Properties

Label 224.3.v.b.13.8
Level 224
Weight 3
Character 224.13
Analytic conductor 6.104
Analytic rank 0
Dimension 240
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(60\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 13.8
Character \(\chi\) \(=\) 224.13
Dual form 224.3.v.b.69.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.89176 + 0.649047i) q^{2} +(5.08830 + 2.10764i) q^{3} +(3.15748 - 2.45567i) q^{4} +(0.976625 + 2.35778i) q^{5} +(-10.9938 - 0.684602i) q^{6} +(-5.09544 - 4.79964i) q^{7} +(-4.37933 + 6.69489i) q^{8} +(15.0847 + 15.0847i) q^{9} +O(q^{10})\) \(q+(-1.89176 + 0.649047i) q^{2} +(5.08830 + 2.10764i) q^{3} +(3.15748 - 2.45567i) q^{4} +(0.976625 + 2.35778i) q^{5} +(-10.9938 - 0.684602i) q^{6} +(-5.09544 - 4.79964i) q^{7} +(-4.37933 + 6.69489i) q^{8} +(15.0847 + 15.0847i) q^{9} +(-3.37785 - 3.82647i) q^{10} +(2.51817 + 6.07940i) q^{11} +(21.2419 - 5.84038i) q^{12} +(-9.18830 + 22.1825i) q^{13} +(12.7545 + 5.77257i) q^{14} +14.0555i q^{15} +(3.93933 - 15.5075i) q^{16} +12.9448 q^{17} +(-38.3273 - 18.7459i) q^{18} +(5.85517 - 14.1356i) q^{19} +(8.87361 + 5.04637i) q^{20} +(-15.8112 - 35.1614i) q^{21} +(-8.70958 - 9.86633i) q^{22} +(3.80500 + 3.80500i) q^{23} +(-36.3938 + 24.8355i) q^{24} +(13.0723 - 13.0723i) q^{25} +(2.98453 - 47.9275i) q^{26} +(25.9936 + 62.7541i) q^{27} +(-27.8751 - 2.64202i) q^{28} +(10.4805 - 25.3022i) q^{29} +(-9.12267 - 26.5895i) q^{30} +26.1430i q^{31} +(2.61283 + 31.8932i) q^{32} +36.2413i q^{33} +(-24.4883 + 8.40176i) q^{34} +(6.34017 - 16.7014i) q^{35} +(84.6728 + 10.5865i) q^{36} +(-22.3665 + 9.26451i) q^{37} +(-1.90187 + 30.5414i) q^{38} +(-93.5057 + 93.5057i) q^{39} +(-20.0620 - 3.78710i) q^{40} +(-1.69723 + 1.69723i) q^{41} +(52.7323 + 56.2546i) q^{42} +(-23.2062 - 56.0247i) q^{43} +(22.8801 + 13.0118i) q^{44} +(-20.8344 + 50.2986i) q^{45} +(-9.66776 - 4.72851i) q^{46} +63.8209 q^{47} +(52.7287 - 70.6041i) q^{48} +(2.92694 + 48.9125i) q^{49} +(-16.2451 + 33.2142i) q^{50} +(65.8669 + 27.2830i) q^{51} +(25.4612 + 92.6042i) q^{52} +(-29.7801 - 71.8955i) q^{53} +(-89.9039 - 101.844i) q^{54} +(-11.8746 + 11.8746i) q^{55} +(54.4476 - 13.0942i) q^{56} +(59.5858 - 59.5858i) q^{57} +(-3.40427 + 54.6680i) q^{58} +(-25.6143 - 61.8384i) q^{59} +(34.5157 + 44.3799i) q^{60} +(-46.9261 - 19.4374i) q^{61} +(-16.9680 - 49.4562i) q^{62} +(-4.46202 - 149.264i) q^{63} +(-25.6430 - 58.6382i) q^{64} -61.2750 q^{65} +(-23.5223 - 68.5596i) q^{66} +(-0.333590 + 0.805357i) q^{67} +(40.8728 - 31.7881i) q^{68} +(11.3414 + 27.3806i) q^{69} +(-1.15408 + 35.7100i) q^{70} +(48.5986 - 48.5986i) q^{71} +(-167.051 + 34.9295i) q^{72} +(-69.1076 + 69.1076i) q^{73} +(36.2989 - 32.0431i) q^{74} +(94.0679 - 38.9642i) q^{75} +(-16.2249 - 59.0113i) q^{76} +(16.3478 - 43.0635i) q^{77} +(116.200 - 237.580i) q^{78} -104.667i q^{79} +(40.4105 - 5.85692i) q^{80} +182.100i q^{81} +(2.10916 - 4.31231i) q^{82} +(-22.3992 + 54.0765i) q^{83} +(-136.268 - 72.1941i) q^{84} +(12.6422 + 30.5209i) q^{85} +(80.2631 + 90.9231i) q^{86} +(106.656 - 106.656i) q^{87} +(-51.7288 - 9.76483i) q^{88} +(47.9956 + 47.9956i) q^{89} +(6.76738 - 108.675i) q^{90} +(153.286 - 68.9291i) q^{91} +(21.3581 + 2.67036i) q^{92} +(-55.1002 + 133.024i) q^{93} +(-120.734 + 41.4227i) q^{94} +39.0470 q^{95} +(-53.9246 + 167.789i) q^{96} -8.86586i q^{97} +(-37.2835 - 90.6308i) q^{98} +(-53.7202 + 129.692i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} - 8q^{11} + 12q^{14} - 112q^{16} - 176q^{18} - 4q^{21} - 192q^{22} + 128q^{23} - 8q^{25} + 56q^{28} - 8q^{29} - 16q^{30} - 8q^{32} + 92q^{35} + 192q^{36} - 8q^{37} - 8q^{39} - 424q^{42} + 128q^{43} - 16q^{44} - 8q^{46} - 320q^{50} - 80q^{51} - 192q^{53} + 608q^{56} - 8q^{57} - 712q^{58} + 264q^{60} + 496q^{63} - 272q^{64} - 16q^{65} + 304q^{67} + 320q^{70} + 504q^{71} - 8q^{72} + 232q^{74} + 164q^{77} + 560q^{78} - 1000q^{84} - 208q^{85} - 8q^{86} - 800q^{88} + 188q^{91} + 1560q^{92} + 64q^{93} - 16q^{95} - 376q^{98} + 64q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.89176 + 0.649047i −0.945878 + 0.324523i
\(3\) 5.08830 + 2.10764i 1.69610 + 0.702548i 0.999883 0.0152817i \(-0.00486452\pi\)
0.696218 + 0.717830i \(0.254865\pi\)
\(4\) 3.15748 2.45567i 0.789369 0.613919i
\(5\) 0.976625 + 2.35778i 0.195325 + 0.471556i 0.990950 0.134234i \(-0.0428572\pi\)
−0.795625 + 0.605790i \(0.792857\pi\)
\(6\) −10.9938 0.684602i −1.83230 0.114100i
\(7\) −5.09544 4.79964i −0.727919 0.685663i
\(8\) −4.37933 + 6.69489i −0.547416 + 0.836861i
\(9\) 15.0847 + 15.0847i 1.67608 + 1.67608i
\(10\) −3.37785 3.82647i −0.337785 0.382647i
\(11\) 2.51817 + 6.07940i 0.228925 + 0.552673i 0.996047 0.0888278i \(-0.0283121\pi\)
−0.767122 + 0.641501i \(0.778312\pi\)
\(12\) 21.2419 5.84038i 1.77016 0.486698i
\(13\) −9.18830 + 22.1825i −0.706792 + 1.70635i 0.00107294 + 0.999999i \(0.499658\pi\)
−0.707865 + 0.706348i \(0.750342\pi\)
\(14\) 12.7545 + 5.77257i 0.911036 + 0.412326i
\(15\) 14.0555i 0.937033i
\(16\) 3.93933 15.5075i 0.246208 0.969217i
\(17\) 12.9448 0.761457 0.380729 0.924687i \(-0.375673\pi\)
0.380729 + 0.924687i \(0.375673\pi\)
\(18\) −38.3273 18.7459i −2.12929 1.04144i
\(19\) 5.85517 14.1356i 0.308167 0.743981i −0.691598 0.722283i \(-0.743093\pi\)
0.999765 0.0216978i \(-0.00690718\pi\)
\(20\) 8.87361 + 5.04637i 0.443681 + 0.252318i
\(21\) −15.8112 35.1614i −0.752914 1.67435i
\(22\) −8.70958 9.86633i −0.395890 0.448470i
\(23\) 3.80500 + 3.80500i 0.165435 + 0.165435i 0.784969 0.619535i \(-0.212679\pi\)
−0.619535 + 0.784969i \(0.712679\pi\)
\(24\) −36.3938 + 24.8355i −1.51641 + 1.03481i
\(25\) 13.0723 13.0723i 0.522893 0.522893i
\(26\) 2.98453 47.9275i 0.114790 1.84337i
\(27\) 25.9936 + 62.7541i 0.962726 + 2.32423i
\(28\) −27.8751 2.64202i −0.995538 0.0943578i
\(29\) 10.4805 25.3022i 0.361398 0.872491i −0.633699 0.773580i \(-0.718464\pi\)
0.995096 0.0989110i \(-0.0315359\pi\)
\(30\) −9.12267 26.5895i −0.304089 0.886318i
\(31\) 26.1430i 0.843323i 0.906753 + 0.421661i \(0.138553\pi\)
−0.906753 + 0.421661i \(0.861447\pi\)
