Properties

Label 224.3.v.b.69.13
Level 224
Weight 3
Character 224.69
Analytic conductor 6.104
Analytic rank 0
Dimension 240
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(60\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 69.13
Character \(\chi\) \(=\) 224.69
Dual form 224.3.v.b.13.13

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.46638 - 1.36005i) q^{2} +(-1.65755 + 0.686579i) q^{3} +(0.300514 + 3.98870i) q^{4} +(0.205220 - 0.495445i) q^{5} +(3.36437 + 1.24757i) q^{6} +(-0.193440 - 6.99733i) q^{7} +(4.98417 - 6.25764i) q^{8} +(-4.08789 + 4.08789i) q^{9} +O(q^{10})\) \(q+(-1.46638 - 1.36005i) q^{2} +(-1.65755 + 0.686579i) q^{3} +(0.300514 + 3.98870i) q^{4} +(0.205220 - 0.495445i) q^{5} +(3.36437 + 1.24757i) q^{6} +(-0.193440 - 6.99733i) q^{7} +(4.98417 - 6.25764i) q^{8} +(-4.08789 + 4.08789i) q^{9} +(-0.974760 + 0.447398i) q^{10} +(-3.44988 + 8.32874i) q^{11} +(-3.23667 - 6.40513i) q^{12} +(-1.31375 - 3.17168i) q^{13} +(-9.23308 + 10.5238i) q^{14} +0.962123i q^{15} +(-15.8194 + 2.39732i) q^{16} +28.1178 q^{17} +(11.5541 - 0.434636i) q^{18} +(12.1154 + 29.2491i) q^{19} +(2.03785 + 0.669672i) q^{20} +(5.12485 + 11.4656i) q^{21} +(16.3863 - 7.52104i) q^{22} +(-11.0067 + 11.0067i) q^{23} +(-3.96514 + 13.7944i) q^{24} +(17.4743 + 17.4743i) q^{25} +(-2.38720 + 6.43765i) q^{26} +(10.1484 - 24.5005i) q^{27} +(27.8521 - 2.87437i) q^{28} +(6.55469 + 15.8244i) q^{29} +(1.30854 - 1.41083i) q^{30} -31.5457i q^{31} +(26.4576 + 17.9998i) q^{32} -16.1739i q^{33} +(-41.2313 - 38.2417i) q^{34} +(-3.50649 - 1.34015i) q^{35} +(-17.5338 - 15.0769i) q^{36} +(39.9500 + 16.5478i) q^{37} +(22.0146 - 59.3677i) q^{38} +(4.35522 + 4.35522i) q^{39} +(-2.07746 - 3.75357i) q^{40} +(53.7822 + 53.7822i) q^{41} +(8.07885 - 23.7829i) q^{42} +(8.17552 - 19.7375i) q^{43} +(-34.2575 - 11.2576i) q^{44} +(1.18641 + 2.86424i) q^{45} +(31.1097 - 1.17027i) q^{46} -30.9029 q^{47} +(24.5754 - 14.8349i) q^{48} +(-48.9252 + 2.70713i) q^{49} +(-1.85792 - 49.3899i) q^{50} +(-46.6066 + 19.3051i) q^{51} +(12.2561 - 6.19330i) q^{52} +(-38.3091 + 92.4864i) q^{53} +(-48.2033 + 22.1245i) q^{54} +(3.41845 + 3.41845i) q^{55} +(-44.7509 - 33.6654i) q^{56} +(-40.1636 - 40.1636i) q^{57} +(11.9104 - 32.1193i) q^{58} +(-36.8703 + 89.0128i) q^{59} +(-3.83762 + 0.289132i) q^{60} +(80.8660 - 33.4958i) q^{61} +(-42.9039 + 46.2579i) q^{62} +(29.3950 + 27.8135i) q^{63} +(-14.3161 - 62.3783i) q^{64} -1.84100 q^{65} +(-21.9974 + 23.7170i) q^{66} +(-4.47349 - 10.8000i) q^{67} +(8.44980 + 112.153i) q^{68} +(10.6872 - 25.8012i) q^{69} +(3.31915 + 6.73417i) q^{70} +(-63.6100 - 63.6100i) q^{71} +(5.20580 + 45.9552i) q^{72} +(-35.2117 - 35.2117i) q^{73} +(-36.0757 - 78.5993i) q^{74} +(-40.9620 - 16.9670i) q^{75} +(-113.025 + 57.1143i) q^{76} +(58.9462 + 22.5288i) q^{77} +(-0.463060 - 12.3097i) q^{78} -66.1357i q^{79} +(-2.05871 + 8.32961i) q^{80} -4.45189i q^{81} +(-5.71828 - 152.012i) q^{82} +(30.0604 + 72.5721i) q^{83} +(-44.1927 + 23.8871i) q^{84} +(5.77034 - 13.9308i) q^{85} +(-38.8324 + 17.8234i) q^{86} +(-21.7294 - 21.7294i) q^{87} +(34.9235 + 63.0999i) q^{88} +(-23.6564 + 23.6564i) q^{89} +(2.15580 - 5.81362i) q^{90} +(-21.9392 + 9.80630i) q^{91} +(-47.2102 - 40.5948i) q^{92} +(21.6586 + 52.2886i) q^{93} +(45.3152 + 42.0296i) q^{94} +16.9776 q^{95} +(-56.2131 - 11.6703i) q^{96} -115.260i q^{97} +(75.4245 + 62.5711i) q^{98} +(-19.9442 - 48.1496i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} - 8q^{11} + 12q^{14} - 112q^{16} - 176q^{18} - 4q^{21} - 192q^{22} + 128q^{23} - 8q^{25} + 56q^{28} - 8q^{29} - 16q^{30} - 8q^{32} + 92q^{35} + 192q^{36} - 8q^{37} - 8q^{39} - 424q^{42} + 128q^{43} - 16q^{44} - 8q^{46} - 320q^{50} - 80q^{51} - 192q^{53} + 608q^{56} - 8q^{57} - 712q^{58} + 264q^{60} + 496q^{63} - 272q^{64} - 16q^{65} + 304q^{67} + 320q^{70} + 504q^{71} - 8q^{72} + 232q^{74} + 164q^{77} + 560q^{78} - 1000q^{84} - 208q^{85} - 8q^{86} - 800q^{88} + 188q^{91} + 1560q^{92} + 64q^{93} - 16q^{95} - 376q^{98} + 64q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.46638 1.36005i −0.733188 0.680026i
\(3\) −1.65755 + 0.686579i −0.552516 + 0.228860i −0.641433 0.767179i \(-0.721660\pi\)
0.0889164 + 0.996039i \(0.471660\pi\)
\(4\) 0.300514 + 3.98870i 0.0751285 + 0.997174i
\(5\) 0.205220 0.495445i 0.0410440 0.0990890i −0.902028 0.431677i \(-0.857922\pi\)
0.943072 + 0.332588i \(0.107922\pi\)
\(6\) 3.36437 + 1.24757i 0.560729 + 0.207928i
\(7\) −0.193440 6.99733i −0.0276343 0.999618i
\(8\) 4.98417 6.25764i 0.623021 0.782205i
\(9\) −4.08789 + 4.08789i −0.454209 + 0.454209i
\(10\) −0.974760 + 0.447398i −0.0974760 + 0.0447398i
\(11\) −3.44988 + 8.32874i −0.313625 + 0.757158i 0.685940 + 0.727658i \(0.259391\pi\)
−0.999565 + 0.0294996i \(0.990609\pi\)
\(12\) −3.23667 6.40513i −0.269723 0.533761i
\(13\) −1.31375 3.17168i −0.101058 0.243976i 0.865262 0.501321i \(-0.167152\pi\)
−0.966320 + 0.257345i \(0.917152\pi\)
\(14\) −9.23308 + 10.5238i −0.659505 + 0.751700i
\(15\) 0.962123i 0.0641416i
\(16\) −15.8194 + 2.39732i −0.988711 + 0.149832i
\(17\) 28.1178 1.65399 0.826995 0.562210i \(-0.190049\pi\)
0.826995 + 0.562210i \(0.190049\pi\)
\(18\) 11.5541 0.434636i 0.641895 0.0241464i
\(19\) 12.1154 + 29.2491i 0.637651 + 1.53943i 0.829801 + 0.558060i \(0.188454\pi\)
−0.192149 + 0.981366i \(0.561546\pi\)
\(20\) 2.03785 + 0.669672i 0.101892 + 0.0334836i
\(21\) 5.12485 + 11.4656i 0.244041 + 0.545981i
\(22\) 16.3863 7.52104i 0.744833 0.341866i
\(23\) −11.0067 + 11.0067i −0.478553 + 0.478553i −0.904669 0.426115i \(-0.859882\pi\)
0.426115 + 0.904669i \(0.359882\pi\)
\(24\) −3.96514 + 13.7944i −0.165214 + 0.574765i
\(25\) 17.4743 + 17.4743i 0.698973 + 0.698973i
\(26\) −2.38720 + 6.43765i −0.0918153 + 0.247602i
\(27\) 10.1484 24.5005i 0.375867 0.907424i
\(28\) 27.8521 2.87437i 0.994717 0.102656i
\(29\) 6.55469 + 15.8244i 0.226024 + 0.545670i 0.995687 0.0927808i \(-0.0295756\pi\)
−0.769663 + 0.638451i \(0.779576\pi\)
\(30\) 1.30854 1.41083i 0.0436179 0.0470278i
\(31\) 31.5457i 1.01760i −0.860883 0.508802i \(-0.830088\pi\)
0.860883 0.508802i \(-0.169912\pi\)
