Properties

Label 224.3.v.b.13.6
Level 224
Weight 3
Character 224.13
Analytic conductor 6.104
Analytic rank 0
Dimension 240
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(60\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 13.6
Character \(\chi\) \(=\) 224.13
Dual form 224.3.v.b.69.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.91469 - 0.577879i) q^{2} +(2.09916 + 0.869500i) q^{3} +(3.33211 + 2.21292i) q^{4} +(0.289108 + 0.697967i) q^{5} +(-3.51678 - 2.87788i) q^{6} +(-5.35156 - 4.51230i) q^{7} +(-5.10118 - 6.16263i) q^{8} +(-2.71353 - 2.71353i) q^{9} +O(q^{10})\) \(q+(-1.91469 - 0.577879i) q^{2} +(2.09916 + 0.869500i) q^{3} +(3.33211 + 2.21292i) q^{4} +(0.289108 + 0.697967i) q^{5} +(-3.51678 - 2.87788i) q^{6} +(-5.35156 - 4.51230i) q^{7} +(-5.10118 - 6.16263i) q^{8} +(-2.71353 - 2.71353i) q^{9} +(-0.150212 - 1.50346i) q^{10} +(-4.20281 - 10.1465i) q^{11} +(5.07050 + 7.54254i) q^{12} +(5.80299 - 14.0096i) q^{13} +(7.63904 + 11.7322i) q^{14} +1.71652i q^{15} +(6.20595 + 14.7474i) q^{16} +6.67995 q^{17} +(3.62749 + 6.76367i) q^{18} +(4.52161 - 10.9161i) q^{19} +(-0.581209 + 2.96548i) q^{20} +(-7.31032 - 14.1252i) q^{21} +(2.18366 + 21.8561i) q^{22} +(23.1208 + 23.1208i) q^{23} +(-5.34978 - 17.3718i) q^{24} +(17.2741 - 17.2741i) q^{25} +(-19.2068 + 23.4708i) q^{26} +(-11.1622 - 26.9480i) q^{27} +(-7.84662 - 26.8781i) q^{28} +(-12.5246 + 30.2370i) q^{29} +(0.991942 - 3.28662i) q^{30} -43.5456i q^{31} +(-3.36029 - 31.8231i) q^{32} -24.9534i q^{33} +(-12.7901 - 3.86020i) q^{34} +(1.60226 - 5.03975i) q^{35} +(-3.03695 - 15.0466i) q^{36} +(-37.6230 + 15.5839i) q^{37} +(-14.9657 + 18.2881i) q^{38} +(24.3628 - 24.3628i) q^{39} +(2.82652 - 5.34212i) q^{40} +(33.6938 - 33.6938i) q^{41} +(5.83438 + 31.2699i) q^{42} +(2.11801 + 5.11333i) q^{43} +(8.44913 - 43.1097i) q^{44} +(1.10945 - 2.67845i) q^{45} +(-30.9083 - 57.6303i) q^{46} -80.2362 q^{47} +(0.204400 + 36.3532i) q^{48} +(8.27831 + 48.2956i) q^{49} +(-43.0569 + 23.0923i) q^{50} +(14.0223 + 5.80821i) q^{51} +(50.3385 - 33.8402i) q^{52} +(-2.85046 - 6.88163i) q^{53} +(5.79958 + 58.0475i) q^{54} +(5.86685 - 5.86685i) q^{55} +(-0.508375 + 55.9977i) q^{56} +(18.9832 - 18.9832i) q^{57} +(41.4540 - 50.6569i) q^{58} +(-8.20694 - 19.8133i) q^{59} +(-3.79853 + 5.71965i) q^{60} +(82.3062 + 34.0923i) q^{61} +(-25.1641 + 83.3765i) q^{62} +(2.27735 + 26.7658i) q^{63} +(-11.9559 + 62.8733i) q^{64} +11.4560 q^{65} +(-14.4200 + 47.7781i) q^{66} +(17.9668 - 43.3756i) q^{67} +(22.2583 + 14.7822i) q^{68} +(28.4307 + 68.6378i) q^{69} +(-5.98021 + 8.72367i) q^{70} +(-87.4287 + 87.4287i) q^{71} +(-2.88027 + 30.5646i) q^{72} +(-12.3360 + 12.3360i) q^{73} +(81.0421 - 8.09699i) q^{74} +(51.2809 - 21.2412i) q^{75} +(39.2231 - 26.3678i) q^{76} +(-23.2924 + 73.2638i) q^{77} +(-60.7260 + 32.5685i) q^{78} -68.3729i q^{79} +(-8.49903 + 8.59514i) q^{80} -31.7360i q^{81} +(-83.9843 + 45.0424i) q^{82} +(-10.3384 + 24.9591i) q^{83} +(6.89917 - 63.2439i) q^{84} +(1.93122 + 4.66238i) q^{85} +(-1.10046 - 11.0144i) q^{86} +(-52.5821 + 52.5821i) q^{87} +(-41.0897 + 77.6593i) q^{88} +(82.5918 + 82.5918i) q^{89} +(-3.67208 + 4.48730i) q^{90} +(-94.2707 + 48.7886i) q^{91} +(25.8766 + 128.206i) q^{92} +(37.8629 - 91.4090i) q^{93} +(153.628 + 46.3668i) q^{94} +8.92634 q^{95} +(20.6164 - 69.7234i) q^{96} -94.9539i q^{97} +(12.0586 - 97.2553i) q^{98} +(-16.1283 + 38.9372i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} - 8q^{11} + 12q^{14} - 112q^{16} - 176q^{18} - 4q^{21} - 192q^{22} + 128q^{23} - 8q^{25} + 56q^{28} - 8q^{29} - 16q^{30} - 8q^{32} + 92q^{35} + 192q^{36} - 8q^{37} - 8q^{39} - 424q^{42} + 128q^{43} - 16q^{44} - 8q^{46} - 320q^{50} - 80q^{51} - 192q^{53} + 608q^{56} - 8q^{57} - 712q^{58} + 264q^{60} + 496q^{63} - 272q^{64} - 16q^{65} + 304q^{67} + 320q^{70} + 504q^{71} - 8q^{72} + 232q^{74} + 164q^{77} + 560q^{78} - 1000q^{84} - 208q^{85} - 8q^{86} - 800q^{88} + 188q^{91} + 1560q^{92} + 64q^{93} - 16q^{95} - 376q^{98} + 64q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91469 0.577879i −0.957347 0.288939i
\(3\) 2.09916 + 0.869500i 0.699719 + 0.289833i 0.704043 0.710157i \(-0.251376\pi\)
−0.00432364 + 0.999991i \(0.501376\pi\)
\(4\) 3.33211 + 2.21292i 0.833028 + 0.553231i
\(5\) 0.289108 + 0.697967i 0.0578215 + 0.139593i 0.950150 0.311793i \(-0.100930\pi\)
−0.892329 + 0.451387i \(0.850930\pi\)
\(6\) −3.51678 2.87788i −0.586130 0.479647i
\(7\) −5.35156 4.51230i −0.764508 0.644614i
\(8\) −5.10118 6.16263i −0.637647 0.770328i
\(9\) −2.71353 2.71353i −0.301503 0.301503i
\(10\) −0.150212 1.50346i −0.0150212 0.150346i
\(11\) −4.20281 10.1465i −0.382073 0.922407i −0.991565 0.129614i \(-0.958626\pi\)
0.609491 0.792793i \(-0.291374\pi\)
\(12\) 5.07050 + 7.54254i 0.422541 + 0.628545i
\(13\) 5.80299 14.0096i 0.446384 1.07767i −0.527283 0.849690i \(-0.676789\pi\)
0.973667 0.227976i \(-0.0732106\pi\)
\(14\) 7.63904 + 11.7322i 0.545645 + 0.838016i
\(15\) 1.71652i 0.114435i
\(16\) 6.20595 + 14.7474i 0.387872 + 0.921713i
\(17\) 6.67995 0.392938 0.196469 0.980510i \(-0.437052\pi\)
0.196469 + 0.980510i \(0.437052\pi\)
\(18\) 3.62749 + 6.76367i 0.201527 + 0.375759i
\(19\) 4.52161 10.9161i 0.237980 0.574534i −0.759094 0.650981i \(-0.774358\pi\)
0.997074 + 0.0764475i \(0.0243577\pi\)
\(20\) −0.581209 + 2.96548i −0.0290604 + 0.148274i
\(21\) −7.31032 14.1252i −0.348110 0.672629i
\(22\) 2.18366 + 21.8561i 0.0992575 + 0.993460i
\(23\) 23.1208 + 23.1208i 1.00525 + 1.00525i 0.999986 + 0.00526649i \(0.00167638\pi\)
0.00526649 + 0.999986i \(0.498324\pi\)
\(24\) −5.34978 17.3718i −0.222907 0.723825i
\(25\) 17.2741 17.2741i 0.690964 0.690964i
\(26\) −19.2068 + 23.4708i −0.738724 + 0.902722i