\(32\) 2.61283 + 31.8932i 0.0816510 + 0.996661i
\(33\) 36.2413i 1.09822i
\(34\) −24.4883 + 8.40176i −0.720245 + 0.247111i
\(35\) 6.34017 16.7014i 0.181148 0.477182i
\(36\) 84.6728 + 10.5865i 2.35202 + 0.294069i
\(37\) −22.3665 + 9.26451i −0.604500 + 0.250392i −0.663875 0.747844i \(-0.731089\pi\)
0.0593748 + 0.998236i \(0.481089\pi\)
\(38\) −1.90187 + 30.5414i −0.0500492 + 0.803722i
\(39\) −93.5057 + 93.5057i −2.39758 + 2.39758i
\(40\) −20.0620 3.78710i −0.501551 0.0946776i
\(41\) −1.69723 + 1.69723i −0.0413957 + 0.0413957i −0.727502 0.686106i \(-0.759319\pi\)
0.686106 + 0.727502i \(0.259319\pi\)
\(42\) 52.7323 + 56.2546i 1.25553 + 1.33939i
\(43\) −23.2062 56.0247i −0.539679 1.30290i −0.924947 0.380095i \(-0.875891\pi\)
0.385269 0.922804i \(-0.374109\pi\)
\(44\) 22.8801 + 13.0118i 0.520002 + 0.295722i
\(45\) −20.8344 + 50.2986i −0.462986 + 1.11775i
\(46\) −9.66776 4.72851i −0.210169 0.102794i
\(47\) 63.8209 1.35789 0.678946 0.734188i \(-0.262437\pi\)
0.678946 + 0.734188i \(0.262437\pi\)
\(48\) 52.7287 70.6041i 1.09852 1.47092i
\(49\) 2.92694 + 48.9125i 0.0597334 + 0.998214i
\(50\) −16.2451 + 33.2142i −0.324902 + 0.664284i
\(51\) 65.8669 + 27.2830i 1.29151 + 0.534960i
\(52\) 25.4612 + 92.6042i 0.489638 + 1.78085i
\(53\) −29.7801 71.8955i −0.561889 1.35652i −0.908254 0.418419i \(-0.862584\pi\)
0.346365 0.938100i \(-0.387416\pi\)
\(54\) −89.9039 101.844i −1.66489 1.88601i
\(55\) −11.8746 + 11.8746i −0.215902 + 0.215902i
\(56\) 54.4476 13.0942i 0.972279 0.233824i
\(57\) 59.5858 59.5858i 1.04536 1.04536i
\(58\) −3.40427 + 54.6680i −0.0586943 + 0.942552i
\(59\) −25.6143 61.8384i −0.434141 1.04811i −0.977939 0.208892i \(-0.933014\pi\)
0.543798 0.839216i \(1.68301\pi\)
\(60\) 34.5157 + 44.3799i 0.575262 + 0.739665i
\(61\) −46.9261 19.4374i −0.769280 0.318646i −0.0366990 0.999326i \(-0.511684\pi\)
−0.732581 + 0.680680i \(0.761684\pi\)
\(62\) −16.9680 49.4562i −0.273678 0.797680i
\(63\) −4.46202 149.264i −0.0708257 2.36928i
\(64\) −25.6430 58.6382i −0.400672 0.916222i
\(65\) −61.2750 −0.942693
\(66\) −23.5223 68.5596i −0.356398 1.03878i
\(67\) −0.333590 + 0.805357i −0.00497895 + 0.0120203i −0.926349 0.376665i \(-0.877071\pi\)
0.921371 + 0.388685i \(0.127071\pi\)
\(68\) 40.8728 31.7881i 0.601071 0.467473i
\(69\) 11.3414 + 27.3806i 0.164368 + 0.396820i
\(70\) −1.15408 + 35.7100i −0.0164869 + 0.510142i
\(71\) 48.5986 48.5986i 0.684488 0.684488i −0.276520 0.961008i \(-0.589181\pi\)
0.961008 + 0.276520i \(0.0891813\pi\)
\(72\) −167.051 + 34.9295i −2.32016 + 0.485132i
\(73\) −69.1076 + 69.1076i −0.946679 + 0.946679i −0.998649 0.0519698i \(-0.983450\pi\)
0.0519698 + 0.998649i \(0.483450\pi\)
\(74\) 36.2989 32.0431i 0.490525 0.433015i
\(75\) 94.0679 38.9642i 1.25424 0.519522i
\(76\) −16.2249 59.0113i −0.213486 0.776465i
\(77\) 16.3478 43.0635i 0.212309 0.559266i
\(78\) 116.200 237.580i 1.48975 3.04589i
\(79\) 104.667i 1.32490i −0.749107 0.662449i \(-0.769517\pi\)
0.749107 0.662449i \(-0.230483\pi\)
\(80\) 40.4105 5.85692i 0.505131 0.0732115i
\(81\) 182.100i 2.24815i
\(82\) 2.10916 4.31231i 0.0257214 0.0525892i
\(83\) −22.3992 + 54.0765i −0.269870 + 0.651524i −0.999477 0.0323427i \(-0.989703\pi\)
0.729607 + 0.683867i \(0.239703\pi\)
\(84\) −136.268 72.1941i −1.62224 0.859454i
\(85\) 12.6422 + 30.5209i 0.148732 + 0.359070i
\(86\) 80.2631 + 90.9231i 0.933291 + 1.05725i
\(87\) 106.656 106.656i 1.22593 1.22593i
\(88\) −51.7288 9.76483i −0.587827 0.110964i
\(89\) 47.9956 + 47.9956i 0.539277 + 0.539277i 0.923317 0.384040i \(-0.125467\pi\)
−0.384040 + 0.923317i \(0.625467\pi\)
\(90\) 6.76738 108.675i 0.0751932 1.20750i
\(91\) 153.286 68.9291i 1.68447 0.757462i
\(92\) 21.3581 + 2.67036i 0.232153 + 0.0290257i
\(93\) −55.1002 + 133.024i −0.592475 + 1.43036i
\(94\) −120.734 + 41.4227i −1.28440 + 0.440668i
\(95\) 39.0470 0.411021
\(96\) −53.9246 + 167.789i −0.561714 + 1.74780i
\(97\) 8.86586i 0.0914006i −0.998955 0.0457003i \(-0.985448\pi\)
0.998955 0.0457003i \(-0.0145519\pi\)
\(98\) −37.2835 90.6308i −0.380444 0.924804i
\(99\) −53.7202 + 129.692i −0.542628 + 1.31002i
\(100\) 9.17420 73.3770i 0.0917420 0.733770i
\(101\) −31.1848 75.2869i −0.308761 0.745415i −0.999746 0.0225455i \(-0.992823\pi\)
0.690985 0.722869i \(1.74282\pi\)
\(102\) −142.312 8.86202i −1.39522 0.0868825i
\(103\) −2.67598 2.67598i −0.0259804 0.0259804i 0.693997 0.719978i \(-0.255848\pi\)
−0.719978 + 0.693997i \(0.755848\pi\)
\(104\) −108.271 158.659i −1.04107 1.52557i
\(105\) 67.4613 71.6188i 0.642488 0.682084i
\(106\) 103.000 + 116.680i 0.971700 + 1.10076i
\(107\) −69.2179 167.107i −0.646897 1.56175i −0.817199 0.576355i \(-0.804475\pi\)
0.170303 0.985392i \(-0.445525\pi\)
\(108\) 236.178 + 134.313i 2.18683 + 1.24364i
\(109\) −1.47397 0.610540i −0.0135227 0.00560128i 0.375912 0.926655i \(-0.377330\pi\)
−0.389435 + 0.921054i \(0.627330\pi\)
\(110\) 14.7567 30.1710i 0.134151 0.274282i
\(111\) −133.334 −1.20121
\(112\) −94.5028 + 60.1100i −0.843775 + 0.536696i
\(113\) 42.7926i 0.378695i 0.981910 + 0.189348i \(0.0606373\pi\)
−0.981910 + 0.189348i \(0.939363\pi\)
\(114\) −74.0478 + 151.396i −0.649542 + 1.32803i
\(115\) −5.25530 + 12.6874i −0.0456983 + 0.110325i
\(116\) −29.0420 105.628i −0.250362 0.910586i
\(117\) −473.220 + 196.014i −4.04461 + 1.67533i
\(118\) 88.5920 + 100.358i 0.750780 + 0.850494i
\(119\) −65.9592 62.1302i −0.554279 0.522103i
\(120\) −94.0999 61.5536i −0.784166 0.512947i
\(121\) 54.9420 54.9420i 0.454066 0.454066i
\(122\) 101.388 + 6.31363i 0.831052 + 0.0517511i
\(123\) −12.2132 + 5.05885i −0.0992939 + 0.0411289i
\(124\) 64.1987 + 82.5460i 0.517732 + 0.665693i
\(125\) 102.533 + 42.4706i 0.820264 + 0.339764i
\(126\) 105.321 + 279.476i 0.835878 + 2.21806i
\(127\) 204.737 1.61210 0.806051 0.591846i \(-0.201601\pi\)
0.806051 + 0.591846i \(0.201601\pi\)
\(128\) 86.5692 + 94.2856i 0.676322 + 0.736607i
\(129\) 333.981i 2.58900i
\(130\) 115.917 39.7703i 0.891672 0.305926i
\(131\) 192.258 + 79.6357i 1.46761 + 0.607906i 0.966314 0.257367i \(-0.0828549\pi\)