\(32\) 26.4576 + 17.9998i 0.826801 + 0.562494i
\(33\) 16.1739i 0.490118i
\(34\) −41.2313 38.2417i −1.21268 1.12476i
\(35\) −3.50649 1.34015i −0.100185 0.0382901i
\(36\) −17.5338 15.0769i −0.487050 0.418802i
\(37\) 39.9500 + 16.5478i 1.07973 + 0.447238i 0.850414 0.526114i \(-0.176352\pi\)
0.229314 + 0.973352i \(0.426352\pi\)
\(38\) 22.0146 59.3677i 0.579332 1.56231i
\(39\) 4.35522 + 4.35522i 0.111672 + 0.111672i
\(40\) −2.07746 3.75357i −0.0519366 0.0938393i
\(41\) 53.7822 + 53.7822i 1.31176 + 1.31176i 0.920116 + 0.391645i \(0.128094\pi\)
0.391645 + 0.920116i \(0.371906\pi\)
\(42\) 8.07885 23.7829i 0.192354 0.566260i
\(43\) 8.17552 19.7375i 0.190128 0.459011i −0.799855 0.600193i \(-0.795090\pi\)
0.989984 + 0.141182i \(0.0450904\pi\)
\(44\) −34.2575 11.2576i −0.778580 0.255855i
\(45\) 1.18641 + 2.86424i 0.0263646 + 0.0636497i
\(46\) 31.1097 1.17027i 0.676298 0.0254406i
\(47\) −30.9029 −0.657508 −0.328754 0.944416i \(-0.606629\pi\)
−0.328754 + 0.944416i \(0.606629\pi\)
\(48\) 24.5754 14.8349i 0.511988 0.309061i
\(49\) −48.9252 + 2.70713i −0.998473 + 0.0552475i
\(50\) −1.85792 49.3899i −0.0371584 0.987798i
\(51\) −46.6066 + 19.3051i −0.913856 + 0.378531i
\(52\) 12.2561 6.19330i 0.235694 0.119102i
\(53\) −38.3091 + 92.4864i −0.722814 + 1.74503i −0.0576410 + 0.998337i \(0.518358\pi\)
−0.665173 + 0.746689i \(0.731642\pi\)
\(54\) −48.2033 + 22.1245i −0.892654 + 0.409713i
\(55\) 3.41845 + 3.41845i 0.0621536 + 0.0621536i
\(56\) −44.7509 33.6654i −0.799123 0.601168i
\(57\) −40.1636 40.1636i −0.704625 0.704625i
\(58\) 11.9104 32.1193i 0.205352 0.553781i
\(59\) −36.8703 + 89.0128i −0.624921 + 1.50869i 0.220940 + 0.975287i \(0.429088\pi\)
−0.845860 + 0.533404i \(0.820912\pi\)
\(60\) −3.83762 + 0.289132i −0.0639603 + 0.00481886i
\(61\) 80.8660 33.4958i 1.32567 0.549112i 0.396255 0.918141i \(-0.370310\pi\)
0.929418 + 0.369029i \(0.120310\pi\)
\(62\) −42.9039 + 46.2579i −0.691998 + 0.746095i
\(63\) 29.3950 + 27.8135i 0.466588 + 0.441484i
\(64\) −14.3161 62.3783i −0.223689 0.974660i
\(65\) −1.84100 −0.0283231
\(66\) −21.9974 + 23.7170i −0.333293 + 0.359349i
\(67\) −4.47349 10.8000i −0.0667685 0.161193i 0.886973 0.461821i \(-0.152804\pi\)
−0.953742 + 0.300628i \(0.902804\pi\)
\(68\) 8.44980 + 112.153i 0.124262 + 1.64931i
\(69\) 10.6872 25.8012i 0.154887 0.373930i
\(70\) 3.31915 + 6.73417i 0.0474164 + 0.0962025i
\(71\) −63.6100 63.6100i −0.895916 0.895916i 0.0991558 0.995072i \(-0.468386\pi\)
−0.995072 + 0.0991558i \(0.968386\pi\)
\(72\) 5.20580 + 45.9552i 0.0723028 + 0.638267i
\(73\) −35.2117 35.2117i −0.482352 0.482352i 0.423530 0.905882i \(-0.360791\pi\)
−0.905882 + 0.423530i \(0.860791\pi\)
\(74\) −36.0757 78.5993i −0.487510 1.06215i
\(75\) −40.9620 16.9670i −0.546160 0.226227i
\(76\) −113.025 + 57.1143i −1.48717 + 0.751504i
\(77\) 58.9462 + 22.5288i 0.765536 + 0.292582i
\(78\) −0.463060 12.3097i −0.00593667 0.157817i
\(79\) 66.1357i 0.837161i −0.908180 0.418580i \(-0.862528\pi\)
0.908180 0.418580i \(-0.137472\pi\)
\(80\) −2.05871 + 8.32961i −0.0257339 + 0.104120i
\(81\) 4.45189i 0.0549617i
\(82\) −5.71828 152.012i −0.0697352 1.85380i
\(83\) 30.0604 + 72.5721i 0.362173 + 0.874363i 0.994982 + 0.100055i \(0.0319019\pi\)
−0.632809 + 0.774308i \(0.718098\pi\)
\(84\) −44.1927 + 23.8871i −0.526103 + 0.284370i
\(85\) 5.77034 13.9308i 0.0678863 0.163892i
\(86\) −38.8324 + 17.8234i −0.451539 + 0.207249i
\(87\) −21.7294 21.7294i −0.249764 0.249764i
\(88\) 34.9235 + 63.0999i 0.396858 + 0.717045i
\(89\) −23.6564 + 23.6564i −0.265802 + 0.265802i −0.827406 0.561604i \(-0.810184\pi\)
0.561604 + 0.827406i \(0.310184\pi\)
\(90\) 2.15580 5.81362i 0.0239533 0.0645958i
\(91\) −21.9392 + 9.80630i −0.241090 + 0.107762i
\(92\) −47.2102 40.5948i −0.513154 0.441248i
\(93\) 21.6586 + 52.2886i 0.232889 + 0.562243i
\(94\) 45.3152 + 42.0296i 0.482077 + 0.447123i
\(95\) 16.9776 0.178712
\(96\) −56.2131 11.6703i −0.585553 0.121566i
\(97\) 115.260i 1.18825i −0.804373 0.594124i \(-0.797499\pi\)
0.804373 0.594124i \(-0.202501\pi\)
\(98\) 75.4245 + 62.5711i 0.769638 + 0.638481i
\(99\) −19.9442 48.1496i −0.201457 0.486360i
\(100\) −64.4485 + 74.9510i −0.644485 + 0.749510i
\(101\) 25.3144 61.1145i 0.250638 0.605094i −0.747618 0.664129i \(-0.768803\pi\)
0.998256 + 0.0590355i \(0.0188025\pi\)
\(102\) 94.5988 + 35.0789i 0.927439 + 0.343911i
\(103\) −74.3084 + 74.3084i −0.721441 + 0.721441i −0.968899 0.247457i \(-0.920405\pi\)
0.247457 + 0.968899i \(0.420405\pi\)
\(104\) −26.3952 7.58720i −0.253800 0.0729539i
\(105\) 6.73229 0.186113i 0.0641171 0.00177251i
\(106\) 181.962 83.5174i 1.71662 0.787900i
\(107\) −9.85914 + 23.8021i −0.0921415 + 0.222449i −0.963231 0.268675i \(-0.913414\pi\)
0.871089 + 0.491125i \(0.163414\pi\)
\(108\) 100.775 + 33.1162i 0.933098 + 0.306632i
\(109\) −50.9889 + 21.1203i −0.467788 + 0.193764i −0.604111 0.796900i \(-0.706472\pi\)
0.136323 + 0.990664i \(0.456472\pi\)
\(110\) −0.363459 9.66199i −0.00330417 0.0878363i
\(111\) −77.5804 −0.698922
\(112\) 19.8349 + 110.230i 0.177098 + 0.984193i
\(113\) 121.375i 1.07411i −0.843547 0.537056i \(-0.819537\pi\)
0.843547 0.537056i \(-0.180463\pi\)
\(114\) 4.27031 + 113.520i 0.0374589 + 0.995786i
\(115\) 3.19443 + 7.71203i 0.0277776 + 0.0670611i
\(116\) −61.1491 + 30.9001i −0.527147 + 0.266381i
\(117\) 18.3360 + 7.59500i 0.156718 + 0.0649145i
\(118\) 175.128 80.3806i 1.48413 0.681192i
\(119\) −5.43911 196.750i −0.0457068 1.65336i
\(120\) 6.02062 + 4.79539i 0.0501718 + 0.0399615i
\(121\) 28.0937 + 28.0937i 0.232179 + 0.232179i
\(122\) −164.136 60.8646i −1.34538 0.498890i
\(123\) −126.072 52.2209i −1.02498 0.424560i
\(124\) 125.826 9.47994i 1.01473 0.0764511i
\(125\) 24.6298 10.2020i 0.197038 0.0816158i
\(126\) −5.27632 80.7638i −0.0418755 0.640983i
\(127\) 141.943 1.11766 0.558832 0.829281i \(-0.311250\pi\)
0.558832 + 0.829281i \(0.311250\pi\)
\(128\) −63.8449 + 110.941i −0.498788 + 0.866724i
\(129\) 38.3289i 0.297124i
\(130\) 2.69960 + 2.50386i 0.0207662 + 0.0192605i
\(131\) 109.700 45.4394i 0.837408 0.346866i 0.0775771 0.996986i \(-0.475282\pi\)
