
\(559\) −30.0544 −0.0537646
\(560\) 525.726 + 142.040i 0.938797 + 0.253642i
\(561\) 384.771i 0.685865i
\(562\) 0.488300 300.949i 0.000868862 0.535496i
\(563\) −125.324 302.558i −0.222600 0.537403i 0.772642 0.634842i \(-0.218935\pi\)
−0.995241 + 0.0974391i \(0.968935\pi\)
\(564\) 45.0520 + 109.771i 0.0798794 + 0.194630i
\(565\) 76.2220 + 31.5722i 0.134906 + 0.0558800i
\(566\) −624.359 + 257.432i −1.10311 + 0.454827i
\(567\) −570.854 + 77.7181i −1.00680 + 0.137069i
\(568\) 382.788 + 1.86328i 0.673923 + 0.00328042i
\(569\) 49.0645 + 49.0645i 0.0862293 + 0.0862293i 0.748906 0.662676i \(-0.230580\pi\)
−0.662676 + 0.748906i \(0.730580\pi\)
\(570\) −492.747 205.040i −0.864469 0.359719i
\(571\) 435.785 + 180.508i 0.763196 + 0.316126i 0.730113 0.683326i \(-0.239467\pi\)
0.0330833 + 0.999453i \(0.489467\pi\)
\(572\) 0.891508 274.726i 0.00155858 0.480290i
\(573\) 670.983 277.930i 1.17100 0.485044i
\(574\) 90.7762 12.2086i 0.158147 0.0212694i
\(575\) −3.30802 −0.00575307
\(576\) −6.59503 6.72470i −0.0114497 0.0116748i
\(577\) 906.026i 1.57024i 0.619346 + 0.785118i \(0.287398\pi\)
−0.619346 + 0.785118i \(0.712602\pi\)
\(578\) −72.8317 73.0685i −0.126006 0.126416i
\(579\) 662.931 274.595i 1.14496 0.474257i
\(580\) −2.83250 + 872.858i −0.00488361 + 1.50493i
\(581\) 854.388 498.320i 1.47055 0.857694i
\(582\) −251.332 + 603.996i −0.431842 + 1.03779i
\(583\) −138.431 138.431i −0.237445 0.237445i
\(584\) −800.647 3.89726i −1.37097 0.00667340i
\(585\) 5.04129 5.04129i 0.00861760 0.00861760i
\(586\) 911.466 375.810i 1.55540 0.641314i
\(587\) 1062.40 + 440.061i 1.80988 + 0.749678i 0.982027 + 0.188738i \(0.0604397\pi\)
0.827856 + 0.560940i \(0.189560\pi\)
\(588\) 363.485 + 468.270i 0.618171 + 0.796377i
\(589\) 45.1427 18.6987i 0.0766429 0.0317465i
\(590\) 1.26284 778.311i 0.00214040 1.31917i
\(591\) 466.766 0.789790
\(592\) 1007.74 + 425.104i 1.70227 + 0.718080i
\(593\) −78.5514 −0.132464 −0.0662322 0.997804i \(-0.521098\pi\)
−0.0662322 + 0.997804i \(0.521098\pi\)
\(594\) −0.598958 + 369.149i −0.00100835 + 0.621463i
\(595\) 607.440 + 159.894i 1.02091 + 0.268729i
\(596\) 286.509 + 119.767i 0.480720 + 0.200951i
\(597\) −11.7433 + 28.3509i −0.0196706 + 0.0474889i
\(598\) −18.5004 44.8697i −0.0309371 0.0750329i
\(599\) 603.410 603.410i 1.00736 1.00736i 0.00738991 0.999973i \(-0.497648\pi\)
0.999973 0.00738991i \(-0.00235230\pi\)
\(600\) −30.4204 + 12.4274i −0.0507007 + 0.0207124i
\(601\) −114.383 + 114.383i −0.190322 + 0.190322i −0.795835 0.605514i \(-0.792968\pi\)
0.605514 + 0.795835i \(0.292968\pi\)
\(602\) −21.2179 36.5149i −0.0352457 0.0606560i
\(603\) 10.3766 + 4.29811i 0.0172082 + 0.00712788i
\(604\) −359.049 361.387i −0.594452 0.598322i
\(605\) −330.076 + 136.722i −0.545581 + 0.225987i
\(606\) −750.589 + 748.157i −1.23860 + 1.23458i
\(607\) 932.181i 1.53572i −0.640619 0.767859i \(-0.721322\pi\)