0.501301 + 0.865273i \(0.332855\pi\)
\(132\) 88.9968 + 114.431i 0.674218 + 0.866901i
\(133\) −97.6806 + 43.9245i −0.734441 + 0.330260i
\(134\) 0.108356 1.74005i 0.000808628 0.0129855i
\(135\) −122.574 + 122.574i −0.907959 + 0.907959i
\(136\) −56.6894 + 86.6637i −0.416834 + 0.637233i
\(137\) 16.3266 + 16.3266i 0.119172 + 0.119172i 0.764178 0.645006i \(-0.223145\pi\)
−0.645006 + 0.764178i \(0.723145\pi\)
\(138\) −39.2265 44.4363i −0.284250 0.322002i
\(139\) 28.4103 11.7679i 0.204391 0.0846613i −0.278140 0.960541i \(-0.589718\pi\)
0.482530 + 0.875879i \(0.339718\pi\)
\(140\) −20.9942 68.3036i −0.149959 0.487883i
\(141\) 324.740 + 134.512i 2.30312 + 0.953985i
\(142\) −60.3940 + 123.480i −0.425310 + 0.869574i
\(143\) −157.994 −1.10485
\(144\) 293.349 174.502i 2.03715 1.21182i
\(145\) 69.8927 0.482019
\(146\) 85.8806 175.589i 0.588223 1.20266i
\(147\) −88.1970 + 255.051i −0.599980 + 1.73504i
\(148\) −47.8711 + 84.1773i −0.323453 + 0.568766i
\(149\) −17.4326 42.0860i −0.116997 0.282456i 0.854523 0.519414i \(-0.173850\pi\)
−0.971520 + 0.236958i \(0.923850\pi\)
\(150\) −152.664 + 134.765i −1.01776 + 0.898434i
\(151\) 6.67074 + 6.67074i 0.0441771 + 0.0441771i 0.728850 0.684673i \(-0.240055\pi\)
−0.684673 + 0.728850i \(0.740055\pi\)
\(152\) 68.9947 + 101.104i 0.453913 + 0.665160i
\(153\) 195.268 + 195.268i 1.27626 + 1.27626i
\(154\) −2.97573 + 92.0761i −0.0193229 + 0.597897i
\(155\) −61.6395 + 25.5319i −0.397674 + 0.164722i
\(156\) −65.6226 + 524.862i −0.420657 + 3.36450i
\(157\) 2.83630 + 1.17483i 0.0180656 + 0.00748301i 0.391698 0.920094i \(-0.371888\pi\)
−0.373632 + 0.927577i \(0.621888\pi\)
\(158\) 67.9337 + 198.004i 0.429960 + 1.25319i
\(159\) 428.592i 2.69555i
\(160\) −72.6453 + 37.3081i −0.454033 + 0.233176i
\(161\) −1.12551 37.6508i −0.00699074 0.233856i
\(162\) −118.192 344.489i −0.729578 2.12648i
\(163\) −72.9396 + 176.092i −0.447482 + 1.08032i 0.525780 + 0.850620i \(0.323773\pi\)
−0.973262 + 0.229697i \(0.926227\pi\)
\(164\) −1.19112 + 9.52679i −0.00726291 + 0.0580902i
\(165\) −85.4490 + 35.3941i −0.517873 + 0.214510i
\(166\) 7.27569 116.838i 0.0438294 0.703842i
\(167\) −1.99765 1.99765i −0.0119620 0.0119620i 0.701100 0.713062i \(-0.252692\pi\)
−0.713062 + 0.701100i \(0.752692\pi\)
\(168\) 304.644 + 48.1291i 1.81336 + 0.286483i
\(169\) −288.138 288.138i −1.70496 1.70496i
\(170\) −43.7254 49.5328i −0.257208 0.291369i
\(171\) 301.556 124.908i 1.76348 0.730459i
\(172\) −210.851 119.910i −1.22588 0.697150i
\(173\) −70.0181 + 169.039i −0.404729 + 0.977101i 0.581773 + 0.813351i \(0.302359\pi\)
−0.986502 + 0.163750i \(0.947641\pi\)
\(174\) −132.543 + 270.992i −0.761740 + 1.55743i
\(175\) −129.352 + 3.86676i −0.739153 + 0.0220958i
\(176\) 104.196 15.1017i 0.592023 0.0858053i
\(177\) 368.638i 2.08270i
\(178\) −121.947 59.6446i −0.685098 0.335082i
\(179\) 175.891 + 72.8566i 0.982634 + 0.407020i 0.815400 0.578897i \(-0.196517\pi\)
0.167233 + 0.985917i \(0.446517\pi\)
\(180\) 57.7329 + 209.979i 0.320739 + 1.16655i
\(181\) −116.575 + 48.2870i −0.644062 + 0.266779i −0.680714 0.732549i \(-0.738330\pi\)
0.0366527 + 0.999328i \(0.488330\pi\)
\(182\) −245.242 + 229.887i −1.34748 + 1.26312i
\(183\) −197.807 197.807i −1.08091 1.08091i
\(184\) −42.1374 + 8.81070i −0.229008 + 0.0478842i
\(185\) −43.6874 43.6874i −0.236148 0.236148i
\(186\) 17.8976 287.411i 0.0962234 1.54522i
\(187\) 32.5971 + 78.6965i 0.174316 + 0.420837i
\(188\) 201.513 156.723i 1.07188 0.833635i
\(189\) 168.748 444.520i 0.892848 2.35196i
\(190\) −73.8675 + 25.3433i −0.388776 + 0.133386i
\(191\) 165.116 0.864482 0.432241 0.901758i \(-0.357723\pi\)
0.432241 + 0.901758i \(0.357723\pi\)
\(192\) −6.89080 352.415i −0.0358896 1.83550i
\(193\) −262.848 −1.36191 −0.680953 0.732327i \(-0.738434\pi\)
−0.680953 + 0.732327i \(0.738434\pi\)
\(194\) 5.75435 + 16.7720i 0.0296616 + 0.0864538i
\(195\) −311.786 129.146i −1.59890 0.662287i
\(196\) 129.355 + 147.253i 0.659974 + 0.751288i
\(197\) −82.6273 + 34.2253i −0.419428 + 0.173733i −0.582408 0.812897i \(-0.697889\pi\)
0.162980 + 0.986629i \(0.447889\pi\)
\(198\) 17.4493 280.212i 0.0881278 1.41521i
\(199\) 117.305 + 117.305i 0.589475 + 0.589475i 0.937489 0.348014i \(-0.113144\pi\)
−0.348014 + 0.937489i \(0.613144\pi\)
\(200\) 30.2697 + 144.766i 0.151349 + 0.723829i
\(201\) −3.39481 + 3.39481i −0.0168896 + 0.0168896i
\(202\) 107.859 + 122.184i 0.533954 + 0.604871i
\(203\) −174.844 + 78.6232i −0.861303 + 0.387306i
\(204\) 274.971 75.6024i 1.34790 0.370600i
\(205\) −5.65924 2.34413i −0.0276060 0.0114348i
\(206\) 6.79914 + 3.32546i 0.0330055 + 0.0161430i
\(207\) 114.795i 0.554564i
\(208\) 307.799 + 229.871i 1.47980 + 1.10515i
\(209\) 100.681 0.481725
\(210\) −81.1363 + 179.271i −0.386363 + 0.853671i
\(211\) −362.717 150.242i −1.71904 0.712049i −0.999852 0.0172322i \(-0.994515\pi\)
−0.719187 0.694817i \(-0.755485\pi\)
\(212\) −270.582 153.878i −1.27633 0.725841i
\(213\) 349.713 144.856i 1.64185 0.680075i
\(214\) 239.404 + 271.200i 1.11871 + 1.26729i
\(215\) 109.430 109.430i 0.508978 0.508978i
\(216\) −533.966 100.797i −2.47207 0.466651i
\(217\) 125.477 133.210i 0.578235 0.613871i
\(218\) 3.18467 + 0.198315i 0.0146086 + 0.000909700i
\(219\) −497.295 + 205.986i −2.27075 + 0.940576i
\(220\) −8.33362 + 66.6539i −0.0378801 + 0.302972i
\(221\) −118.940 + 287.148i −0.538192 + 1.29931i
\(222\) 252.235 86.5399i 1.13619 0.389819i
\(223\) 27.1084i 0.121562i −0.998151 0.0607812i \(-0.980641\pi\)
0.998151 0.0607812i \(-0.0193592\pi\)
\(224\) 139.762 175.050i 0.623938 0.781474i
\(225\) 394.385 1.75282
\(226\) −27.7744 80.9530i −0.122895 0.358199i
\(227\) −197.820 81.9397i −0.871454 0.360968i −0.0982775 0.995159i \(-0.531333\pi\)
−0.773176 + 0.634191i \(0.781333\pi\)
\(228\) 41.8175 334.464i 0.183410 1.46695i
\(229\) −151.031 364.622i −0.659526 1.59224i −0.798537 0.601946i \(-0.794392\pi\)
0.139011 0.990291i \(1.54439\pi\)
\(230\) 1.70702 27.4124i 0.00742182 0.119184i
\(231\) 173.945 184.665i 0.753009 0.799416i
\(232\) 123.498 + 180.973i 0.532319 + 0.780055i