\(27\) −11.1622 26.9480i −0.413415 0.998072i
\(28\) −7.84662 26.8781i −0.280236 0.959931i
\(29\) −12.5246 + 30.2370i −0.431882 + 1.04265i 0.546799 + 0.837264i \(0.315846\pi\)
−0.978680 + 0.205390i \(0.934154\pi\)
\(30\) 0.991942 3.28662i 0.0330647 0.109554i
\(31\) 43.5456i 1.40470i −0.711834 0.702348i \(-0.752135\pi\)
0.711834 0.702348i \(-0.247865\pi\)
\(32\) −3.36029 31.8231i −0.105009 0.994471i
\(33\) 24.9534i 0.756163i
\(34\) −12.7901 3.86020i −0.376178 0.113535i
\(35\) 1.60226 5.03975i 0.0457789 0.143993i
\(36\) −3.03695 15.0466i −0.0843598 0.417961i
\(37\) −37.6230 + 15.5839i −1.01684 + 0.421187i −0.827944 0.560810i \(-0.810490\pi\)
−0.188892 + 0.981998i \(0.560490\pi\)
\(38\) −14.9657 + 18.2881i −0.393834 + 0.481267i
\(39\) 24.3628 24.3628i 0.624686 0.624686i
\(40\) 2.82652 5.34212i 0.0706631 0.133553i
\(41\) 33.6938 33.6938i 0.821800 0.821800i −0.164566 0.986366i \(-0.552622\pi\)
0.986366 + 0.164566i \(0.0526223\pi\)
\(42\) 5.83438 + 31.2699i 0.138914 + 0.744522i
\(43\) 2.11801 + 5.11333i 0.0492560 + 0.118915i 0.946592 0.322433i \(-0.104501\pi\)
−0.897336 + 0.441347i \(0.854501\pi\)
\(44\) 8.44913 43.1097i 0.192026 0.979766i
\(45\) 1.10945 2.67845i 0.0246545 0.0595212i
\(46\) −30.9083 57.6303i −0.671919 1.25283i
\(47\) −80.2362 −1.70715 −0.853577 0.520967i \(-0.825571\pi\)
−0.853577 + 0.520967i \(0.825571\pi\)
\(48\) 0.204400 + 36.3532i 0.00425833 + 0.757359i
\(49\) 8.27831 + 48.2956i 0.168945 + 0.985625i
\(50\) −43.0569 + 23.0923i −0.861139 + 0.461846i
\(51\) 14.0223 + 5.80821i 0.274946 + 0.113886i
\(52\) 50.3385 33.8402i 0.968047 0.650772i
\(53\) −2.85046 6.88163i −0.0537823 0.129842i 0.894705 0.446658i \(-0.147386\pi\)
−0.948487 + 0.316816i \(0.897386\pi\)
\(54\) 5.79958 + 58.0475i 0.107400 + 1.07495i
\(55\) 5.86685 5.86685i 0.106670 0.106670i
\(56\) −0.508375 + 55.9977i −0.00907812 + 0.999959i
\(57\) 18.9832 18.9832i 0.333038 0.333038i
\(58\) 41.4540 50.6569i 0.714725 0.873395i
\(59\) −8.20694 19.8133i −0.139101 0.335819i 0.838943 0.544220i \(-0.183174\pi\)
−0.978044 + 0.208401i \(0.933174\pi\)
\(60\) −3.79853 + 5.71965i −0.0633088 + 0.0953274i
\(61\) 82.3062 + 34.0923i 1.34928 + 0.558891i 0.936092 0.351755i \(-0.114415\pi\)
0.413189 + 0.910645i \(0.364415\pi\)
\(62\) −25.1641 + 83.3765i −0.405872 + 1.34478i
\(63\) 2.27735 + 26.7658i 0.0361483 + 0.424855i
\(64\) −11.9559 + 62.8733i −0.186812 + 0.982396i
\(65\) 11.4560 0.176246
\(66\) −14.4200 + 47.7781i −0.218485 + 0.723911i
\(67\) 17.9668 43.3756i 0.268161 0.647397i −0.731236 0.682124i \(-0.761056\pi\)
0.999397 + 0.0347271i \(0.0110562\pi\)
\(68\) 22.2583 + 14.7822i 0.327328 + 0.217385i
\(69\) 28.4307 + 68.6378i 0.412039 + 0.994750i
\(70\) −5.98021 + 8.72367i −0.0854315 + 0.124624i
\(71\) −87.4287 + 87.4287i −1.23139 + 1.23139i −0.267960 + 0.963430i \(0.586350\pi\)
−0.963430 + 0.267960i \(0.913650\pi\)