0.640619 0.767859i \(-0.278678\pi\)
\(608\) −226.562 + 534.658i −0.372634 + 0.879372i
\(609\) −575.076 + 756.339i −0.944295 + 1.24194i
\(610\) 191.872 191.251i 0.314544 0.313525i
\(611\) 37.3959 + 90.2816i 0.0612044 + 0.147760i
\(612\) −7.65709 7.70695i −0.0125116 0.0125931i
\(613\) 531.042 + 219.965i 0.866300 + 0.358833i 0.771168 0.636632i \(-0.219673\pi\)
0.0951317 + 0.995465i \(0.469673\pi\)
\(614\) −413.816 + 994.473i −0.673967 + 1.61966i
\(615\) 68.0308 68.0308i 0.110619 0.110619i
\(616\) 334.410 192.869i 0.542874 0.313098i
\(617\) 488.091 488.091i 0.791072 0.791072i −0.190597 0.981668i \(-0.561042\pi\)
0.981668 + 0.190597i \(0.0610422\pi\)
\(618\) −265.649 + 109.531i −0.429853 + 0.177234i
\(619\) −69.0349 28.5952i −0.111527 0.0461958i 0.326222 0.945293i \(-0.394224\pi\)
−0.437749 + 0.899097i \(0.644224\pi\)
\(620\) −20.1982 + 48.3186i −0.0325777 + 0.0779332i
\(621\) 24.9566 + 60.2507i 0.0401878 + 0.0970220i
\(622\) −0.334478 + 206.145i −0.000537745 + 0.331422i
\(623\) 569.883 + 433.306i 0.914741 + 0.695515i
\(624\) −338.693 343.118i −0.542778 0.549869i
\(625\) 589.202i 0.942723i
\(626\) 1159.93 + 1.88203i 1.85292 + 0.00300643i
\(627\) −349.537 + 144.783i −0.557475 + 0.230914i
\(628\) −292.574 712.871i −0.465882 1.13514i
\(629\) 1165.52 + 482.774i 1.85297 + 0.767526i
\(630\) 9.68404 + 2.56590i 0.0153715 + 0.00407286i
\(631\) −115.013 + 115.013i −0.182271 + 0.182271i −0.792345 0.610074i \(-0.791140\pi\)
0.610074 + 0.792345i \(0.291140\pi\)
\(632\) 502.671 + 507.588i 0.795365 + 0.803146i
\(633\) −570.405 + 570.405i −0.901114 + 0.901114i
\(634\) 70.6225 169.718i 0.111392 0.267694i
\(635\) 332.973 803.867i 0.524367 1.26593i
\(636\) −343.559 1.11488i −0.540187 0.00175295i
\(637\) 300.599 + 384.672i 0.471898 + 0.603881i
\(638\) 436.818 + 438.238i 0.684668 + 0.686893i
\(639\) 7.04198 0.0110203
\(640\) −231.626 577.666i −0.361916 0.902603i
\(641\) 7.26223 0.0113295 0.00566477 0.999984i \(-0.498197\pi\)
0.00566477 + 0.999984i \(0.498197\pi\)
\(642\) −315.375 + 314.353i −0.491238 + 0.489646i
\(643\) 666.011 275.871i 1.03579 0.429037i 0.200989 0.979594i \(-0.435585\pi\)
0.834798 + 0.550557i \(0.185585\pi\)
\(644\) 41.4539 54.1544i 0.0643693 0.0840907i
\(645\) −40.9838 16.9761i −0.0635408 0.0263195i
\(646\) −257.316 + 618.375i −0.398321 + 0.957237i
\(647\) −280.132 + 280.132i −0.432971 + 0.432971i −0.889638 0.456667i \(-0.849043\pi\)
0.456667 + 0.889638i \(0.349043\pi\)
\(648\) 463.304 + 467.836i 0.714975 + 0.721969i
\(649\) −390.135 390.135i −0.601132 0.601132i
\(650\) −25.0195 + 10.3159i −0.0384915 + 0.0158706i
\(651\) −49.2430 + 28.7209i −0.0756421 + 0.0441181i
\(652\) 209.624 86.0332i 0.321509 0.131953i
\(653\) −1117.64 + 462.940i −1.71154 + 0.708944i −0.711561 + 0.702624i \(0.752012\pi\)
−0.999980 + 0.00631987i \(0.997988\pi\)
\(654\) −833.397 1.35222i −1.27431 0.00206761i
\(655\) 299.850i 0.457786i