\(233\) 235.935 + 235.935i 1.01260 + 1.01260i 0.999920 + 0.0126786i \(0.00403584\pi\)
0.0126786 + 0.999920i \(0.495964\pi\)
\(234\) 767.994 677.952i 3.28203 2.89723i
\(235\) 62.3291 + 150.476i 0.265230 + 0.640322i
\(236\) −232.732 132.353i −0.986151 0.560818i
\(237\) 220.601 532.577i 0.930805 2.24716i
\(238\) 165.104 + 74.7246i 0.693715 + 0.313969i
\(239\) 184.016i 0.769942i 0.922929 + 0.384971i \(0.125789\pi\)
−0.922929 + 0.384971i \(0.874211\pi\)
\(240\) 217.965 + 55.3691i 0.908188 + 0.230705i
\(241\) −253.749 −1.05290 −0.526449 0.850207i \(-0.676477\pi\)
−0.526449 + 0.850207i \(0.676477\pi\)
\(242\) −68.2769 + 139.597i −0.282136 + 0.576846i
\(243\) −149.860 + 361.795i −0.616709 + 1.48887i
\(244\) −195.900 + 53.8619i −0.802868 + 0.220746i
\(245\) −112.466 + 54.6702i −0.459047 + 0.223144i
\(246\) 19.8209 17.4970i 0.0805726 0.0711261i
\(247\) 259.765 + 259.765i 1.05168 + 1.05168i
\(248\) −175.024 114.489i −0.705744 0.461648i
\(249\) −227.948 + 227.948i −0.915455 + 0.915455i
\(250\) −221.533 13.7952i −0.886131 0.0551809i
\(251\) 110.097 + 265.797i 0.438632 + 1.05895i 0.976422 + 0.215872i \(0.0692593\pi\)
−0.537790 + 0.843079i \(0.680741\pi\)
\(252\) −380.634 460.342i −1.51045 1.82675i
\(253\) −13.5505 + 32.7138i −0.0535593 + 0.129303i
\(254\) −387.312 + 132.884i −1.52485 + 0.523165i
\(255\) 181.945i 0.713510i
\(256\) −224.963 122.178i −0.878763 0.477258i
\(257\) 19.7298i 0.0767695i −0.999263 0.0383848i \(-0.987779\pi\)
0.999263 0.0383848i \(-0.0122213\pi\)
\(258\) 216.769 + 631.811i 0.840191 + 2.44888i
\(259\) 158.433 + 60.1444i 0.611712 + 0.232218i
\(260\) −193.475 + 150.472i −0.744133 + 0.578737i
\(261\) 539.773 223.581i 2.06810 0.856633i
\(262\) −415.392 25.8671i −1.58546 0.0987296i
\(263\) 123.704 123.704i 0.470357 0.470357i −0.431673 0.902030i \(-0.642077\pi\)
0.902030 + 0.431673i \(0.142077\pi\)
\(264\) −242.631 158.712i −0.919057 0.601183i
\(265\) 140.430 140.430i 0.529924 0.529924i
\(266\) 156.279 146.494i 0.587514 0.550728i
\(267\) 143.059 + 345.374i 0.535800 + 1.29354i
\(268\) 0.924393 + 3.36209i 0.00344923 + 0.0125451i
\(269\) −89.1653 + 215.264i −0.331470 + 0.800238i 0.667006 + 0.745052i \(0.267575\pi\)
−0.998476 + 0.0551865i \(0.982425\pi\)
\(270\) 152.324 311.438i 0.564165 1.15347i
\(271\) 211.034 0.778724 0.389362 0.921085i \(-0.372696\pi\)
0.389362 + 0.921085i \(0.372696\pi\)
\(272\) 50.9937 200.741i 0.187477 0.738017i
\(273\) 925.246 27.6587i 3.38918 0.101314i
\(274\) −41.4827 20.2892i −0.151397 0.0740483i
\(275\) 112.390 + 46.5536i 0.408692 + 0.169286i
\(276\) 103.048 + 58.6028i 0.373363 + 0.212329i
\(277\) 119.315 + 288.051i 0.430738 + 1.03989i 0.979050 + 0.203620i \(0.0652708\pi\)
−0.548312 + 0.836274i \(0.684729\pi\)
\(278\) −46.1074 + 40.7016i −0.165854 + 0.146409i
\(279\) −394.360 + 394.360i −1.41348 + 1.41348i
\(280\) 84.0481 + 115.587i 0.300172 + 0.412812i
\(281\) −169.721 + 169.721i −0.603989 + 0.603989i −0.941369 0.337380i \(-0.890459\pi\)
0.337380 + 0.941369i \(0.390459\pi\)
\(282\) −701.634 43.6919i −2.48806 0.154936i
\(283\) −10.3304 24.9398i −0.0365032 0.0881265i 0.904577 0.426311i \(-0.140187\pi\)
−0.941080 + 0.338185i \(0.890187\pi\)
\(284\) 34.1067 272.792i 0.120094 0.960534i
\(285\) 198.683 + 82.2973i 0.697134 + 0.288762i
\(286\) 298.886 102.546i 1.04506 0.358551i
\(287\) 16.7942 0.502035i 0.0585163 0.00174925i
\(288\) −441.685 + 520.513i −1.53363 + 1.80734i
\(289\) −121.433 −0.420183
\(290\) −132.220 + 45.3636i −0.455931 + 0.156426i
\(291\) 18.6861 45.1122i 0.0642133 0.155025i
\(292\) −48.4999 + 387.911i −0.166095 + 1.32846i
\(293\) 1.20658 + 2.91294i 0.00411802 + 0.00994178i 0.925925 0.377707i \(-0.123287\pi\)
−0.921807 + 0.387649i \(0.873287\pi\)
\(294\) 1.30747 539.737i 0.00444719 1.83584i
\(295\) 120.786 120.786i 0.409444 0.409444i
\(296\) 35.9254 190.314i 0.121370 0.642951i
\(297\) −316.051 + 316.051i −1.06415 + 1.06415i
\(298\) 60.2939 + 68.3018i 0.202329 + 0.229201i
\(299\) −119.366 + 49.4430i −0.399217 + 0.165361i
\(300\) 201.334 354.029i 0.671113 1.18010i
\(301\) −150.653 + 396.852i −0.500507 + 1.31844i
\(302\) −16.9490 8.28979i −0.0561226 0.0274496i
\(303\) 448.809i 1.48122i
\(304\) −196.143 146.484i −0.645206 0.481855i
\(305\) 129.624i 0.424998i
\(306\) −496.138 242.662i −1.62137 0.793012i
\(307\) 105.156 253.869i 0.342528 0.826936i −0.654931 0.755689i \(-0.727302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(308\) −54.1323 176.117i −0.175754 0.571808i
\(309\) −7.97619 19.2562i −0.0258129 0.0623179i
\(310\) 100.035 88.3070i 0.322695 0.284861i
\(311\) −308.259 + 308.259i −0.991187 + 0.991187i −0.999962 0.00877417i \(-0.997207\pi\)
0.00877417 + 0.999962i \(0.497207\pi\)
\(312\) −216.518 1035.50i −0.693968 3.31892i
\(313\) 49.9640 + 49.9640i 0.159629 + 0.159629i 0.782402 0.622773i \(-0.213994\pi\)
−0.622773 + 0.782402i \(0.713994\pi\)
\(314\) −6.12810 0.381607i −0.0195162 0.00121531i
\(315\) 347.575 156.296i 1.10341 0.496177i
\(316\) −257.028 330.483i −0.813379 1.04583i
\(317\) −80.6419 + 194.687i −0.254391 + 0.614154i −0.998549 0.0538495i \(-0.982851\pi\)
0.744158 + 0.668003i \(0.232851\pi\)
\(318\) 278.176 + 810.791i 0.874768 + 2.54966i
\(319\) 180.214 0.564935
\(320\) 113.212 117.728i 0.353789 0.367900i
\(321\) 996.178i 3.10336i
\(322\) 26.5663 + 70.4956i 0.0825040 + 0.218930i
\(323\) 75.7939 182.983i 0.234656 0.566509i
\(324\) 447.179 + 574.978i 1.38018 + 1.77462i
\(325\) 169.865 + 410.090i 0.522661 + 1.26181i
\(326\) 23.6921 380.464i 0.0726752 1.16707i
\(327\) −6.21322 6.21322i −0.0190007 0.0190007i
\(328\) −3.93002 18.7954i −0.0119818 0.0573032i
\(329\) −325.195 306.317i −0.988436 0.931056i
\(330\) 138.676 122.417i 0.420231 0.370962i
\(331\) −143.604 346.691i −0.433849 1.04740i −0.978035 0.208440i \(-0.933161\pi\)
0.544186 0.838965i \(-0.316839\pi\)
\(332\) 62.0693 + 225.751i 0.186956 + 0.679972i
\(333\) −477.145 197.640i −1.43287 0.593513i
\(334\) 5.07564 + 2.48250i 0.0151965 + 0.00743264i
\(335\) −2.22465 −0.00664074
\(336\) −607.550 + 106.680i −1.80818 + 0.317499i