0.759831 + 0.650121i \(0.225282\pi\)
\(132\) 64.5128 4.86048i 0.488733 0.0368218i
\(133\) 202.322 90.4331i 1.52122 0.679948i
\(134\) −8.12869 + 21.9210i −0.0606619 + 0.163589i
\(135\) −10.0560 10.0560i −0.0744886 0.0744886i
\(136\) 140.144 175.951i 1.03047 1.29376i
\(137\) −132.652 + 132.652i −0.968265 + 0.968265i −0.999512 0.0312472i \(-0.990052\pi\)
0.0312472 + 0.999512i \(0.490052\pi\)
\(138\) −50.7624 + 23.2991i −0.367843 + 0.168834i
\(139\) 10.4221 + 4.31699i 0.0749795 + 0.0310575i 0.419858 0.907590i \(-0.362080\pi\)
−0.344878 + 0.938647i \(0.612080\pi\)
\(140\) 4.29171 14.3890i 0.0306551 0.102779i
\(141\) 51.2230 21.2173i 0.363284 0.150477i
\(142\) 6.76321 + 179.789i 0.0476282 + 1.26612i
\(143\) 30.9484 0.216422
\(144\) 54.8679 74.4678i 0.381027 0.517137i
\(145\) 9.18528 0.0633468
\(146\) 3.74381 + 99.5234i 0.0256426 + 0.681667i
\(147\) 79.2372 38.0782i 0.539028 0.259035i
\(148\) −53.9987 + 164.321i −0.364856 + 1.11028i
\(149\) −29.4428 + 71.0813i −0.197603 + 0.477056i −0.991358 0.131181i \(-0.958123\pi\)
0.793755 + 0.608237i \(0.208123\pi\)
\(150\) 36.9897 + 80.5905i 0.246598 + 0.537270i
\(151\) 2.84640 2.84640i 0.0188503 0.0188503i −0.697619 0.716469i \(-0.745757\pi\)
0.716469 + 0.697619i \(0.245757\pi\)
\(152\) 243.415 + 69.9688i 1.60142 + 0.460321i
\(153\) −114.942 + 114.942i −0.751258 + 0.751258i
\(154\) −55.7970 113.206i −0.362318 0.735102i
\(155\) −15.6292 6.47382i −0.100833 0.0417666i
\(156\) −16.0628 + 18.6805i −0.102967 + 0.119747i
\(157\) −77.8061 + 32.2284i −0.495580 + 0.205276i −0.616453 0.787392i \(-0.711431\pi\)
0.120872 + 0.992668i \(0.461431\pi\)
\(158\) −89.9480 + 96.9798i −0.569291 + 0.613796i
\(159\) 179.603i 1.12958i
\(160\) 14.3476 9.41437i 0.0896722 0.0588398i
\(161\) 79.1468 + 74.8885i 0.491595 + 0.465146i
\(162\) −6.05481 + 6.52815i −0.0373754 + 0.0402972i
\(163\) 76.2598 + 184.107i 0.467851 + 1.12949i 0.965099 + 0.261884i \(0.0843439\pi\)
−0.497248 + 0.867608i \(0.665656\pi\)
\(164\) −198.359 + 230.683i −1.20950 + 1.40660i
\(165\) −8.01327 3.31921i −0.0485653 0.0201164i
\(166\) 54.6221 147.302i 0.329049 0.887359i
\(167\) 114.508 114.508i 0.685679 0.685679i −0.275595 0.961274i \(-0.588875\pi\)
0.961274 + 0.275595i \(0.0888749\pi\)
\(168\) 97.2907 + 25.0770i 0.579111 + 0.149268i
\(169\) 111.167 111.167i 0.657795 0.657795i
\(170\) −27.4081 + 12.5799i −0.161224 + 0.0739992i
\(171\) −169.093 70.0407i −0.988849 0.409595i
\(172\) 81.1836 + 26.6783i 0.471998 + 0.155106i
\(173\) −27.0967 65.4173i −0.156629 0.378135i 0.826013 0.563652i \(-0.190604\pi\)
−0.982641 + 0.185517i \(0.940604\pi\)
\(174\) 2.31034 + 61.4167i 0.0132778 + 0.352970i
\(175\) 118.893 125.654i 0.679390 0.718021i
\(176\) 34.6083 140.026i 0.196638 0.795602i
\(177\) 172.857i 0.976596i
\(178\) 66.8631 2.51522i 0.375635 0.0141304i
\(179\) −222.660 + 92.2287i −1.24391 + 0.515244i −0.904934 0.425551i \(-0.860080\pi\)
−0.338975 + 0.940795i \(0.610080\pi\)
\(180\) −11.0680 + 5.59295i −0.0614891 + 0.0310720i
\(181\) 115.333 + 47.7724i 0.637197 + 0.263936i 0.677808 0.735239i \(-0.262930\pi\)
−0.0406103 + 0.999175i \(0.512930\pi\)
\(182\) 45.5081 + 15.4587i 0.250045 + 0.0849380i
\(183\) −111.042 + 111.042i −0.606786 + 0.606786i
\(184\) 14.0168 + 123.736i 0.0761780 + 0.672476i
\(185\) 16.3971 16.3971i 0.0886327 0.0886327i
\(186\) 39.3555 106.132i 0.211589 0.570600i
\(187\) −97.0030 + 234.186i −0.518732 + 1.25233i
\(188\) −9.28675 123.262i −0.0493976 0.655650i
\(189\) −173.401 66.2725i −0.917465 0.350648i
\(190\) −24.8956 23.0905i −0.131029 0.121529i
\(191\) 296.841 1.55414 0.777072 0.629412i \(-0.216704\pi\)
0.777072 + 0.629412i \(0.216704\pi\)
\(192\) 66.5573 + 93.5659i 0.346652 + 0.487322i
\(193\) −21.3734 −0.110743 −0.0553715 0.998466i \(-0.517634\pi\)
−0.0553715 + 0.998466i \(0.517634\pi\)
\(194\) −156.760 + 169.015i −0.808040 + 0.871209i
\(195\) 3.05155 1.26399i 0.0156490 0.00648202i
\(196\) −25.5006 194.334i −0.130105 0.991500i
\(197\) 199.357 + 82.5765i 1.01197 + 0.419170i 0.826171 0.563419i \(-0.190514\pi\)
0.185794 + 0.982589i \(0.440514\pi\)
\(198\) −36.2403 + 97.7306i −0.183032 + 0.493589i
\(199\) −147.909 + 147.909i −0.743262 + 0.743262i −0.973204 0.229942i \(-0.926146\pi\)
0.229942 + 0.973204i \(0.426146\pi\)
\(200\) 196.443 22.2530i 0.982215 0.111265i
\(201\) 14.8300 + 14.8300i 0.0737813 + 0.0737813i
\(202\) −120.239 + 55.1878i −0.595244 + 0.273207i
\(203\) 109.461 48.9264i 0.539216 0.241017i
\(204\) −91.0081 180.098i −0.446118 0.882834i
\(205\) 37.6833 15.6089i 0.183821 0.0761411i
\(206\) 210.027 7.90069i 1.01955 0.0383529i
\(207\) 89.9885i 0.434727i
\(208\) 28.3863 + 47.0246i 0.136473 + 0.226080i
\(209\) −285.405 −1.36557
\(210\) −10.1252 8.88336i −0.0482152 0.0423017i
\(211\) −232.947 + 96.4899i −1.10402 + 0.457298i −0.858873 0.512189i \(-0.828835\pi\)
−0.245142 + 0.969487i \(0.578835\pi\)
\(212\) −380.413 125.010i −1.79440 0.589670i
\(213\) 149.110 + 61.7634i 0.700047 + 0.289969i
\(214\) 46.8293 21.4938i 0.218828 0.100438i
\(215\) −8.10104 8.10104i −0.0376793 0.0376793i
\(216\) −102.734 185.620i −0.475619 0.859350i
\(217\) −220.736 + 6.10221i −1.01722 + 0.0281208i
\(218\) 103.494 + 38.3773i 0.474741 + 0.176043i
\(219\) 82.5408 + 34.1895i 0.376899 + 0.156116i
\(220\) −12.6078 + 14.6624i −0.0573084 + 0.0666474i
\(221\) −36.9399 89.1808i −0.167149 0.403533i
\(222\) 113.762 + 105.513i 0.512441 + 0.475285i
\(223\) 181.874i 0.815577i −0.913076 0.407789i \(-0.866300\pi\)
0.913076 0.407789i \(-0.133700\pi\)
\(224\) 120.833 188.615i 0.539432 0.842029i
\(225\) −142.866 −0.634960
\(226\) −165.076 + 177.981i −0.730424 + 0.787525i
\(227\) 165.104 68.3884i 0.727331 0.301270i 0.0118763 0.999929i \(-0.496220\pi\)
0.715455 + 0.698659i \(0.246220\pi\)
\(228\) 148.131 172.270i 0.649696 0.755571i
\(229\) 87.1151 210.314i 0.380415 0.918403i −0.611470 0.791268i \(-0.709422\pi\)
0.991885 0.127136i \(-0.0405785\pi\)
\(230\) 5.80453 15.6533i 0.0252371 0.0680579i
\(231\) −113.174 + 3.12868i −0.489931 + 0.0135441i
\(232\) 131.693 + 37.8547i 0.567643 + 0.163167i
\(233\) −98.6857 + 98.6857i −0.423544 + 0.423544i −0.886422 0.462878i \(-0.846817\pi\)