\(656\) −73.5368 74.4976i −0.112099 0.113563i
\(657\) −14.7291 −0.0224188
\(658\) −83.2877 + 109.172i −0.126577 + 0.165915i
\(659\) 80.8647 33.4953i 0.122708 0.0508274i −0.320485 0.947254i \(-0.603846\pi\)
0.443193 + 0.896426i \(0.353846\pi\)
\(660\) 156.393 374.127i 0.236959 0.566860i
\(661\) −584.186 241.978i −0.883791 0.366078i −0.105825 0.994385i \(-0.533748\pi\)
−0.777966 + 0.628307i \(0.783748\pi\)
\(662\) 606.176 249.935i 0.915674 0.377545i
\(663\) −393.220 393.220i −0.593092 0.593092i
\(664\) −1042.23 437.660i −1.56962 0.659127i
\(665\) −83.3173 611.981i −0.125289 0.920272i
\(666\) 18.5766 + 7.73001i 0.0278928 + 0.0116066i
\(667\) 100.991 + 41.8317i 0.151410 + 0.0627162i
\(668\) 671.791 + 676.166i 1.00568 + 1.01222i
\(669\) −104.951 253.373i −0.156877 0.378734i
\(670\) 523.922 + 525.625i 0.781973 + 0.784515i
\(671\) 192.043i 0.286205i
\(672\) 177.763 653.734i 0.264529 0.972819i
\(673\) −514.767 −0.764884 −0.382442 0.923980i \(-0.624917\pi\)
−0.382442 + 0.923980i \(0.624917\pi\)
\(674\) −214.736 + 214.041i −0.318600 + 0.317568i
\(675\) 33.5960 13.9159i 0.0497719 0.0206162i
\(676\) 196.603 + 197.883i 0.290833 + 0.292727i
\(677\) −28.3586 + 68.4637i −0.0418886 + 0.101128i −0.943439 0.331546i \(-0.892430\pi\)
0.901551 + 0.432674i \(0.142430\pi\)
\(678\) 39.4307 94.7590i 0.0581574 0.139763i
\(679\) −750.149 + 102.128i −1.10479 + 0.150409i
\(680\) −271.483 664.550i −0.399240 0.977279i
\(681\) 633.331 633.331i 0.930002 0.930002i
\(682\) 14.1513 + 34.3216i 0.0207497 + 0.0503249i
\(683\) 505.795 1221.10i 0.740548 1.78784i 0.136911 0.990583i \(-0.456283\pi\)
0.603638 0.797259i \(-0.293717\pi\)
\(684\) −4.11998 + 9.85592i −0.00602336 + 0.0144092i
\(685\) −203.390 491.027i −0.296920 0.716827i
\(686\) −255.143 + 636.787i −0.371929 + 0.928261i
\(687\) 803.703i 1.16987i
\(688\) −18.7593 + 44.4703i −0.0272664 + 0.0646371i
\(689\) −282.941 −0.410654
\(690\) 0.116233 71.6365i 0.000168454 0.103821i
\(691\) −70.8973 171.161i −0.102601 0.247701i 0.864240 0.503080i \(-0.167800\pi\)
−0.966841 + 0.255379i \(0.917800\pi\)
\(692\) 487.972 200.272i 0.705163 0.289411i
\(693\) 6.13457 3.57798i 0.00885220 0.00516303i
\(694\) 199.806 + 484.597i 0.287905 + 0.698266i
\(695\) −385.231 + 385.231i −0.554289 + 0.554289i
\(696\) 1085.86 + 5.28557i 1.56014 + 0.00759422i
\(697\) −85.3756 85.3756i −0.122490 0.122490i
\(698\) −530.889 220.911i −0.760586 0.316492i
\(699\) −489.068 + 1180.71i −0.699668 + 1.68915i
\(700\) −30.1967 23.1148i −0.0431382 0.0330212i
\(701\) 186.955 + 451.349i 0.266697 + 0.643864i 0.999324 0.0367666i \(-0.0117058\pi\)
−0.732627 + 0.680631i \(0.761706\pi\)
\(702\) 376.643 + 377.867i 0.536528 + 0.538272i
\(703\) 1240.45i 1.76451i
\(704\) −405.944 172.797i −0.576625 0.245450i
\(705\) 144.236i 0.204590i
\(706\) −309.436 + 308.433i −0.438294 + 0.436874i
\(707\) −1186.02 312.191i −1.67753 0.441571i