\(337\) 438.012i 1.29974i 0.760046 + 0.649869i \(0.225176\pi\)
−0.760046 + 0.649869i \(0.774824\pi\)
\(338\) 732.102 + 358.072i 2.16598 + 1.05938i
\(339\) −90.1915 + 217.742i −0.266052 + 0.642305i
\(340\) 114.867 + 65.3241i 0.337844 + 0.192130i
\(341\) −158.934 + 65.8326i −0.466082 + 0.193057i
\(342\) −489.398 + 432.020i −1.43099 + 1.26322i
\(343\) 219.848 263.279i 0.640957 0.767577i
\(344\) 476.706 + 89.9877i 1.38577 + 0.261592i
\(345\) −53.4812 + 53.4812i −0.155018 + 0.155018i
\(346\) 22.7432 365.225i 0.0657317 1.05556i
\(347\) 10.4450 4.32648i 0.0301010 0.0124682i −0.367582 0.929991i \(-0.619814\pi\)
0.397683 + 0.917523i \(0.369814\pi\)
\(348\) 74.8517 598.678i 0.215091 1.72034i
\(349\) −34.0581 14.1073i −0.0975877 0.0404221i 0.333356 0.942801i \(-0.391819\pi\)
−0.430943 + 0.902379i \(0.641819\pi\)
\(350\) 242.192 91.2703i 0.691977 0.260772i
\(351\) −1630.88 −4.64639
\(352\) −187.312 + 96.1969i −0.532136 + 0.273287i
\(353\) 549.398i 1.55637i 0.628036 + 0.778184i \(0.283859\pi\)
−0.628036 + 0.778184i \(0.716141\pi\)
\(354\) 239.264 + 697.374i 0.675886 + 1.96998i
\(355\) 162.048 + 67.1223i 0.456472 + 0.189077i
\(356\) 269.407 + 33.6835i 0.756761 + 0.0946165i
\(357\) −204.672 455.156i −0.573312 1.27495i
\(358\) −380.031 23.6652i −1.06154 0.0661038i
\(359\) −24.9930 + 24.9930i −0.0696183 + 0.0696183i −0.741059 0.671440i \(-0.765676\pi\)
0.671440 + 0.741059i \(0.265676\pi\)
\(360\) −245.503 359.758i −0.681952 0.999327i
\(361\) 89.7324 + 89.7324i 0.248566 + 0.248566i
\(362\) 189.191 167.010i 0.522628 0.461353i
\(363\) 395.360 163.763i 1.08915 0.451139i
\(364\) 314.731 594.064i 0.864646 1.63204i
\(365\) −230.433 95.4483i −0.631322 0.261502i
\(366\) 502.588 + 245.816i 1.37319 + 0.671630i
\(367\) −334.565 −0.911620 −0.455810 0.890077i \(-0.650650\pi\)
−0.455810 + 0.890077i \(0.650650\pi\)
\(368\) 73.9951 44.0168i 0.201074 0.119611i
\(369\) −51.2043 −0.138765
\(370\) 111.001 + 54.2907i 0.300003 + 0.146732i
\(371\) −193.330 + 509.273i −0.521105 + 1.37270i
\(372\) 152.685 + 555.327i 0.410444 + 1.49281i
\(373\) −16.1104 38.8939i −0.0431913 0.104273i 0.900812 0.434210i \(-0.142972\pi\)
−0.944003 + 0.329937i \(0.892972\pi\)
\(374\) −112.743 127.717i −0.301453 0.341490i
\(375\) 432.206 + 432.206i 1.15255 + 1.15255i
\(376\) −279.493 + 427.274i −0.743332 + 1.13637i
\(377\) 464.969 + 464.969i 1.23334 + 1.23334i
\(378\) −30.7167 + 950.448i −0.0812612 + 2.51441i
\(379\) 264.383 109.511i 0.697580 0.288947i −0.00557400 0.999984i \(-0.501774\pi\)
0.703154 + 0.711037i \(0.251774\pi\)
\(380\) 123.290 95.8868i 0.324448 0.252334i
\(381\) 1041.76 + 431.513i 2.73429 + 1.13258i
\(382\) −312.359 + 107.168i −0.817695 + 0.280545i
\(383\) 443.315i 1.15748i −0.815512 0.578741i \(-0.803544\pi\)
0.815512 0.578741i \(-0.196456\pi\)
\(384\) 241.770 + 662.211i 0.629608 + 1.72451i
\(385\) 117.500 3.51247i 0.305195 0.00912331i
\(386\) 497.244 170.601i 1.28820 0.441970i
\(387\) 495.058 1195.18i 1.27922 3.08831i
\(388\) −21.7717 27.9937i −0.0561125 0.0721488i
\(389\) −234.282 + 97.0428i −0.602268 + 0.249467i −0.662918 0.748692i \(-0.730682\pi\)
0.0606509 + 0.998159i \(0.480682\pi\)
\(390\) 673.645 + 41.9490i 1.72729 + 0.107562i
\(391\) 49.2549 + 49.2549i 0.125972 + 0.125972i
\(392\) −340.282 194.608i −0.868065 0.496450i
\(393\) 810.421 + 810.421i 2.06214 + 2.06214i
\(394\) 134.097 118.375i 0.340347 0.300444i
\(395\) 246.782 102.220i 0.624764 0.258786i
\(396\) 148.861 + 541.419i 0.375912 + 1.36722i
\(397\) 227.661 549.622i 0.573453 1.38444i −0.325144 0.945664i \(-0.605413\pi\)
0.898597 0.438774i \(-0.144587\pi\)
\(398\) −298.050 145.777i −0.748869 0.366273i
\(399\) −589.606 + 17.6253i −1.47771 + 0.0441737i
\(400\) −151.223 254.215i −0.378057 0.635538i
\(401\) 595.500i 1.48504i −0.669826 0.742518i \(-0.733631\pi\)
0.669826 0.742518i \(-0.266369\pi\)
\(402\) 4.21877 8.62555i 0.0104944 0.0214566i
\(403\) −579.918 240.210i −1.43900 0.596054i
\(404\) −283.346 161.137i −0.701350 0.398853i
\(405\) −429.353 + 177.844i −1.06013 + 0.439120i
\(406\) 279.733 262.218i 0.688997 0.645857i
\(407\) −112.645 112.645i −0.276770 0.276770i
\(408\) −471.109 + 321.490i −1.15468 + 0.787967i
\(409\) −369.737 369.737i −0.904002 0.904002i 0.0917776 0.995780i \(-0.470745\pi\)
−0.995780 + 0.0917776i \(0.970745\pi\)
\(410\) 12.2273 + 0.761418i 0.0298228 + 0.00185712i
\(411\) 48.6641 + 117.486i 0.118404 + 0.285853i
\(412\) −15.0207 1.87801i −0.0364580 0.00455828i
\(413\) −166.286 + 438.033i −0.402629 + 1.06061i
\(414\) −74.5071 217.164i −0.179969 0.524550i
\(415\) −149.376 −0.359943
\(416\) −731.478 235.085i −1.75836 0.565107i
\(417\) 169.363 0.406146
\(418\) −190.463 + 65.3464i −0.455653 + 0.156331i
\(419\) −496.820 205.790i −1.18573 0.491145i −0.299367 0.954138i \(-0.596775\pi\)
−0.886362 + 0.462993i \(0.846775\pi\)
\(420\) 37.1348 391.798i 0.0884163 0.932852i
\(421\) 293.755 121.677i 0.697754 0.289019i −0.00547243 0.999985i \(-0.501742\pi\)
0.703227 + 0.710966i \(0.251742\pi\)
\(422\) 783.686 + 48.8015i 1.85708 + 0.115643i
\(423\) 962.721 + 962.721i 2.27594 + 2.27594i
\(424\) 611.749 + 115.480i 1.44280 + 0.272358i
\(425\) 169.218 169.218i 0.398161 0.398161i
\(426\) −567.554 + 501.012i −1.33229 + 1.17609i
\(427\) 145.816 + 324.270i 0.341490 + 0.759415i
\(428\) −628.914 357.659i −1.46943 0.835653i
\(429\) −803.922 332.996i −1.87394 0.776213i
\(430\) −135.990 + 278.041i −0.316256 + 0.646606i
\(431\) 5.12246i 0.0118851i 0.999982 + 0.00594253i \(0.00189158\pi\)
−0.999982 + 0.00594253i \(0.998108\pi\)
\(432\) 1075.56 155.886i 2.48971 0.360848i
\(433\) −684.828 −1.58159 −0.790795 0.612082i \(-0.790332\pi\)
−0.790795 + 0.612082i \(0.790332\pi\)
\(434\) −150.912 + 333.441i −0.347724 + 0.768298i
\(435\) 355.635 + 147.309i 0.817552 + 0.338641i
\(436\) −6.15332 + 1.69183i −0.0141131 + 0.00388035i
\(437\) 76.0651 31.5072i 0.174062 0.0720988i
\(438\) 807.065 712.443i 1.84261 1.62658i
\(439\) 20.8767 20.8767i 0.0475552 0.0475552i −0.682929 0.730484i \(-0.739294\pi\)
0.730484 + 0.682929i \(0.239294\pi\)