0.462878 + 0.886422i \(0.346817\pi\)
\(234\) −16.5578 36.0750i −0.0707598 0.154167i
\(235\) −6.34189 + 15.3107i −0.0269868 + 0.0651518i
\(236\) −366.125 120.315i −1.55138 0.509809i
\(237\) 45.4074 + 109.623i 0.191592 + 0.462545i
\(238\) −259.614 + 295.906i −1.09081 + 1.24330i
\(239\) 403.581i 1.68862i 0.535852 + 0.844312i \(0.319991\pi\)
−0.535852 + 0.844312i \(0.680009\pi\)
\(240\) −2.30652 15.2202i −0.00961048 0.0634175i
\(241\) −188.582 −0.782499 −0.391249 0.920285i \(-0.627957\pi\)
−0.391249 + 0.920285i \(0.627957\pi\)
\(242\) −2.98700 79.4048i −0.0123430 0.328119i
\(243\) 94.3924 + 227.883i 0.388446 + 0.937792i
\(244\) 157.906 + 312.484i 0.647156 + 1.28067i
\(245\) −8.69919 + 24.7953i −0.0355069 + 0.101205i
\(246\) 113.846 + 248.040i 0.462790 + 1.00829i
\(247\) 76.8522 76.8522i 0.311143 0.311143i
\(248\) −197.402 157.229i −0.795975 0.633989i
\(249\) −99.6530 99.6530i −0.400213 0.400213i
\(250\) −49.9917 18.5378i −0.199967 0.0741513i
\(251\) 14.8502 35.8515i 0.0591641 0.142835i −0.891533 0.452956i \(-0.850370\pi\)
0.950697 + 0.310121i \(0.100370\pi\)
\(252\) −102.106 + 125.606i −0.405182 + 0.498437i
\(253\) −53.7003 129.644i −0.212254 0.512427i
\(254\) −208.142 193.050i −0.819458 0.760041i
\(255\) 27.0528i 0.106089i
\(256\) 244.506 75.8482i 0.955101 0.296282i
\(257\) 86.5403i 0.336733i −0.985725 0.168366i \(-0.946151\pi\)
0.985725 0.168366i \(-0.0538491\pi\)
\(258\) 52.1294 56.2046i 0.202052 0.217847i
\(259\) 108.063 282.744i 0.417230 1.09168i
\(260\) −0.553247 7.34320i −0.00212787 0.0282431i
\(261\) −91.4833 37.8936i −0.350511 0.145186i
\(262\) −222.662 82.5672i −0.849855 0.315142i
\(263\) −52.6326 52.6326i −0.200124 0.200124i 0.599929 0.800053i \(-0.295195\pi\)
−0.800053 + 0.599929i \(0.795195\pi\)
\(264\) −101.210 80.6134i −0.383373 0.305354i
\(265\) 37.9601 + 37.9601i 0.143246 + 0.143246i
\(266\) −419.674 142.559i −1.57772 0.535938i
\(267\) 22.9696 55.4536i 0.0860285 0.207691i
\(268\) 41.7334 21.0889i 0.155722 0.0786900i
\(269\) 38.0955 + 91.9708i 0.141619 + 0.341899i 0.978736 0.205126i \(-0.0657604\pi\)
−0.837116 + 0.547025i \(0.815760\pi\)
\(270\) 1.06918 + 28.4225i 0.00395992 + 0.105268i
\(271\) −60.8458 −0.224523 −0.112262 0.993679i \(-0.535809\pi\)
−0.112262 + 0.993679i \(0.535809\pi\)
\(272\) −444.806 + 67.4074i −1.63532 + 0.247821i
\(273\) 29.6324 31.3174i 0.108544 0.114716i
\(274\) 374.932 14.1040i 1.36836 0.0514744i
\(275\) −205.823 + 85.2548i −0.748448 + 0.310017i
\(276\) 106.125 + 34.8744i 0.384510 + 0.126356i
\(277\) −159.062 + 384.010i −0.574231 + 1.38632i 0.323691 + 0.946163i \(0.395076\pi\)
−0.897922 + 0.440154i \(0.854924\pi\)
\(278\) −9.41144 20.5050i −0.0338541 0.0737590i
\(279\) 128.955 + 128.955i 0.462206 + 0.462206i
\(280\) −25.8631 + 15.2628i −0.0923683 + 0.0545100i
\(281\) −150.559 150.559i −0.535796 0.535796i 0.386495 0.922291i \(-0.373686\pi\)
−0.922291 + 0.386495i \(0.873686\pi\)
\(282\) −103.969 38.5535i −0.368684 0.136715i
\(283\) 157.219 379.561i 0.555546 1.34121i −0.357715 0.933831i \(-0.616444\pi\)
0.913261 0.407375i \(-0.133556\pi\)
\(284\) 234.605 272.837i 0.826075 0.960693i
\(285\) −28.1412 + 11.6565i −0.0987412 + 0.0408999i
\(286\) −45.3820 42.0915i −0.158678 0.147173i
\(287\) 365.928 386.735i 1.27501 1.34751i
\(288\) −181.737 + 34.5746i −0.631031 + 0.120051i
\(289\) 501.612 1.73568
\(290\) −13.4691 12.4925i −0.0464451 0.0430775i
\(291\) 79.1352 + 191.049i 0.271942 + 0.656526i
\(292\) 129.867 151.030i 0.444751 0.517228i
\(293\) −29.3744 + 70.9161i −0.100254 + 0.242035i −0.966046 0.258369i \(-0.916815\pi\)
0.865792 + 0.500404i \(0.166815\pi\)
\(294\) −167.980 51.9298i −0.571360 0.176632i
\(295\) 36.5344 + 36.5344i 0.123845 + 0.123845i
\(296\) 302.668 167.515i 1.02253 0.565930i
\(297\) 169.047 + 169.047i 0.569182 + 0.569182i
\(298\) 139.849 64.1881i 0.469290 0.215396i
\(299\) 49.3700 + 20.4497i 0.165117 + 0.0683937i
\(300\) 55.3666 168.484i 0.184555 0.561613i
\(301\) −139.691 53.3888i −0.464089 0.177371i
\(302\) −8.04513 + 0.302637i −0.0266395 + 0.00100211i
\(303\) 118.681i 0.391685i
\(304\) −261.777 433.658i −0.861109 1.42651i
\(305\) 46.9387i 0.153897i
\(306\) 324.876 12.2210i 1.06169 0.0399379i
\(307\) −45.9600 110.957i −0.149707 0.361424i 0.831180 0.556003i \(-0.187666\pi\)
−0.980887 + 0.194579i \(0.937666\pi\)
\(308\) −72.1463 + 241.889i −0.234241 + 0.785353i
\(309\) 72.1512 174.188i 0.233499 0.563717i
\(310\) 14.1135 + 30.7495i 0.0455274 + 0.0991921i
\(311\) 210.911 + 210.911i 0.678170 + 0.678170i 0.959586 0.281416i \(-0.0908041\pi\)
−0.281416 + 0.959586i \(0.590804\pi\)
\(312\) 48.9606 5.54625i 0.156925 0.0177764i
\(313\) −170.998 + 170.998i −0.546320 + 0.546320i −0.925374 0.379054i \(-0.876249\pi\)
0.379054 + 0.925374i \(0.376249\pi\)
\(314\) 157.925 + 58.5616i 0.502947 + 0.186502i
\(315\) 19.8125 8.85573i 0.0628968 0.0281134i
\(316\) 263.795 19.8747i 0.834795 0.0628946i
\(317\) −112.618 271.884i −0.355262 0.857677i −0.995953 0.0898786i \(-0.971352\pi\)
0.640691 0.767799i \(-0.278648\pi\)
\(318\) −244.269 + 263.365i −0.768143 + 0.828193i
\(319\) −154.410 −0.484045
\(320\) −33.8429 5.70842i −0.105759 0.0178388i
\(321\) 46.2222i 0.143994i
\(322\) −14.2066 217.459i −0.0441199 0.675337i
\(323\) 340.658 + 822.421i 1.05467 + 2.54619i
\(324\) 17.7573 1.33786i 0.0548063 0.00412919i
\(325\) 32.4660 78.3800i 0.0998955 0.241169i
\(326\) 138.570 373.688i 0.425062 1.14628i
\(327\) 70.0158 70.0158i 0.214115 0.214115i
\(328\) 604.609 68.4901i 1.84332 0.208811i
\(329\) 5.97786 + 216.238i 0.0181698 + 0.657257i
\(330\) 7.23617 + 15.7657i 0.0219278 + 0.0477748i
\(331\) 43.6250 105.320i 0.131798 0.318187i −0.844180 0.536060i \(-0.819912\pi\)
0.975977 + 0.217873i \(0.0699119\pi\)
\(332\) −280.435 + 141.711i −0.844682 + 0.426839i
\(333\) −230.956 + 95.6653i −0.693563 + 0.287283i
\(334\) −323.650 + 12.1749i −0.969011 + 0.0364517i
\(335\) −6.26883 −0.0187129
\(336\) −108.559 169.093i −0.323091 0.503252i
\(337\) 176.021i 0.522316i −0.965296 0.261158i \(-0.915896\pi\)
0.965296 0.261158i \(-0.0841044\pi\)