\(72\) −2.88027 + 30.5646i −0.0400037 + 0.424509i
\(73\) −12.3360 + 12.3360i −0.168986 + 0.168986i −0.786534 0.617548i \(-0.788126\pi\)
0.617548 + 0.786534i \(0.288126\pi\)
\(74\) 81.0421 8.09699i 1.09516 0.109419i
\(75\) 51.2809 21.2412i 0.683745 0.283216i
\(76\) 39.2231 26.3678i 0.516093 0.346945i
\(77\) −23.2924 + 73.2638i −0.302498 + 0.951478i
\(78\) −60.7260 + 32.5685i −0.778538 + 0.417545i
\(79\) 68.3729i 0.865480i −0.901519 0.432740i \(-0.857547\pi\)
0.901519 0.432740i \(-0.142453\pi\)
\(80\) −8.49903 + 8.59514i −0.106238 + 0.107439i
\(81\) 31.7360i 0.391802i
\(82\) −83.9843 + 45.0424i −1.02420 + 0.549298i
\(83\) −10.3384 + 24.9591i −0.124559 + 0.300712i −0.973842 0.227226i \(-0.927035\pi\)
0.849283 + 0.527938i \(0.177035\pi\)
\(84\) 6.89917 63.2439i 0.0821330 0.752904i
\(85\) 1.93122 + 4.66238i 0.0227203 + 0.0548516i
\(86\) −1.10046 11.0144i −0.0127960 0.128075i
\(87\) −52.5821 + 52.5821i −0.604392 + 0.604392i
\(88\) −41.0897 + 77.6593i −0.466928 + 0.882492i
\(89\) 82.5918 + 82.5918i 0.927998 + 0.927998i 0.997576 0.0695783i \(-0.0221654\pi\)
−0.0695783 + 0.997576i \(0.522165\pi\)
\(90\) −3.67208 + 4.48730i −0.0408009 + 0.0498588i
\(91\) −94.2707 + 48.7886i −1.03594 + 0.536138i
\(92\) 25.8766 + 128.206i 0.281267 + 1.39354i
\(93\) 37.8629 91.4090i 0.407128 0.982893i
\(94\) 153.628 + 46.3668i 1.63434 + 0.493264i
\(95\) 8.92634 0.0939615
\(96\) 20.6164 69.7234i 0.214754 0.726286i
\(97\) 94.9539i 0.978906i −0.872030 0.489453i \(-0.837196\pi\)
0.872030 0.489453i \(-0.162804\pi\)
\(98\) 12.0586 97.2553i 0.123047 0.992401i
\(99\) −16.1283 + 38.9372i −0.162912 + 0.393305i
\(100\) 95.7855 19.3330i 0.957855 0.193330i
\(101\) 30.7044 + 74.1270i 0.304004 + 0.733931i 0.999876 + 0.0157648i \(0.00501829\pi\)
−0.695872 + 0.718166i \(0.744982\pi\)
\(102\) −23.4919 19.2241i −0.230313 0.188472i
\(103\) −116.227 116.227i −1.12842 1.12842i −0.990434 0.137984i \(-0.955938\pi\)
−0.137984 0.990434i \(1.45594\pi\)
\(104\) −115.938 + 35.7041i −1.11479 + 0.343308i
\(105\) 7.74546 9.18607i 0.0737663 0.0874864i
\(106\) 1.48102 + 14.8234i 0.0139719 + 0.139844i
\(107\) −29.4921 71.2003i −0.275627 0.665423i 0.724078 0.689719i \(-0.242266\pi\)
−0.999705 + 0.0242955i \(0.992266\pi\)
\(108\) 22.4400 114.495i 0.207778 1.06014i
\(109\) 162.294 + 67.2242i 1.48893 + 0.616736i 0.971084 0.238737i \(-0.0767333\pi\)
0.517848 + 0.855473i \(0.326733\pi\)
\(110\) −14.6235 + 7.84290i −0.132941 + 0.0712991i
\(111\) −92.5267 −0.833574
\(112\) 33.3332 106.925i 0.297618 0.954685i
\(113\) 75.2992i 0.666364i 0.942862 + 0.333182i \(0.108122\pi\)
−0.942862 + 0.333182i \(0.891878\pi\)
\(114\) −47.3169 + 25.3770i −0.415061 + 0.222605i
\(115\) −9.45317 + 22.8220i −0.0822015 + 0.198452i
\(116\) −108.645 + 73.0371i −0.936598 + 0.629630i
\(117\) −53.7621 + 22.2690i −0.459505 + 0.190333i
\(118\) 4.26410 + 42.6791i 0.0361365 + 0.361687i