\(440\) −27.4963 131.502i −0.0624916 0.298868i
\(441\) −693.679 + 781.983i −1.57297 + 1.77320i
\(442\) 38.6340 620.411i 0.0874073 1.40364i
\(443\) 188.599 78.1204i 0.425732 0.176344i −0.159521 0.987194i \(-0.550995\pi\)
0.585253 + 0.810851i \(0.300995\pi\)
\(444\) −420.999 + 327.425i −0.948195 + 0.737443i
\(445\) −66.2895 + 160.037i −0.148965 + 0.359634i
\(446\) 17.5946 + 51.2825i 0.0394498 + 0.114983i
\(447\) 250.888i 0.561270i
\(448\) −150.780 + 421.864i −0.336562 + 0.941661i
\(449\) 111.048 0.247323 0.123661 0.992324i \(-0.460536\pi\)
0.123661 + 0.992324i \(0.460536\pi\)
\(450\) −746.080 + 255.974i −1.65796 + 0.568832i
\(451\) −14.5920 6.04421i −0.0323548 0.0134018i
\(452\) 105.085 + 135.117i 0.232488 + 0.298930i
\(453\) 19.8832 + 48.0023i 0.0438923 + 0.105965i
\(454\) 427.410 + 26.6155i 0.941431 + 0.0586246i
\(455\) 312.223 + 294.098i 0.686204 + 0.646369i
\(456\) 137.974 + 659.866i 0.302575 + 1.44707i
\(457\) 144.681 + 144.681i 0.316588 + 0.316588i 0.847455 0.530867i \(-0.178134\pi\)
−0.530867 + 0.847455i \(0.678134\pi\)
\(458\) 522.371 + 591.750i 1.14055 + 1.29203i
\(459\) 336.481 + 812.338i 0.733075 + 1.76980i
\(460\) 14.5627 + 52.9656i 0.0316580 + 0.115143i
\(461\) 220.262 531.760i 0.477792 1.15349i −0.482850 0.875703i \(-0.660398\pi\)
0.960642 0.277790i \(-0.0896018\pi\)
\(462\) −209.205 + 462.239i −0.452825 + 1.00052i
\(463\) 756.952i 1.63489i 0.576009 + 0.817443i \(0.304609\pi\)
−0.576009 + 0.817443i \(0.695391\pi\)
\(464\) −351.088 262.200i −0.756654 0.565087i
\(465\) −367.453 −0.790221
\(466\) −599.465 293.199i −1.28641 0.629182i
\(467\) −263.945 + 637.220i −0.565193 + 1.36450i 0.340373 + 0.940291i \(0.389447\pi\)
−0.905566 + 0.424206i \(0.860553\pi\)
\(468\) −1012.83 + 1780.98i −2.16418 + 3.80552i
\(469\) 5.56521 2.50254i 0.0118661 0.00533590i
\(470\) −215.577 244.209i −0.458675 0.519593i
\(471\) 11.9558 + 11.9558i 0.0253839 + 0.0253839i
\(472\) 526.174 + 99.3258i 1.11478 + 0.210436i
\(473\) 282.160 282.160i 0.596532 0.596532i
\(474\) −71.6552 + 1150.69i −0.151171 + 2.42761i
\(475\) −108.245 261.327i −0.227884 0.550161i
\(476\) −360.836 34.2003i −0.758060 0.0718494i
\(477\) 635.299 1533.75i 1.33186 3.21540i
\(478\) −119.435 348.114i −0.249864 0.728271i
\(479\) 381.484i 0.796417i 0.917295 + 0.398209i \(0.130368\pi\)
−0.917295 + 0.398209i \(0.869632\pi\)
\(480\) −448.274 + 36.7246i −0.933904 + 0.0765096i
\(481\) 581.270i 1.20846i
\(482\) 480.030 164.695i 0.995913 0.341690i
\(483\) 73.6275 193.951i 0.152438 0.401554i
\(484\) 38.5584 308.398i 0.0796662 0.637185i
\(485\) 20.9038 8.65862i 0.0431005 0.0178528i
\(486\) 48.6774 781.694i 0.100159 1.60842i
\(487\) 72.7819 72.7819i 0.149449 0.149449i −0.628423 0.777872i \(-0.716299\pi\)
0.777872 + 0.628423i \(0.216299\pi\)
\(488\) 335.636 229.042i 0.687778 0.469348i
\(489\) −742.277 + 742.277i −1.51795 + 1.51795i
\(490\) 177.275 176.419i 0.361787 0.360038i
\(491\) 40.6981 + 98.2539i 0.0828882 + 0.200110i 0.959890 0.280378i \(-0.0904597\pi\)
−0.877002 + 0.480488i \(0.840460\pi\)
\(492\) −26.1398 + 45.9647i −0.0531298 + 0.0934243i
\(493\) 135.668 327.532i 0.275189 0.664364i
\(494\) −660.011 322.812i −1.33605 0.653466i
\(495\) −358.250 −0.723737
\(496\) 405.412 + 102.986i 0.817363 + 0.207633i
\(497\) −480.887 + 14.3754i −0.967580 + 0.0289242i
\(498\) 283.273 579.171i 0.568822 1.16299i
\(499\) −121.759 50.4340i −0.244005 0.101070i 0.257330 0.966324i \(-0.417157\pi\)
−0.501335 + 0.865253i \(0.667157\pi\)
\(500\) 428.039 117.688i 0.856079 0.235376i
\(501\) −5.95433 14.3750i −0.0118849 0.0286926i
\(502\) −380.790 431.364i −0.758546 0.859292i
\(503\) −265.041 + 265.041i −0.526920 + 0.526920i −0.919653 0.392733i \(-0.871530\pi\)
0.392733 + 0.919653i \(0.371530\pi\)
\(504\) 1018.85 + 623.805i 2.02153 + 1.23771i
\(505\) 147.054 147.054i 0.291196 0.291196i
\(506\) 4.40145 70.6814i 0.00869852 0.139687i
\(507\) −858.841 2073.43i −1.69397 4.08960i
\(508\) 646.452 502.767i 1.27254 0.989700i
\(509\) −238.605 98.8333i −0.468771 0.194171i 0.135778 0.990739i \(-0.456647\pi\)
−0.604549 + 0.796568i \(0.706647\pi\)
\(510\) −118.091 344.196i −0.231551 0.674893i
\(511\) 683.824 20.4418i 1.33821 0.0400036i
\(512\) 504.875 + 85.1191i 0.986084 + 0.166248i
\(513\) 1039.27 2.02586
\(514\) 12.8055 + 37.3239i 0.0249135 + 0.0726146i
\(515\) 3.69595 8.92280i 0.00717659 0.0173258i
\(516\) −820.149 1054.54i −1.58944 2.04368i
\(517\) 160.712 + 387.993i 0.310855 + 0.750470i
\(518\) −338.754 10.9479i −0.653965 0.0211349i
\(519\) −712.546 + 712.546i −1.37292 + 1.37292i
\(520\) 268.343 410.229i 0.516045 0.788902i
\(521\) −304.312 + 304.312i −0.584092 + 0.584092i −0.936025 0.351933i \(-0.885524\pi\)
0.351933 + 0.936025i \(0.385524\pi\)
\(522\) −876.004 + 773.299i −1.67817 + 1.48142i
\(523\) 655.653 271.580i 1.25364 0.519274i 0.345687 0.938350i \(-0.387646\pi\)
0.907951 + 0.419076i \(0.137646\pi\)
\(524\) 802.608 220.674i 1.53170 0.421134i
\(525\) −666.331 252.952i −1.26920 0.481814i
\(526\) −153.728 + 314.307i −0.292258 + 0.597542i
\(527\) 338.415i 0.642154i
\(528\) 562.010 + 142.766i 1.06441 + 0.270390i
\(529\) 500.044i 0.945263i
\(530\) −174.513 + 356.805i −0.329271 + 0.673216i
\(531\) 546.430 1319.20i 1.02906 2.48437i
\(532\) −200.560 + 378.562i −0.376992 + 0.711584i
\(533\) −22.0541 53.2433i −0.0413773 0.0998937i
\(534\) −494.796 560.512i −0.926584 1.04965i
\(535\) 326.402 326.402i 0.610096 0.610096i
\(536\) −3.93088 5.76027i −0.00733372 0.0107468i
\(537\) 741.433 + 741.433i 1.38069 + 1.38069i
\(538\) 28.9626 465.100i 0.0538337 0.864497i
\(539\) −289.988 + 140.964i −0.538012 + 0.261529i
\(540\) −86.0231 + 688.029i −0.159302 + 1.27413i
\(541\) −36.8197 + 88.8907i −0.0680586 + 0.164308i −0.954249 0.299013i \(-0.903342\pi\)
0.886190 + 0.463321i \(0.153342\pi\)
\(542\) −399.225 + 136.971i −0.736578 + 0.252714i
\(543\) −694.942 −1.27982
\(544\) 33.8225 + 412.849i 0.0621737 + 0.758915i
\(545\) 4.07157i 0.00747078i
\(546\) −1732.39 + 652.851i −3.17287 + 1.19570i