\(338\) −314.207 + 11.8196i −0.929606 + 0.0349694i
\(339\) 83.3332 + 201.184i 0.245821 + 0.593464i
\(340\) 57.2999 + 18.8297i 0.168529 + 0.0553815i
\(341\) 262.736 + 108.829i 0.770487 + 0.319146i
\(342\) 152.695 + 332.682i 0.446477 + 0.972753i
\(343\) 28.4067 + 341.822i 0.0828185 + 0.996565i
\(344\) −82.7617 149.534i −0.240586 0.434693i
\(345\) −10.5898 10.5898i −0.0306952 0.0306952i
\(346\) −49.2370 + 132.779i −0.142303 + 0.383755i
\(347\) 54.0928 + 22.4060i 0.155887 + 0.0645705i 0.459263 0.888301i \(-0.348114\pi\)
−0.303376 + 0.952871i \(0.598114\pi\)
\(348\) 80.1421 93.2021i 0.230293 0.267822i
\(349\) −496.264 + 205.559i −1.42196 + 0.588995i −0.955352 0.295470i \(-0.904524\pi\)
−0.466607 + 0.884465i \(0.654524\pi\)
\(350\) −345.238 + 22.5545i −0.986394 + 0.0644413i
\(351\) −91.0402 −0.259374
\(352\) −241.191 + 158.262i −0.685203 + 0.449607i
\(353\) 379.228i 1.07430i −0.843487 0.537150i \(-0.819501\pi\)
0.843487 0.537150i \(-0.180499\pi\)
\(354\) −235.095 + 253.474i −0.664111 + 0.716028i
\(355\) −44.5693 + 18.4612i −0.125547 + 0.0520034i
\(356\) −101.467 87.2490i −0.285020 0.245082i
\(357\) 144.100 + 322.387i 0.403641 + 0.903046i
\(358\) 451.939 + 167.587i 1.26240 + 0.468120i
\(359\) −39.1210 39.1210i −0.108972 0.108972i 0.650518 0.759491i \(-0.274552\pi\)
−0.759491 + 0.650518i \(0.774552\pi\)
\(360\) 23.8366 + 6.85174i 0.0662128 + 0.0190326i
\(361\) −453.462 + 453.462i −1.25613 + 1.25613i
\(362\) −104.148 226.911i −0.287702 0.626825i
\(363\) −65.8552 27.2781i −0.181419 0.0751463i
\(364\) −45.7074 84.5617i −0.125570 0.232312i
\(365\) −24.6716 + 10.2193i −0.0675935 + 0.0279981i
\(366\) 313.852 11.8063i 0.857518 0.0322576i
\(367\) 539.970 1.47131 0.735654 0.677357i \(-0.236875\pi\)
0.735654 + 0.677357i \(0.236875\pi\)
\(368\) 147.733 200.506i 0.401448 0.544854i
\(369\) −439.711 −1.19163
\(370\) −46.3451 + 1.74338i −0.125257 + 0.00471184i
\(371\) 654.568 + 250.171i 1.76433 + 0.674315i
\(372\) −202.055 + 102.103i −0.543157 + 0.274471i
\(373\) 109.340 263.969i 0.293136 0.707692i −0.706864 0.707349i \(-0.749891\pi\)
1.00000 0.000342797i \(-0.000109116\pi\)
\(374\) 460.748 211.475i 1.23195 0.565442i
\(375\) −33.8205 + 33.8205i −0.0901881 + 0.0901881i
\(376\) −154.025 + 193.379i −0.409642 + 0.514306i
\(377\) 41.5788 41.5788i 0.110289 0.110289i
\(378\) 164.137 + 333.015i 0.434224 + 0.880991i
\(379\) −208.851 86.5087i −0.551057 0.228255i 0.0897406 0.995965i \(-0.471396\pi\)
−0.640798 + 0.767710i \(0.721396\pi\)
\(380\) 5.10202 + 67.7186i 0.0134264 + 0.178207i
\(381\) −235.278 + 97.4553i −0.617528 + 0.255788i
\(382\) −435.281 403.720i −1.13948 1.05686i
\(383\) 29.8752i 0.0780033i 0.999239 + 0.0390016i \(0.0124178\pi\)
−0.999239 + 0.0390016i \(0.987582\pi\)
\(384\) 29.6565 227.724i 0.0772305 0.593031i
\(385\) 23.2587 24.5812i 0.0604123 0.0638474i
\(386\) 31.3414 + 29.0689i 0.0811954 + 0.0753081i
\(387\) 47.2639 + 114.105i 0.122129 + 0.294845i
\(388\) 459.737 34.6373i 1.18489 0.0892714i
\(389\) −25.8767 10.7185i −0.0665210 0.0275539i 0.349175 0.937058i \(-0.386462\pi\)
−0.415696 + 0.909504i \(0.636462\pi\)
\(390\) −6.19382 2.29678i −0.0158816 0.00588918i
\(391\) −309.485 + 309.485i −0.791522 + 0.791522i
\(392\) −226.911 + 319.649i −0.578855 + 0.815431i
\(393\) −150.636 + 150.636i −0.383298 + 0.383298i
\(394\) −180.024 392.224i −0.456914 0.995493i
\(395\) −32.7666 13.5724i −0.0829534 0.0343604i
\(396\) 186.061 94.0211i 0.469850 0.237427i
\(397\) −42.9450 103.678i −0.108174 0.261155i 0.860518 0.509419i \(-0.170140\pi\)
−0.968692 + 0.248265i \(0.920140\pi\)
\(398\) 418.055 15.7261i 1.05039 0.0395129i
\(399\) −273.269 + 288.807i −0.684884 + 0.723828i
\(400\) −318.324 234.541i −0.795811 0.586354i
\(401\) 69.4239i 0.173127i −0.996246 0.0865635i \(-0.972411\pi\)
0.996246 0.0865635i \(-0.0275885\pi\)
\(402\) −1.57677 41.9161i −0.00392232 0.104269i
\(403\) −100.053 + 41.4434i −0.248271 + 0.102837i
\(404\) 251.374 + 82.6058i 0.622214 + 0.204470i
\(405\) −2.20567 0.913617i −0.00544609 0.00225585i
\(406\) −227.053 77.1279i −0.559244 0.189970i
\(407\) −275.645 + 275.645i −0.677260 + 0.677260i
\(408\) −111.491 + 387.867i −0.273262 + 0.950656i
\(409\) 270.737 270.737i 0.661949 0.661949i −0.293890 0.955839i \(-0.594950\pi\)
0.955839 + 0.293890i \(0.0949500\pi\)
\(410\) −76.4868 28.3627i −0.186553 0.0691773i
\(411\) 128.801 310.954i 0.313385 0.756578i
\(412\) −318.725 274.063i −0.773603 0.665202i
\(413\) 629.984 + 240.775i 1.52538 + 0.582990i
\(414\) −122.389 + 131.957i −0.295626 + 0.318736i
\(415\) 42.1245 0.101505
\(416\) 22.3309 107.563i 0.0536801 0.258564i
\(417\) −20.2392 −0.0485352
\(418\) 418.510 + 388.165i 1.00122 + 0.928625i
\(419\) 539.644 223.528i 1.28793 0.533479i 0.369564 0.929205i \(-0.379507\pi\)
0.918368 + 0.395727i \(0.129507\pi\)
\(420\) 2.76550 + 26.7971i 0.00658452 + 0.0638027i
\(421\) 57.3466 + 23.7538i 0.136215 + 0.0564222i 0.449750 0.893155i \(-0.351513\pi\)
−0.313535 + 0.949577i \(0.601513\pi\)
\(422\) 472.819 + 175.330i 1.12043 + 0.415474i
\(423\) 126.327 126.327i 0.298646 0.298646i
\(424\) 387.808 + 700.693i 0.914641 + 1.65258i
\(425\) 491.340 + 491.340i 1.15609 + 1.15609i
\(426\) −134.650 293.366i −0.316079 0.688652i
\(427\) −250.024 559.367i −0.585536 1.30999i
\(428\) −97.9021 32.1723i −0.228743 0.0751688i
\(429\) −51.2985 + 21.2485i −0.119577 + 0.0495304i
\(430\) 0.861326 + 22.8970i 0.00200308 + 0.0532489i
\(431\) 338.786i 0.786046i −0.919529 0.393023i \(-0.871429\pi\)
0.919529 0.393023i \(-0.128571\pi\)
\(432\) −101.806 + 411.911i −0.235663 + 0.953498i
\(433\) 812.328 1.87605 0.938023 0.346572i \(-0.112654\pi\)
0.938023 + 0.346572i \(0.112654\pi\)
\(434\) 331.981 + 291.264i 0.764933 + 0.671116i
\(435\) −15.2251 + 6.30642i −0.0350001 + 0.0144975i
\(436\) −99.5652 197.032i −0.228361 0.451908i
\(437\) −455.287 188.586i −1.04185 0.431547i
\(438\) −74.5362 162.394i −0.170174 0.370764i
\(439\) −86.9687 86.9687i −0.198106 0.198106i 0.601081 0.799188i \(-0.294737\pi\)
−0.799188 + 0.601081i \(0.794737\pi\)
\(440\) 38.4295 4.35329i 0.0873398 0.00989385i
\(441\) 188.934 211.067i 0.428422 0.478610i