\(119\) −35.7481 30.1419i −0.300404 0.253293i
\(120\) 10.5783 8.75629i 0.0881524 0.0729691i
\(121\) 0.272532 0.272532i 0.00225233 0.00225233i
\(122\) −137.890 112.839i −1.13025 0.924913i
\(123\) 100.025 41.4319i 0.813215 0.336845i
\(124\) 96.3630 145.099i 0.777121 1.17015i
\(125\) 34.5000 + 14.2904i 0.276000 + 0.114323i
\(126\) 11.1070 52.5644i 0.0881507 0.417178i
\(127\) 58.6231 0.461600 0.230800 0.973001i \(-0.425866\pi\)
0.230800 + 0.973001i \(0.425866\pi\)
\(128\) 59.2251 113.474i 0.462696 0.886517i
\(129\) 12.5753i 0.0974829i
\(130\) −21.9347 6.62016i −0.168728 0.0509243i
\(131\) 38.7012 + 16.0306i 0.295429 + 0.122371i 0.525475 0.850809i \(-0.323888\pi\)
−0.230046 + 0.973180i \(0.573888\pi\)
\(132\) 55.2199 83.1475i 0.418333 0.629905i
\(133\) −73.4545 + 38.0155i −0.552290 + 0.285830i
\(134\) −59.4667 + 72.6685i −0.443782 + 0.542302i
\(135\) 15.5817 15.5817i 0.115420 0.115420i
\(136\) −34.0756 41.1660i −0.250556 0.302691i
\(137\) −32.4767 32.4767i −0.237056 0.237056i 0.578574 0.815630i \(-0.303609\pi\)
−0.815630 + 0.578574i \(0.803609\pi\)
\(138\) −14.7718 147.850i −0.107042 1.07138i
\(139\) 167.633 69.4357i 1.20599 0.499538i 0.313060 0.949733i \(-0.398646\pi\)
0.892930 + 0.450196i \(0.148646\pi\)
\(140\) 16.4915 13.2473i 0.117796 0.0946238i
\(141\) −168.428 69.7654i −1.19453 0.494790i
\(142\) 217.922 116.876i 1.53467 0.823071i
\(143\) −166.537 −1.16460
\(144\) 23.1775 56.8575i 0.160955 0.394844i
\(145\) −24.7254 −0.170520
\(146\) 30.7483 16.4909i 0.210605 0.112952i
\(147\) −24.6156 + 108.578i −0.167453 + 0.738627i
\(148\) −159.850 31.3292i −1.08007 0.211684i
\(149\) 7.34358 + 17.7290i 0.0492858 + 0.118986i 0.946605 0.322396i \(-0.104488\pi\)
−0.897319 + 0.441382i \(0.854488\pi\)
\(150\) −110.462 + 11.0364i −0.736414 + 0.0735757i
\(151\) −99.6942 99.6942i −0.660226 0.660226i 0.295207 0.955433i \(-0.404611\pi\)
−0.955433 + 0.295207i \(0.904611\pi\)
\(152\) −90.3376 + 27.8202i −0.594327 + 0.183027i
\(153\) −18.1262 18.1262i −0.118472 0.118472i
\(154\) 86.9354 126.818i 0.564515 0.823491i
\(155\) 30.3934 12.5894i 0.196086 0.0812217i
\(156\) 135.092 27.2666i 0.865977 0.174786i
\(157\) 156.442 + 64.8003i 0.996444 + 0.412741i 0.820492 0.571658i \(-0.193700\pi\)
0.175952 + 0.984399i \(0.443700\pi\)
\(158\) −39.5112 + 130.913i −0.250071 + 0.828565i
\(159\) 16.9241i 0.106441i
\(160\) 21.2400 11.5457i 0.132750 0.0721604i
\(161\) −19.4043 228.060i −0.120524 1.41652i
\(162\) −18.3395 + 60.7647i −0.113207 + 0.375091i
\(163\) −79.1127 + 190.995i −0.485354 + 1.17175i 0.471679 + 0.881770i \(0.343648\pi\)
−0.957033 + 0.289978i \(0.906352\pi\)
\(164\) 186.833 37.7098i 1.13923 0.229938i
\(165\) 17.4167 7.21422i 0.105555 0.0437225i
\(166\) 34.2182 41.8147i 0.206134 0.251896i
\(167\) 115.583 + 115.583i 0.692115 + 0.692115i 0.962697 0.270582i \(-0.0872162\pi\)