\(547\) −158.179 + 381.878i −0.289176 + 0.698132i −0.999986 0.00525185i \(-0.998328\pi\)
0.710811 + 0.703383i \(0.248328\pi\)
\(548\) 91.6438 + 11.4581i 0.167233 + 0.0209089i
\(549\) −414.658 1001.07i −0.755298 1.82345i
\(550\) −242.831 15.1215i −0.441510 0.0274936i
\(551\) −296.298 296.298i −0.537746 0.537746i
\(552\) −232.978 43.9791i −0.422061 0.0796724i
\(553\) −502.363 + 533.324i −0.908433 + 0.964419i
\(554\) −412.672 467.481i −0.744896 0.843828i
\(555\) −130.217 314.372i −0.234626 0.566436i
\(556\) 60.8066 106.923i 0.109364 0.192308i
\(557\) 911.509 + 377.560i 1.63646 + 0.677845i 0.995934 0.0900898i \(-0.0287154\pi\)
0.640528 + 0.767935i \(0.278715\pi\)
\(558\) 490.075 1001.99i 0.878270 1.79568i
\(559\) 1455.99 2.60464
\(560\) −234.020 164.112i −0.417893 0.293057i
\(561\) 469.135i 0.836247i
\(562\) 210.914 431.227i 0.375291 0.767308i
\(563\) 84.5886 204.215i 0.150246 0.362726i −0.830780 0.556601i \(-0.812105\pi\)
0.981026 + 0.193874i \(0.0621054\pi\)
\(564\) 1355.68 372.738i 2.40368 0.660884i
\(565\) −100.895 + 41.7923i −0.178576 + 0.0739686i
\(566\) 35.7297 + 40.4751i 0.0631267 + 0.0715108i
\(567\) 874.016 927.881i 1.54147 1.63647i
\(568\) 112.533 + 538.192i 0.198121 + 0.947521i
\(569\) 437.146 437.146i 0.768271 0.768271i −0.209531 0.977802i \(-0.567194\pi\)
0.977802 + 0.209531i \(0.0671937\pi\)
\(570\) −429.275 26.7317i −0.753114 0.0468977i
\(571\) −174.532 + 72.2933i −0.305659 + 0.126608i −0.530241 0.847847i \(-0.677899\pi\)
0.224581 + 0.974455i \(0.427899\pi\)
\(572\) −498.863 + 387.982i −0.872138 + 0.678291i
\(573\) 840.161 + 348.006i 1.46625 + 0.607341i
\(574\) −31.4446 + 11.8499i −0.0547816 + 0.0206445i
\(575\) 99.4805 0.173010
\(576\) 497.724 1271.36i 0.864103 2.20722i
\(577\) 92.1486i 0.159703i −0.996807 0.0798515i \(-0.974555\pi\)
0.996807 0.0798515i \(-0.0254446\pi\)
\(578\) 229.721 78.8156i 0.397442 0.136359i
\(579\) −1337.45 553.990i −2.30993 0.956805i
\(580\) 220.685 171.634i 0.380491 0.295920i
\(581\) 373.682 168.035i 0.643170 0.289217i
\(582\) −6.06959 + 97.4694i −0.0104288 + 0.167473i
\(583\) 362.090 362.090i 0.621081 0.621081i
\(584\) −160.023 765.312i −0.274011 1.31047i
\(585\) −924.317 924.317i −1.58003 1.58003i
\(586\) −4.17319 4.72745i −0.00712148 0.00806731i
\(587\) −539.361 + 223.411i −0.918843 + 0.380597i −0.791435 0.611253i \(-0.790666\pi\)
−0.127408 + 0.991850i \(0.540666\pi\)
\(588\) 347.841 + 1021.90i 0.591567 + 1.73793i
\(589\) 369.548 + 153.072i 0.627416 + 0.259884i
\(590\) −150.102 + 306.893i −0.254410 + 0.520157i
\(591\) −492.568 −0.833448
\(592\) 55.5602 + 383.344i 0.0938517 + 0.647540i
\(593\) 446.001 0.752110 0.376055 0.926597i \(-0.377280\pi\)
0.376055 + 0.926597i \(0.377280\pi\)
\(594\) 392.760 803.024i 0.661212 1.35189i
\(595\) 82.0720 216.195i 0.137936 0.363354i
\(596\) −158.392 90.0767i −0.265759 0.151135i
\(597\) 349.648 + 844.124i 0.585675 + 1.41394i
\(598\) 193.720 171.008i 0.323947 0.285967i
\(599\) 262.791 + 262.791i 0.438716 + 0.438716i 0.891580 0.452864i \(-0.149598\pi\)
−0.452864 + 0.891580i \(0.649598\pi\)
\(600\) −151.093 + 800.410i −0.251822 + 1.33402i
\(601\) −21.0456 21.0456i −0.0350177 0.0350177i 0.689381 0.724399i \(-0.257883\pi\)
−0.724399 + 0.689381i \(0.757883\pi\)
\(602\) 27.4228 848.527i 0.0455529 1.40951i
\(603\) −17.1807 + 7.11648i −0.0284920 + 0.0118018i
\(604\) 37.4439 + 4.68154i 0.0619932 + 0.00775090i
\(605\) 183.199 + 75.8834i 0.302808 + 0.125427i
\(606\) 291.298 + 849.037i 0.480690 + 1.40105i
\(607\) 261.327i 0.430523i 0.976556 + 0.215261i \(0.0690604\pi\)
−0.976556 + 0.215261i \(0.930940\pi\)
\(608\) 466.129 + 149.806i 0.766659 + 0.246391i
\(609\) −1055.37 + 31.5486i −1.73296 + 0.0518040i
\(610\) 84.1323 + 245.218i 0.137922 + 0.401996i
\(611\) −586.406 + 1415.71i −0.959747 + 2.31704i
\(612\) 1096.07 + 137.040i 1.79096 + 0.223921i
\(613\) −776.638 + 321.694i −1.26695 + 0.524786i −0.912034 0.410114i \(-0.865489\pi\)
−0.354911 + 0.934900i \(0.615489\pi\)
\(614\) −34.1567 + 548.510i −0.0556297 + 0.893339i
\(615\) −23.8553 23.8553i −0.0387892 0.0387892i
\(616\) 216.713 + 298.036i 0.351807 + 0.483824i
\(617\) −69.8903 69.8903i −0.113274 0.113274i 0.648198 0.761472i \(-0.275523\pi\)
−0.761472 + 0.648198i \(0.775523\pi\)
\(618\) 27.5872 + 31.2511i 0.0446394 + 0.0505682i
\(619\) 243.628 100.914i 0.393583 0.163027i −0.177110 0.984191i \(-0.556675\pi\)
0.570693 + 0.821164i \(0.306675\pi\)
\(620\) −131.927 + 231.983i −0.212786 + 0.374166i
\(621\) −139.874 + 337.685i −0.225240 + 0.543777i
\(622\) 383.077 783.226i 0.615879 1.25921i
\(623\) −14.1970 474.920i −0.0227881 0.762312i
\(624\) 1081.69 + 1818.39i 1.73347 + 2.91408i
\(625\) 178.949i 0.286318i
\(626\) −126.949 62.0907i −0.202793 0.0991864i
\(627\) 512.293 + 212.199i 0.817055 + 0.338435i
\(628\) 11.8405 3.25551i 0.0188544 0.00518394i
\(629\) −289.529 + 119.927i −0.460301 + 0.190663i
\(630\) −556.084 + 521.266i −0.882673 + 0.827406i
\(631\) −722.309 722.309i −1.14471 1.14471i −0.987578 0.157127i \(-0.949777\pi\)
−0.157127 0.987578i \(-0.550223\pi\)
\(632\) 700.733 + 458.371i 1.10875 + 0.725270i
\(633\) −1528.96 1528.96i −2.41541 2.41541i
\(634\) 26.1940 420.640i 0.0413154 0.663470i
\(635\) 199.951 + 482.725i 0.314884 + 0.760197i
\(636\) −1052.48 1353.27i −1.65485 2.12778i
\(637\) −1111.90 384.496i −1.74552 0.603604i
\(638\) −340.921 + 116.967i −0.534359 + 0.183335i
\(639\) 1466.19 2.29451
\(640\) −137.759 + 296.193i −0.215249 + 0.462801i
\(641\) −685.507 −1.06943 −0.534717 0.845031i \(-0.679582\pi\)
−0.534717 + 0.845031i \(0.679582\pi\)
\(642\) 646.566 + 1884.52i 1.00711 + 2.93540i
\(643\) 336.431 + 139.354i 0.523220 + 0.216725i 0.628631 0.777704i \(-0.283616\pi\)
−0.105411 + 0.994429i \(0.533616\pi\)
\(644\) −96.0118 116.118i −0.149087 0.180307i
\(645\) 787.454 326.174i 1.22086 0.505697i
\(646\) −24.6192 + 395.352i −0.0381103 + 0.612000i
\(647\) −262.641 262.641i −0.405936 0.405936i 0.474383 0.880319i \(-0.342671\pi\)
−0.880319 + 0.474383i \(0.842671\pi\)
\(648\) −1219.14 797.477i −1.88139 1.23067i
\(649\) 311.439 311.439i 0.479876 0.479876i