\(708\) −968.243 3.14203i −1.36757 0.00443789i
\(709\) −172.457 71.4339i −0.243239 0.100753i 0.257734 0.966216i \(-0.417024\pi\)
−0.500973 + 0.865463i \(0.667024\pi\)
\(710\) 429.603 + 178.765i 0.605075 + 0.251781i
\(711\) 9.29263 + 9.29263i 0.0130698 + 0.0130698i
\(712\) 3.98255 818.168i 0.00559347 1.14911i
\(713\) 4.63757 + 4.63757i 0.00650431 + 0.00650431i
\(714\) 200.140 755.353i 0.280308 1.05792i
\(715\) 127.797 308.530i 0.178738 0.431511i
\(716\) −36.5631 89.0877i −0.0510658 0.124424i
\(717\) −321.038 775.053i −0.447751 1.08097i
\(718\) −0.791667 + 487.919i −0.00110260 + 0.679553i
\(719\) −1069.38 −1.48732 −0.743659 0.668559i \(-0.766911\pi\)
−0.743659 + 0.668559i \(0.766911\pi\)
\(720\) −4.31274 10.6061i −0.00598992 0.0147306i
\(721\) −264.701 201.263i −0.367131 0.279145i
\(722\) −63.4259 0.102911i −0.0878476 0.000142536i
\(723\) −835.213 + 345.957i −1.15520 + 0.478501i
\(724\) −84.5518 + 202.267i −0.116784 + 0.279375i
\(725\) 23.3255 56.3128i 0.0321731 0.0776728i
\(726\) 169.421 + 410.902i 0.233362 + 0.565981i
\(727\) 315.123 + 315.123i 0.433456 + 0.433456i 0.889802 0.456346i \(-0.150842\pi\)
−0.456346 + 0.889802i \(0.650842\pi\)
\(728\) 144.650 538.857i 0.198695 0.740189i
\(729\) −506.778 506.778i −0.695169 0.695169i
\(730\) −898.565 373.907i −1.23091 0.512202i
\(731\) −21.3042 + 51.4328i −0.0291439 + 0.0703595i
\(732\) −237.535 239.081i −0.324501 0.326614i
\(733\) −786.082 + 325.606i −1.07242 + 0.444210i −0.847843 0.530247i \(-0.822099\pi\)
−0.224574 + 0.974457i \(0.572099\pi\)
\(734\) −621.380 623.399i −0.846566 0.849318i
\(735\) 192.633 + 694.351i 0.262086 + 0.944695i
\(736\) −77.9393 0.632311i −0.105896 0.000859118i
\(737\) 526.094 0.713832
\(738\) −1.35946 1.36388i −0.00184209 0.00184808i
\(739\) 481.117 + 1161.52i 0.651037 + 1.57174i 0.811275 + 0.584665i \(0.198774\pi\)
−0.160238 + 0.987078i \(0.551226\pi\)
\(740\) 937.053 + 943.154i 1.26629 + 1.27453i
\(741\) −209.250 + 505.174i −0.282389 + 0.681747i
\(742\) −199.751 343.762i −0.269207 0.463291i
\(743\) 343.644 + 343.644i 0.462508 + 0.462508i 0.899477 0.436968i \(-0.143948\pi\)
−0.436968 + 0.899477i \(0.643948\pi\)
\(744\) 60.0692 + 25.2247i 0.0807381 + 0.0339042i
\(745\) 266.917 + 266.917i 0.358277 + 0.358277i
\(746\) −753.742 + 310.778i −1.01038 + 0.416593i
\(747\) −19.2121 7.95791i −0.0257190 0.0106532i
\(748\) −469.513 196.266i −0.627691 0.262388i
\(749\) −498.328 131.173i −0.665325 0.175131i
\(750\) −775.226 1.25783i −1.03363 0.00167711i
\(751\) 782.796i 1.04234i −0.853453 0.521169i \(-0.825496\pi\)
0.853453 0.521169i \(-0.174504\pi\)
\(752\) 156.928 + 1.01850i 0.208680 + 0.00135439i
\(753\) 1114.57i 1.48017i
\(754\) 894.272 + 1.45099i 1.18604 + 0.00192439i
\(755\) −236.975 572.109i −0.313874 0.757760i
\(756\) −193.190 + 724.374i −0.255542 + 0.958166i
\(757\) 431.979 1042.89i 0.570646 1.37766i −0.330359 0.943855i \(-0.607170\pi\)