−0.270582 + 0.962697i \(0.587216\pi\)
\(168\) −49.7571 + 117.106i −0.296173 + 0.697059i
\(169\) −43.0945 43.0945i −0.254997 0.254997i
\(170\) −1.00341 10.0431i −0.00590241 0.0590768i
\(171\) −41.8908 + 17.3517i −0.244975 + 0.101472i
\(172\) −4.25795 + 21.7252i −0.0247555 + 0.126309i
\(173\) −42.8385 + 103.421i −0.247621 + 0.597811i −0.998001 0.0631963i \(-0.979871\pi\)
0.750380 + 0.661007i \(0.229871\pi\)
\(174\) 131.065 70.2926i 0.753245 0.403980i
\(175\) −170.389 + 14.4974i −0.973652 + 0.0828423i
\(176\) 123.552 124.949i 0.701999 0.709938i
\(177\) 48.7272i 0.275295i
\(178\) −110.410 205.866i −0.620282 1.15655i
\(179\) 118.584 + 49.1190i 0.662479 + 0.274408i 0.688481 0.725254i \(-0.258278\pi\)
−0.0260023 + 0.999662i \(0.508278\pi\)
\(180\) 9.62403 6.46978i 0.0534668 0.0359432i
\(181\) −234.591 + 97.1707i −1.29608 + 0.536855i −0.920792 0.390053i \(-0.872457\pi\)
−0.375289 + 0.926908i \(0.622457\pi\)
\(182\) 208.694 38.9383i 1.14667 0.213946i
\(183\) 143.130 + 143.130i 0.782133 + 0.782133i
\(184\) 24.5415 260.428i 0.133378 1.41537i
\(185\) −21.7542 21.7542i −0.117590 0.117590i
\(186\) −125.319 + 153.140i −0.673759 + 0.823335i
\(187\) −28.0745 67.7779i −0.150131 0.362449i
\(188\) −267.356 177.557i −1.42211 0.944449i
\(189\) −61.8621 + 194.581i −0.327312 + 1.02953i
\(190\) −17.0912 5.15834i −0.0899538 0.0271492i
\(191\) 84.8434 0.444206 0.222103 0.975023i \(-0.428708\pi\)
0.222103 + 0.975023i \(0.428708\pi\)
\(192\) −79.7658 + 121.585i −0.415447 + 0.633257i
\(193\) 209.730 1.08668 0.543341 0.839512i \(-0.317159\pi\)
0.543341 + 0.839512i \(0.317159\pi\)
\(194\) −54.8718 + 181.808i −0.282844 + 0.937153i
\(195\) 24.0479 + 9.96096i 0.123322 + 0.0510818i
\(196\) −79.2903 + 179.246i −0.404542 + 0.914519i
\(197\) 28.7414 11.9051i 0.145895 0.0604319i −0.308541 0.951211i \(-0.599841\pi\)
0.454436 + 0.890779i \(0.349841\pi\)
\(198\) 53.3817 65.2326i 0.269605 0.329458i
\(199\) 167.527 + 167.527i 0.841844 + 0.841844i 0.989099 0.147254i \(-0.0470436\pi\)
−0.147254 + 0.989099i \(0.547044\pi\)
\(200\) −194.572 18.3356i −0.972860 0.0916778i
\(201\) 75.4302 75.4302i 0.375275 0.375275i
\(202\) −15.9532 159.674i −0.0789761 0.790466i
\(203\) 203.464 105.300i 1.00229 0.518721i
\(204\) 33.8706 + 50.3838i 0.166033 + 0.246979i
\(205\) 33.2583 + 13.7760i 0.162236 + 0.0672002i
\(206\) 155.374 + 289.705i 0.754244 + 1.40633i
\(207\) 125.478i 0.606173i
\(208\) 242.619 1.36415i 1.16644 0.00655843i
\(209\) −129.764 −0.620879
\(210\) −20.1386 + 13.1126i −0.0958982 + 0.0624408i
\(211\) 52.9763 + 21.9435i 0.251073 + 0.103998i 0.504671 0.863312i \(-0.331614\pi\)
−0.253598 + 0.967310i \(0.581614\pi\)
\(212\) 5.73044 29.2382i 0.0270304 0.137916i
\(213\) −259.546 + 107.507i −1.21853 + 0.504730i
\(214\) 15.3233 + 153.370i 0.0716042 + 0.716681i
\(215\) −2.95660 + 2.95660i −0.0137516 + 0.0137516i