\(442\) −67.1228 + 181.013i −0.151862 + 0.409531i
\(443\) 232.178 + 96.1715i 0.524105 + 0.217091i 0.629019 0.777390i \(-0.283457\pi\)
−0.104914 + 0.994481i \(0.533457\pi\)
\(444\) −23.3140 309.444i −0.0525090 0.696947i
\(445\) 6.86567 + 16.5752i 0.0154285 + 0.0372476i
\(446\) −247.358 + 266.695i −0.554614 + 0.597971i
\(447\) 138.035i 0.308804i
\(448\) −433.712 + 112.241i −0.968107 + 0.250538i
\(449\) 90.2071 0.200907 0.100453 0.994942i \(-0.467971\pi\)
0.100453 + 0.994942i \(0.467971\pi\)
\(450\) 209.495 + 194.305i 0.465545 + 0.431790i
\(451\) −633.480 + 262.396i −1.40461 + 0.581809i
\(452\) 484.126 36.4748i 1.07108 0.0806964i
\(453\) −2.76376 + 6.67231i −0.00610102 + 0.0147292i
\(454\) −335.116 124.267i −0.738142 0.273716i
\(455\) 0.356124 + 12.8821i 0.000782689 + 0.0283123i
\(456\) −451.512 + 51.1472i −0.990157 + 0.112165i
\(457\) 590.224 590.224i 1.29152 1.29152i 0.357670 0.933848i \(-0.383571\pi\)
0.933848 0.357670i \(-0.116429\pi\)
\(458\) −413.782 + 189.919i −0.903454 + 0.414670i
\(459\) 285.351 688.899i 0.621681 1.50087i
\(460\) −29.8010 + 15.0592i −0.0647847 + 0.0327373i
\(461\) −236.086 569.962i −0.512117 1.23636i −0.942649 0.333785i \(-0.891674\pi\)
0.430532 0.902575i \(1.64167\pi\)
\(462\) 170.211 + 149.335i 0.368422 + 0.323236i
\(463\) 498.672i 1.07705i 0.842611 + 0.538523i \(0.181018\pi\)
−0.842611 + 0.538523i \(0.818982\pi\)
\(464\) −141.627 234.619i −0.305231 0.505644i
\(465\) 30.3509 0.0652707
\(466\) 278.928 10.4926i 0.598558 0.0225162i
\(467\) −201.553 486.591i −0.431590 1.04195i −0.978775 0.204939i \(-0.934300\pi\)
0.547185 0.837012i \(1.68430\pi\)
\(468\) −24.7839 + 75.4189i −0.0529571 + 0.161152i
\(469\) −74.7055 + 33.3916i −0.159287 + 0.0711974i
\(470\) 30.1229 13.8259i 0.0640913 0.0294168i
\(471\) 106.840 106.840i 0.226837 0.226837i
\(472\) 373.242 + 674.376i 0.790768 + 1.42876i
\(473\) 136.184 + 136.184i 0.287915 + 0.287915i
\(474\) 82.5089 222.505i 0.174069 0.469420i
\(475\) −299.400 + 722.816i −0.630316 + 1.52172i
\(476\) 783.139 80.8210i 1.64525 0.169792i
\(477\) −221.471 534.677i −0.464299 1.12092i
\(478\) 548.892 591.801i 1.14831 1.23808i
\(479\) 545.400i 1.13862i −0.822122 0.569312i \(-0.807210\pi\)
0.822122 0.569312i \(-0.192790\pi\)
\(480\) −17.3181 + 25.4555i −0.0360793 + 0.0530323i
\(481\) 148.448i 0.308624i
\(482\) 276.532 + 256.482i 0.573718 + 0.532120i
\(483\) −182.607 69.7908i −0.378067 0.144494i
\(484\) −103.615 + 120.500i −0.214080 + 0.248966i
\(485\) −57.1050 23.6537i −0.117742 0.0487705i
\(486\) 171.519 462.541i 0.352919 0.951731i
\(487\) −247.898 247.898i −0.509031 0.509031i 0.405198 0.914229i \(-0.367203\pi\)
−0.914229 + 0.405198i \(0.867203\pi\)
\(488\) 193.445 672.979i 0.396404 1.37906i
\(489\) −252.808 252.808i −0.516991 0.516991i
\(490\) 46.4791 24.5278i 0.0948554 0.0500568i
\(491\) −51.4523 + 124.217i −0.104791 + 0.252987i −0.967574 0.252586i \(-0.918719\pi\)
0.862784 + 0.505573i \(0.168719\pi\)
\(492\) 170.407 518.557i 0.346355 1.05398i
\(493\) 184.304 + 444.948i 0.373841 + 0.902532i
\(494\) −217.217 + 8.17115i −0.439711 + 0.0165408i
\(495\) −27.9484 −0.0564615
\(496\) 75.6252 + 499.034i 0.152470 + 1.00612i
\(497\) −432.796 + 457.405i −0.870816 + 0.920332i
\(498\) 10.5954 + 281.662i 0.0212759 + 0.565586i
\(499\) 20.9873 8.69323i 0.0420587 0.0174213i −0.361555 0.932351i \(-0.617754\pi\)
0.403614 + 0.914930i \(0.367754\pi\)
\(500\) 48.0942 + 95.1748i 0.0961884 + 0.190350i
\(501\) −111.184 + 268.422i −0.221924 + 0.535773i
\(502\) −70.5359 + 32.3748i −0.140510 + 0.0644915i
\(503\) 150.920 + 150.920i 0.300041 + 0.300041i 0.841030 0.540989i \(-0.181950\pi\)
−0.540989 + 0.841030i \(0.681950\pi\)
\(504\) 320.557 45.3163i 0.636025 0.0899133i
\(505\) −25.0838 25.0838i −0.0496709 0.0496709i
\(506\) −97.5778 + 263.142i −0.192842 + 0.520043i
\(507\) −107.940 + 260.591i −0.212900 + 0.513985i
\(508\) 42.6560 + 566.169i 0.0839685 + 1.11451i
\(509\) −776.403 + 321.597i −1.52535 + 0.631821i −0.978655 0.205511i \(-0.934114\pi\)
−0.546695 + 0.837332i \(0.684114\pi\)
\(510\) 36.7932 39.6696i 0.0721436 0.0777835i
\(511\) −239.577 + 253.199i −0.468839 + 0.495498i
\(512\) −461.695 221.319i −0.901748 0.432263i
\(513\) 839.568 1.63658
\(514\) −117.699 + 126.901i −0.228987 + 0.246888i
\(515\) 21.5662 + 52.0653i 0.0418760 + 0.101098i
\(516\) −152.882 + 11.5184i −0.296284 + 0.0223225i
\(517\) 106.611 257.382i 0.206211 0.497838i
\(518\) −543.007 + 267.638i −1.04828 + 0.516676i
\(519\) 89.8283 + 89.8283i 0.173080 + 0.173080i
\(520\) −9.17587 + 11.5203i −0.0176459 + 0.0221545i
\(521\) 158.154 + 158.154i 0.303559 + 0.303559i 0.842405 0.538845i \(-0.181139\pi\)
−0.538845 + 0.842405i \(0.681139\pi\)
\(522\) 82.6115 + 179.988i 0.158260 + 0.344805i
\(523\) 220.201 + 91.2100i 0.421034 + 0.174398i 0.583133 0.812377i \(-0.301827\pi\)
−0.162100 + 0.986774i \(0.551827\pi\)
\(524\) 214.211 + 423.907i 0.408799 + 0.808982i
\(525\) −110.800 + 289.907i −0.211048 + 0.552203i
\(526\) 5.59605 + 148.762i 0.0106389 + 0.282818i
\(527\) 886.997i 1.68311i
\(528\) 38.7740 + 255.861i 0.0734356 + 0.484585i
\(529\) 286.704i 0.541973i
\(530\) −4.03603 107.292i −0.00761515 0.202437i
\(531\) −213.153 514.596i −0.401417 0.969107i
\(532\) 421.511 + 779.824i 0.792314 + 1.46583i
\(533\) 99.9235 241.237i 0.187474 0.452602i
\(534\) −109.102 + 50.0759i −0.204311 + 0.0937750i
\(535\) 9.76932 + 9.76932i 0.0182604 + 0.0182604i
\(536\) −89.8789 25.8353i −0.167684 0.0482002i
\(537\) 305.747 305.747i 0.569361 0.569361i
\(538\) 69.2227 186.676i 0.128667 0.346981i
\(539\) 146.239 416.824i 0.271315 0.773329i
\(540\) 37.0882 43.1321i 0.0686819 0.0798743i
\(541\) −339.313 819.175i −0.627197 1.51419i −0.843092 0.537770i \(-0.819267\pi\)
0.215895 0.976417i \(-0.430733\pi\)
\(542\) 89.2228 + 82.7535i 0.164618 + 0.152682i
\(543\) −223.969 −0.412466
\(544\) 743.931 + 506.116i 1.36752 + 0.930360i
\(545\) 29.5965i 0.0543054i
\(546\) −86.0456 + 5.62137i −0.157593 + 0.0102956i
\(547\) −369.973 893.193i −0.676367 1.63289i −0.770581 0.637342i \(-0.780034\pi\)
0.0942137 0.995552i \(-0.469966\pi\)