\(650\) −587.510 665.539i −0.903861 1.02391i
\(651\) 919.225 413.352i 1.41202 0.634950i
\(652\) 202.119 + 735.121i 0.309998 + 1.12749i
\(653\) 639.834 + 265.028i 0.979838 + 0.405862i 0.814366 0.580352i \(-0.197085\pi\)
0.165472 + 0.986214i \(0.447085\pi\)
\(654\) 15.7866 + 7.72123i 0.0241385 + 0.0118062i
\(655\) 531.075i 0.810802i
\(656\) 19.6338 + 33.0056i 0.0299295 + 0.0503134i
\(657\) −2084.94 −3.17342
\(658\) 814.004 + 368.411i 1.23709 + 0.559895i
\(659\) −695.726 288.179i −1.05573 0.437297i −0.213796 0.976878i \(-0.568583\pi\)
−0.841934 + 0.539581i \(0.818583\pi\)
\(660\) −182.887 + 321.591i −0.277101 + 0.487259i
\(661\) 595.117 246.506i 0.900329 0.372928i 0.115982 0.993251i \(-0.462998\pi\)
0.784347 + 0.620323i \(0.212998\pi\)
\(662\) 496.682 + 562.649i 0.750275 + 0.849923i
\(663\) −1210.41 + 1210.41i −1.82566 + 1.82566i
\(664\) −263.943 386.779i −0.397504 0.582499i
\(665\) −198.962 187.412i −0.299191 0.281822i
\(666\) 1030.92 + 64.1971i 1.54793 + 0.0963921i
\(667\) 136.153 56.3966i 0.204128 0.0845527i
\(668\) −11.2131 1.40196i −0.0167861 0.00209874i
\(669\) 57.1349 137.936i 0.0854034 0.206182i
\(670\) 4.20849 1.44390i 0.00628133 0.00215508i
\(671\) 334.229i 0.498106i
\(672\) 1080.10 596.140i 1.60729 0.887113i
\(673\) −124.014 −0.184271 −0.0921355 0.995746i \(-0.529369\pi\)
−0.0921355 + 0.995746i \(0.529369\pi\)
\(674\) −284.290 828.612i −0.421795 1.22939i
\(675\) 1160.14 + 480.546i 1.71873 + 0.711920i
\(676\) −1617.36 202.216i −2.39255 0.299136i
\(677\) 235.888 + 569.484i 0.348431 + 0.841188i 0.996806 + 0.0798661i \(0.0254493\pi\)
−0.648374 + 0.761322i \(0.724551\pi\)
\(678\) 29.2959 470.452i 0.0432093 0.693882i
\(679\) −42.5529 + 45.1754i −0.0626700 + 0.0665323i
\(680\) −259.698 49.0232i −0.381909 0.0720929i
\(681\) −833.869 833.869i −1.22448 1.22448i
\(682\) 257.936 227.695i 0.378205 0.333863i
\(683\) −473.632 1143.45i −0.693459 1.67416i −0.737693 0.675137i \(-0.764085\pi\)
0.0442338 0.999021i \(-0.485915\pi\)
\(684\) 645.421 1134.92i 0.943598 1.65924i
\(685\) −22.5496 + 54.4396i −0.0329191 + 0.0794738i
\(686\) −245.019 + 640.751i −0.357171 + 0.934039i
\(687\) 2173.63i 3.16394i
\(688\) −960.218 + 139.170i −1.39567 + 0.202282i
\(689\) 1868.45 2.71183
\(690\) 66.4615 135.885i 0.0963210 0.196935i
\(691\) 318.457 768.824i 0.460864 1.11262i −0.507179 0.861841i \(-0.669312\pi\)
0.968043 0.250784i \(-0.0806883\pi\)
\(692\) 194.023 + 705.677i 0.280380 + 1.01976i
\(693\) 896.202 403.000i 1.29322 0.581529i
\(694\) −16.9514 + 14.9639i −0.0244256 + 0.0215619i
\(695\) 55.4924 + 55.4924i 0.0798452 + 0.0798452i
\(696\) 246.969 + 1181.13i 0.354840 + 1.69703i
\(697\) −21.9702 + 21.9702i −0.0315211 + 0.0315211i
\(698\) 73.5859 + 4.58232i 0.105424 + 0.00656493i
\(699\) 703.243 + 1697.78i 1.00607 + 2.42887i
\(700\) −398.930 + 329.855i −0.569899 + 0.471221i
\(701\) −488.956 + 1180.44i −0.697512 + 1.68394i 0.0315568 + 0.999502i \(0.489953\pi\)
−0.729069 + 0.684441i \(0.760047\pi\)
\(702\) 3085.23 1058.52i 4.39491 1.50786i
\(703\) 370.410i 0.526899i
\(704\) 291.912 303.555i 0.414647 0.431186i
\(705\) 897.034i 1.27239i
\(706\) −356.585 1039.33i −0.505078 1.47213i
\(707\) −202.449 + 533.295i −0.286350 + 0.754308i
\(708\) −905.256 1163.97i −1.27861 1.64402i
\(709\) −463.982 + 192.187i −0.654417 + 0.271068i −0.685087 0.728461i \(-0.740236\pi\)
0.0306702 + 0.999530i \(0.490236\pi\)
\(710\) −350.120 21.8026i −0.493127 0.0307078i
\(711\) 1578.87 1578.87i 2.22063 2.22063i
\(712\) −531.514 + 111.137i −0.746508 + 0.156091i
\(713\) −99.4742 + 99.4742i −0.139515 + 0.139515i
\(714\) 682.607 + 728.202i 0.956033 + 1.01989i
\(715\) −154.301 372.516i −0.215806 0.521001i
\(716\) 734.285 201.889i 1.02554 0.281968i
\(717\) −387.841 + 936.331i −0.540922 + 1.30590i
\(718\) 31.0590 63.5022i 0.0432576 0.0884431i
\(719\) 713.239 0.991987 0.495994 0.868326i \(-0.334804\pi\)
0.495994 + 0.868326i \(0.334804\pi\)
\(720\) 697.931 + 521.231i 0.969348 + 0.723931i
\(721\) 0.791548 + 26.4790i 0.00109785 + 0.0367254i
\(722\) −227.992 111.511i −0.315779 0.154448i
\(723\) −1291.15 534.812i −1.78582 0.739712i
\(724\) −249.506 + 438.736i −0.344622 + 0.605989i
\(725\) −193.754 467.764i −0.267247 0.645192i
\(726\) −641.634 + 566.407i −0.883793 + 0.780175i
\(727\) −118.043 + 118.043i −0.162370 + 0.162370i −0.783616 0.621246i \(-0.786627\pi\)
0.621246 + 0.783616i \(0.286627\pi\)
\(728\) −209.819 + 1328.10i −0.288213 + 1.82431i
\(729\) −366.191 + 366.191i −0.502319 + 0.502319i
\(730\) 497.873 + 31.0034i 0.682017 + 0.0424704i
\(731\) −300.399 725.227i −0.410942 0.992102i
\(732\) −1110.32 138.821i −1.51683 0.189647i
\(733\) 92.9778 + 38.5127i 0.126846 + 0.0525411i 0.445203 0.895429i \(-0.353131\pi\)
−0.318358 + 0.947971i \(0.603131\pi\)
\(734\) 632.914 217.148i 0.862281 0.295842i
\(735\) −687.489 + 41.1395i −0.935359 + 0.0559722i
\(736\) −111.412 + 131.295i −0.151375 + 0.178390i
\(737\) −5.73613 −0.00778308
\(738\) 96.8661 33.2340i 0.131255 0.0450325i
\(739\) −270.592 + 653.266i −0.366159 + 0.883987i 0.628213 + 0.778042i \(0.283787\pi\)
−0.994372 + 0.105945i \(0.966213\pi\)
\(740\) −245.224 30.6599i −0.331384 0.0414323i
\(741\) 774.271 + 1869.25i 1.04490 + 2.52261i
\(742\) 35.1912 1088.90i 0.0474275 1.46752i
\(743\) −296.350 + 296.350i −0.398856 + 0.398856i −0.877829 0.478973i \(-0.841009\pi\)
0.478973 + 0.877829i \(0.341009\pi\)
\(744\) −649.276 951.443i −0.872683 1.27882i
\(745\) 82.2044 82.2044i 0.110341 0.110341i
\(746\) 55.7208 + 63.1213i 0.0746927 + 0.0846130i
\(747\) −1153.62 + 477.843i −1.54433 + 0.639683i
\(748\) 296.178 + 168.434i 0.395959 + 0.225180i
\(749\) −449.357 + 1183.70i −0.599943 + 1.58038i
\(750\) −1098.15 537.107i −1.46420 0.716142i
\(751\) 240.176i 0.319809i 0.987133 + 0.159904i \(0.0511186\pi\)
−0.987133 + 0.159904i \(0.948881\pi\)
\(752\) 251.411 989.701i 0.334324 1.31609i
\(753\) 1584.50i 2.10425i
\(754\) −1181.39 577.821i −1.56684 0.766341i
\(755\) −9.21333 + 22.2430i −0.0122031 + 0.0294609i
\(756\) −558.776 1817.95i −0.739122 2.40470i
\(757\) −110.643