\(216\) −109.130 + 206.255i −0.505230 + 0.954884i
\(217\) −196.491 + 233.037i −0.905487 + 1.07390i
\(218\) −271.895 222.500i −1.24723 1.02064i
\(219\) −36.6213 + 15.1690i −0.167221 + 0.0692650i
\(220\) 32.5319 6.56612i 0.147872 0.0298460i
\(221\) 38.7636 93.5837i 0.175401 0.423456i
\(222\) 177.160 + 53.4692i 0.798020 + 0.240852i
\(223\) 91.0173i 0.408149i −0.978955 0.204075i \(-0.934581\pi\)
0.978955 0.204075i \(-0.0654185\pi\)
\(224\) −125.612 + 185.466i −0.560770 + 0.827972i
\(225\) −93.7475 −0.416655
\(226\) 43.5138 144.175i 0.192539 0.637942i
\(227\) 257.066 + 106.480i 1.13245 + 0.469076i 0.868613 0.495492i \(-0.165012\pi\)
0.263836 + 0.964568i \(0.415012\pi\)
\(228\) 105.262 21.2458i 0.461677 0.0931832i
\(229\) 126.804 + 306.132i 0.553729 + 1.33682i 0.914659 + 0.404227i \(0.132459\pi\)
−0.360930 + 0.932593i \(0.617541\pi\)
\(230\) 31.2883 38.2343i 0.136036 0.166236i
\(231\) −112.597 + 133.539i −0.487434 + 0.578093i
\(232\) 250.229 77.0600i 1.07857 0.332155i
\(233\) −77.9402 77.9402i −0.334507 0.334507i 0.519788 0.854295i \(-0.326011\pi\)
−0.854295 + 0.519788i \(0.826011\pi\)
\(234\) 115.807 11.5704i 0.494901 0.0494460i
\(235\) −23.1969 56.0023i −0.0987102 0.238308i
\(236\) 16.4989 84.1815i 0.0699104 0.356701i
\(237\) 59.4502 143.526i 0.250845 0.605593i
\(238\) 51.0283 + 78.3706i 0.214405 + 0.329288i
\(239\) 23.1041i 0.0966699i −0.998831 0.0483350i \(-0.984609\pi\)
0.998831 0.0483350i \(-0.0153915\pi\)
\(240\) −25.3143 + 10.6527i −0.105476 + 0.0443861i
\(241\) −29.4277 −0.122107 −0.0610534 0.998135i \(-0.519446\pi\)
−0.0610534 + 0.998135i \(0.519446\pi\)
\(242\) −0.679307 + 0.364326i −0.00280705 + 0.00150548i
\(243\) −72.8654 + 175.913i −0.299858 + 0.723921i
\(244\) 198.810 + 295.737i 0.814794 + 1.21204i
\(245\) −31.3155 + 19.7406i −0.127818 + 0.0805740i
\(246\) −215.461 + 21.5269i −0.875857 + 0.0875076i
\(247\) −126.692 126.692i −0.512925 0.512925i
\(248\) −268.355 + 222.134i −1.08208 + 0.895701i
\(249\) −43.4038 + 43.4038i −0.174313 + 0.174313i
\(250\) −57.7989 47.2985i −0.231196 0.189194i
\(251\) 75.0350 + 181.151i 0.298944 + 0.721715i 0.999963 + 0.00857265i \(0.00272879\pi\)
−0.701019 + 0.713143i \(0.747271\pi\)
\(252\) −51.6424 + 94.2264i −0.204930 + 0.373914i
\(253\) 137.422 331.767i 0.543172 1.31133i
\(254\) −112.245 33.8771i −0.441911 0.133374i
\(255\) 11.4663i 0.0449658i
\(256\) −178.972 + 183.043i −0.699111 + 0.715013i
\(257\) 476.031i 1.85226i −0.377205 0.926130i \(-0.623115\pi\)
0.377205 0.926130i \(-0.376885\pi\)
\(258\) 7.26699 24.0778i 0.0281666 0.0933250i
\(259\) 271.661 + 86.3677i 1.04888 + 0.333466i
\(260\) 38.1726 + 25.3512i 0.146818 + 0.0975044i
\(261\) 116.035 48.0631i 0.444577 0.184150i
\(262\) −64.8373 53.0582i −0.247471 0.202512i
\(263\) 228.327 228.327i 0.868163 0.868163i −0.124106 0.992269i \(-0.539606\pi\)