\(548\) −568.973 489.246i −1.03827 0.892784i
\(549\) −193.644 + 467.498i −0.352721 + 0.851545i
\(550\) 417.765 + 154.915i 0.759573 + 0.281663i
\(551\) −383.438 + 383.438i −0.695894 + 0.695894i
\(552\) −108.188 195.474i −0.195992 0.354120i
\(553\) −462.773 + 12.7933i −0.836841 + 0.0231343i
\(554\) 755.518 346.770i 1.36375 0.625938i
\(555\) −15.9210 + 38.4368i −0.0286866 + 0.0692555i
\(556\) −14.0872 + 42.8681i −0.0253366 + 0.0771009i
\(557\) 67.7100 28.0464i 0.121562 0.0503526i −0.321073 0.947054i \(-0.604044\pi\)
0.442635 + 0.896702i \(0.354044\pi\)
\(558\) −13.7109 364.483i −0.0245715 0.653195i
\(559\) −73.3416 −0.131201
\(560\) 58.6832 + 12.7942i 0.104791 + 0.0228468i
\(561\) 454.775i 0.810650i
\(562\) 16.0079 + 425.544i 0.0284837 + 0.757195i
\(563\) −85.5867 206.625i −0.152019 0.367006i 0.829463 0.558562i \(-0.188647\pi\)
−0.981482 + 0.191556i \(0.938647\pi\)
\(564\) 100.022 + 197.937i 0.177345 + 0.350952i
\(565\) −60.1344 24.9085i −0.106433 0.0440858i
\(566\) −746.766 + 342.753i −1.31937 + 0.605570i
\(567\) −31.1514 + 0.861175i −0.0549407 + 0.00151883i
\(568\) −715.092 + 81.0056i −1.25896 + 0.142615i
\(569\) 284.496 + 284.496i 0.499993 + 0.499993i 0.911436 0.411443i \(-0.134975\pi\)
−0.411443 + 0.911436i \(0.634975\pi\)
\(570\) 57.1190 + 21.1808i 0.100209 + 0.0371593i
\(571\) −62.8633 26.0388i −0.110093 0.0456021i 0.326957 0.945039i \(-0.393977\pi\)
−0.437050 + 0.899437i \(0.643977\pi\)
\(572\) 9.30043 + 123.444i 0.0162595 + 0.215811i
\(573\) −492.029 + 203.805i −0.858689 + 0.355681i
\(574\) −1062.57 + 69.4178i −1.85116 + 0.120937i
\(575\) −384.670 −0.668992
\(576\) 313.518 + 196.473i 0.544302 + 0.341098i
\(577\) 95.3790i 0.165302i 0.996579 + 0.0826508i \(0.0263386\pi\)
−0.996579 + 0.0826508i \(0.973661\pi\)
\(578\) −735.551 682.218i −1.27258 1.18031i
\(579\) 35.4274 14.6745i 0.0611873 0.0253446i
\(580\) 2.76031 + 36.6373i 0.00475915 + 0.0631678i
\(581\) 501.996 224.381i 0.864021 0.386197i
\(582\) 143.795 387.778i 0.247071 0.666285i
\(583\) −638.133 638.133i −1.09457 1.09457i
\(584\) −395.844 + 44.8411i −0.677814 + 0.0767827i
\(585\) 7.52581 7.52581i 0.0128646 0.0128646i
\(586\) 139.524 64.0389i 0.238095 0.109281i
\(587\) −658.440 272.735i −1.12170 0.464625i −0.256750 0.966478i \(-0.582652\pi\)
−0.864953 + 0.501853i \(0.832652\pi\)
\(588\) 175.694 + 304.610i 0.298800 + 0.518044i
\(589\) 922.684 382.188i 1.56653 0.648877i
\(590\) −3.88445 103.262i −0.00658381 0.175020i
\(591\) −387.139 −0.655058
\(592\) −671.654 166.003i −1.13455 0.280411i
\(593\) 244.853 0.412906 0.206453 0.978457i \(-0.433808\pi\)
0.206453 + 0.978457i \(0.433808\pi\)
\(594\) −17.9736 477.799i −0.0302586 0.804376i
\(595\) −98.5947 37.6821i −0.165705 0.0633313i
\(596\) −292.370 96.0776i −0.490553 0.161204i
\(597\) 143.615 346.718i 0.240562 0.580767i
\(598\) −44.5822 97.1327i −0.0745523 0.162429i
\(599\) 374.934 374.934i 0.625933 0.625933i −0.321110 0.947042i \(-0.604056\pi\)
0.947042 + 0.321110i \(0.104056\pi\)
\(600\) −310.335 + 171.759i −0.517225 + 0.286265i
\(601\) −148.393 + 148.393i −0.246911 + 0.246911i −0.819702 0.572791i \(-0.805861\pi\)
0.572791 + 0.819702i \(0.305861\pi\)
\(602\) 132.228 + 268.275i 0.219647 + 0.445640i
\(603\) 62.4361 + 25.8619i 0.103542 + 0.0428887i
\(604\) 12.2088 + 10.4980i 0.0202132 + 0.0173808i
\(605\) 19.6843 8.15349i 0.0325360 0.0134768i
\(606\) 161.412 174.030i 0.266356 0.287179i
\(607\) 295.999i 0.487642i 0.969820 + 0.243821i \(0.0784010\pi\)
−0.969820 + 0.243821i \(0.921599\pi\)
\(608\) −205.934 + 991.936i −0.338708 + 1.63147i
\(609\) −147.845 + 156.251i −0.242766 + 0.256570i
\(610\) −63.8390 + 68.8297i −0.104654 + 0.112836i
\(611\) 40.5988 + 98.0142i 0.0664465 + 0.160416i
\(612\) −493.012 423.928i −0.805575 0.692693i
\(613\) −329.751 136.587i −0.537929 0.222818i 0.0971429 0.995270i \(-0.469030\pi\)
−0.635072 + 0.772453i \(0.719030\pi\)
\(614\) −83.5131 + 225.213i −0.136015 + 0.366796i
\(615\) −51.7451 + 51.7451i −0.0841384 + 0.0841384i
\(616\) 434.775 256.577i 0.705804 0.416521i
\(617\) −197.080 + 197.080i −0.319416 + 0.319416i −0.848543 0.529127i \(-0.822520\pi\)
0.529127 + 0.848543i \(0.322520\pi\)
\(618\) −342.706 + 157.296i −0.554541 + 0.254525i
\(619\) −817.529 338.632i −1.32073 0.547062i −0.392730 0.919654i \(-0.628469\pi\)
−0.927996 + 0.372591i \(0.878469\pi\)
\(620\) 21.1253 64.2855i 0.0340730 0.103686i
\(621\) 157.969 + 381.371i 0.254378 + 0.614124i
\(622\) −22.4246 596.124i −0.0360525 0.958399i
\(623\) 170.108 + 160.955i 0.273046 + 0.258355i
\(624\) −79.3378 58.4561i −0.127144 0.0936796i
\(625\) 603.514i 0.965623i
\(626\) 483.314 18.1810i 0.772067 0.0290432i
\(627\) 473.072 195.953i 0.754500 0.312524i
\(628\) −151.931 300.660i −0.241928 0.478758i
\(629\) 1123.31 + 465.288i 1.78586 + 0.739727i
\(630\) −41.0968 13.9602i −0.0652331 0.0221591i
\(631\) −787.614 + 787.614i −1.24820 + 1.24820i −0.291685 + 0.956515i \(0.594216\pi\)
−0.956515 + 0.291685i \(0.905784\pi\)
\(632\) −413.853 329.631i −0.654831 0.521569i
\(633\) 319.873 319.873i 0.505329 0.505329i
\(634\) −204.636 + 551.850i −0.322770 + 0.870426i
\(635\) 29.1296 70.3251i 0.0458734 0.110748i
\(636\) 716.382 53.9732i 1.12639 0.0848636i
\(637\) 72.8618 + 151.619i 0.114383 + 0.238020i
\(638\) 226.424 + 210.006i 0.354896 + 0.329163i
\(639\) 520.061 0.813867
\(640\) 41.8627 + 54.3989i 0.0654105 + 0.0849982i
\(641\) −250.003 −0.390020 −0.195010 0.980801i \(-0.562474\pi\)
−0.195010 + 0.980801i \(0.562474\pi\)
\(642\) −62.8646 + 67.7791i −0.0979199 + 0.105575i
\(643\) −278.743 + 115.459i −0.433503 + 0.179563i −0.588754 0.808312i \(-0.700381\pi\)
0.155251 + 0.987875i \(0.450381\pi\)
\(644\) −274.923 + 338.198i −0.426899 + 0.525152i
\(645\) 18.9899 + 7.86586i 0.0294417 + 0.0121951i
\(646\) 619.003 1669.29i 0.958209 2.58404i
\(647\) −355.576 + 355.576i −0.549577 + 0.549577i −0.926318 0.376742i \(-0.877044\pi\)
0.376742 + 0.926318i \(0.377044\pi\)
\(648\) −27.8584 22.1890i −0.0429913 0.0342423i
\(649\) −614.166 614.166i −0.946327 0.946327i
\(650\) −154.208 + 70.7789i −0.237244 + 0.108891i
\(651\) 361.691 161.667i 0.555593 0.248337i
\(652\) −711.431 + 359.504i −1.09115 + 0.551386i
\(653\) −854.070 + 353.767i −1.30792 + 0.541757i −0.924276 0.381725i \(-0.875330\pi\)
−0.383641 + 0.923482i \(0.625330\pi\)
\(654\) −197.895 + 7.44428i −0.302591 + 0.0113827i
\(655\) 63.6756i 0.0972147i
\(656\) −979.735 721.868i −1.49350 1.10041i
\(657\) 287.883 0.438178
\(658\) 285.329 325.216i 0.433630 0.494249i
\(659\) 22.2984 9.23629i 0.0338367 0.0140156i −0.365701 0.930732i \(-0.619171\pi\)
0.399538 + 0.916717i \(0.369171\pi\)
\(660\) 10.8312 32.9600i 0.0164109 0.0499394i
\(661\) −243.599 100.902i −0.368531 0.152650i 0.190729 0.981643i \(-0.438915\pi\)
−0.559260 + 0.828992i \(0.688915\pi\)
\(662\) −207.211 + 95.1064i −0.313008 + 0.143665i
\(663\) 122.459 + 122.459i 0.184705 + 0.184705i
\(664\) 603.956 + 173.605i 0.909573 + 0.261453i
\(665\) −3.28415 118.798i −0.00493857 0.178644i
\(666\) 468.779 + 173.832i 0.703872 + 0.261008i
\(667\) −246.321 102.029i −0.369297 0.152968i
\(668\) 491.150 + 422.328i 0.735255 + 0.632227i
\(669\) 124.871 + 301.465i 0.186653 + 0.450620i
\(670\) 9.19246 + 8.52594i 0.0137201 + 0.0127253i
\(671\) 789.068i 1.17596i
\(672\) −70.7872 + 395.599i −0.105338 + 0.588689i
\(673\) 272.694 0.405192 0.202596 0.979262i \(-0.435062\pi\)
0.202596 + 0.979262i \(0.435062\pi\)
\(674\) −239.397 + 258.112i −0.355189 + 0.382956i
\(675\) 605.466 250.792i 0.896986 0.371544i
\(676\) 476.820 + 410.006i 0.705356 + 0.606517i
\(677\) 295.073 712.368i 0.435853 1.05224i −0.541514 0.840692i \(-0.682149\pi\)
0.977367 0.211551i \(-0.0678513\pi\)
\(678\) 151.423 408.349i 0.223338 0.602285i
\(679\) −806.513 + 22.2959i −1.18779 + 0.0328364i
\(680\) −58.4138 105.542i −0.0859026 0.155209i
\(681\) −226.714 + 226.714i −0.332914 + 0.332914i
\(682\) −237.257 516.919i −0.347884 0.757946i
\(683\) 373.117 900.784i 0.546291 1.31886i −0.373927 0.927458i \(-0.621989\pi\)
0.920218 0.391406i \(-0.128011\pi\)
\(684\) 228.556 695.509i 0.334146 1.01683i
\(685\) 38.4990 + 92.9447i 0.0562029 + 0.135686i
\(686\) 423.241 539.874i 0.616969 0.786988i
\(687\) 408.418i 0.594494i
\(688\) −82.0148 + 331.834i −0.119208 + 0.482317i
\(689\) 343.666 0.498790
\(690\) 1.12594 + 29.9314i 0.00163180 + 0.0433788i
\(691\) 49.5334 + 119.584i 0.0716836 + 0.173060i 0.955660 0.294472i \(-0.0951436\pi\)
−0.883977 + 0.467531i \(0.845144\pi\)
\(692\) 252.787 127.739i 0.365299 0.184595i
\(693\) −333.061 + 148.870i −0.480607 + 0.214820i
\(694\) −48.8470 106.425i −0.0703848 0.153350i
\(695\) 4.27766 4.27766i 0.00615491 0.00615491i
\(696\) −244.278 + 27.6718i −0.350974 + 0.0397584i
\(697\) 1512.24 + 1512.24i 2.16964 + 2.16964i
\(698\) 1007.28 + 373.518i 1.44310 + 0.535126i
\(699\) 95.8208 231.332i 0.137083 0.330947i
\(700\) 536.924 + 436.468i 0.767034 + 0.623526i
\(701\) −18.1461 43.8085i −0.0258860 0.0624943i 0.910408 0.413712i \(-0.135768\pi\)
−0.936294 + 0.351217i \(0.885768\pi\)
\(702\) 133.499 + 123.819i 0.190170 + 0.176381i
\(703\) 1368.98i 1.94734i
\(704\) 568.921 + 95.9621i 0.808127 + 0.136310i
\(705\) 29.7324i 0.0421736i
\(706\) −515.770 + 556.091i −0.730552 + 0.787664i
\(707\) −432.535 165.311i −0.611789 0.233821i
\(708\) 689.476 51.9461i 0.973836 0.0733702i
\(709\) −479.880 198.773i −0.676841 0.280357i 0.0176645 0.999844i \(-0.494377\pi\)
−0.694506 + 0.719487i \(0.744377\pi\)
\(710\) 90.4636 + 33.5455i 0.127413 + 0.0472472i
\(711\) 270.355 + 270.355i 0.380246 + 0.380246i
\(712\) 30.1257 + 265.941i 0.0423114 + 0.373512i
\(713\) 347.215 + 347.215i 0.486978 + 0.486978i
\(714\) 227.160 668.724i 0.318151 0.936589i
\(715\) 6.35123 15.3332i 0.00888284 0.0214451i
\(716\) −434.785 860.406i −0.607241 1.20168i
\(717\) −277.090 668.955i −0.386458 0.932992i
\(718\) 4.15946 + 110.573i 0.00579312 + 0.154001i
\(719\) 654.420 0.910181 0.455090 0.890445i \(-0.349607\pi\)
0.455090 + 0.890445i \(0.349607\pi\)
\(720\) −25.6347 42.4663i −0.0356037 0.0589809i
\(721\) 534.335 + 505.586i 0.741102 + 0.701229i
\(722\) 1281.68 48.2134i 1.77518 0.0667775i
\(723\) 312.584 129.477i 0.432343 0.179082i
\(724\) −155.890 + 474.383i −0.215318 + 0.655226i
\(725\) −161.982 + 391.060i −0.223424 + 0.539393i
\(726\) 59.4688 + 129.567i 0.0819129 + 0.178466i
\(727\) 33.4553 + 33.4553i 0.0460182 + 0.0460182i 0.729741 0.683723i \(-0.239640\pi\)
−0.683723 + 0.729741i \(0.739640\pi\)
\(728\) −47.9843 + 186.164i −0.0659124 + 0.255719i
\(729\) −284.588 284.588i −0.390382 0.390382i
\(730\) 50.0767 + 18.5693i 0.0685982 + 0.0254374i
\(731\) 229.878 554.974i 0.314470 0.759199i
\(732\) −476.282 409.542i −0.650658 0.559484i
\(733\) 677.063 280.449i 0.923688 0.382604i 0.130407 0.991461i \(-0.458371\pi\)
0.793280 + 0.608857i \(0.208371\pi\)
\(734\) −791.799 734.388i −1.07875 1.00053i
\(735\) −2.60459 47.0720i −0.00354366 0.0640436i
\(736\) −489.331 + 93.0928i −0.664852 + 0.126485i
\(737\) 105.383 0.142989
\(738\) 644.781 + 598.030i 0.873688 + 0.810339i
\(739\) 116.836 + 282.066i 0.158100 + 0.381686i 0.983004 0.183587i \(-0.0587708\pi\)
−0.824904 + 0.565273i \(0.808771\pi\)
\(740\) 70.3304 + 60.4753i 0.0950411 + 0.0817234i
\(741\) −74.6212 + 180.151i −0.100703 + 0.243119i
\(742\) −619.597 1257.09i −0.835037 1.69419i
\(743\) 697.661 + 697.661i 0.938978 + 0.938978i 0.998242 0.0592640i \(-0.0188754\pi\)
−0.0592640 + 0.998242i \(0.518875\pi\)
\(744\) 435.154 + 125.083i 0.584884 + 0.168123i
\(745\) 29.1746 + 29.1746i 0.0391605 + 0.0391605i
\(746\) −519.345 + 238.370i −0.696173 + 0.319531i
\(747\) −419.550 173.783i −0.561646 0.232642i
\(748\) −963.247 316.539i −1.28776 0.423181i
\(749\) 168.458 + 64.3834i 0.224911 + 0.0859591i
\(750\) 95.5914 3.59590i 0.127455 0.00479453i
\(751\) 149.256i 0.198743i 0.995050 + 0.0993713i \(0.0316831\pi\)
−0.995050 + 0.0993713i \(0.968317\pi\)
\(752\) 488.865 74.0841i 0.650086 0.0985160i
\(753\) 69.6214i 0.0924588i
\(754\) −117.520 + 4.42078i −0.155861 + 0.00586311i
\(755\) −0.826095 1.99437i −0.00109417 0.00264155i
\(756\) 212.231 711.559i 0.280729 0.941215i
\(757\) −8.82981 + 21.3170i −0.0116642 + 0.0281599i −0.929604 0.368559i \(-0.879851\pi\)
0.917940 + 0.396719i \(