0.992269 + 0.124106i \(0.0396063\pi\)
\(264\) −153.778 + 127.292i −0.582494 + 0.482166i
\(265\) 3.97906 3.97906i 0.0150153 0.0150153i
\(266\) 162.611 30.3402i 0.611321 0.114061i
\(267\) 101.560 + 245.187i 0.380374 + 0.918303i
\(268\) 155.854 104.773i 0.581545 0.390946i
\(269\) 155.951 376.498i 0.579742 1.39962i −0.313303 0.949653i \(-0.601436\pi\)
0.893045 0.449967i \(-0.148564\pi\)
\(270\) −38.8386 + 20.8299i −0.143847 + 0.0771477i
\(271\) −244.080 −0.900664 −0.450332 0.892861i \(-0.648694\pi\)
−0.450332 + 0.892861i \(0.648694\pi\)
\(272\) 41.4554 + 98.5119i 0.152410 + 0.362176i
\(273\) −240.311 + 20.4466i −0.880259 + 0.0748960i
\(274\) 43.4153 + 80.9505i 0.158450 + 0.295440i
\(275\) −247.871 102.671i −0.901349 0.373351i
\(276\) −57.1558 + 291.624i −0.207086 + 1.05661i
\(277\) 19.5040 + 47.0868i 0.0704115 + 0.169988i 0.955167 0.296066i \(-0.0956750\pi\)
−0.884756 + 0.466055i \(0.845675\pi\)
\(278\) −361.091 + 36.0769i −1.29889 + 0.129773i
\(279\) −118.162 + 118.162i −0.423520 + 0.423520i
\(280\) −39.2315 + 15.8345i −0.140113 + 0.0565519i
\(281\) 243.350 243.350i 0.866014 0.866014i −0.126014 0.992028i \(-0.540219\pi\)
0.992028 + 0.126014i \(0.0402185\pi\)
\(282\) 282.173 + 230.911i 1.00061 + 0.818832i
\(283\) −194.439 469.416i −0.687062 1.65871i −0.750619 0.660736i \(-0.770244\pi\)
0.0635567 0.997978i \(1.52024\pi\)
\(284\) −484.795 + 97.8494i −1.70703 + 0.344540i
\(285\) 18.7378 + 7.76145i 0.0657467 + 0.0272332i
\(286\) 318.868 + 96.2384i 1.11492 + 0.336498i
\(287\) −332.351 + 28.2778i −1.15802 + 0.0985288i
\(288\) −77.2346 + 95.4710i −0.268176 + 0.331497i
\(289\) −244.378 −0.845600
\(290\) 47.3415 + 14.2883i 0.163247 + 0.0492699i
\(291\) 82.5624 199.323i 0.283720 0.684960i
\(292\) −68.4035 + 13.8063i −0.234258 + 0.0472819i
\(293\) −59.1298 142.752i −0.201808 0.487208i 0.790281 0.612745i \(-0.209935\pi\)
−0.992089 + 0.125537i \(0.959935\pi\)
\(294\) 109.876 193.669i 0.373729 0.658739i
\(295\) 11.4564 11.4564i 0.0388351 0.0388351i
\(296\) 287.959 + 152.360i 0.972836 + 0.514729i
\(297\) −226.514 + 226.514i −0.762674 + 0.762674i
\(298\) −3.81553 38.1893i −0.0128038 0.128152i
\(299\) 458.084 189.745i 1.53205 0.634597i
\(300\) 217.879 + 42.7024i 0.726263 + 0.142341i
\(301\) 11.7382 36.9214i 0.0389974 0.122662i
\(302\) 133.273 + 248.495i 0.441301 + 0.822831i
\(303\) 182.302i 0.601656i
\(304\) 189.046 1.06293i 0.621861 0.00349648i
\(305\) 67.3034i 0.220667i
\(306\) 24.2314 + 45.1809i 0.0791877 + 0.147650i
\(307\) −55.8272 + 134.779i −0.181848 + 0.439019i −0.988347 0.152216i \(-0.951359\pi\)
0.806500 + 0.591234i \(0.201359\pi\)
\(308\) −239.740 + 192.579i −0.778376 + 0.625256i
\(309\) −142.920 345.039i −0.462523 1.11663i
\(310\) −65.4692 + 6.54108i −0.211191 + 0.0211003i
\(311\) 378.064 378.064i 1.21564 1.21564i 0.246494 0.969144i \(-0.420721\pi\)
0.969144 0.246494i \(-0.0792786\pi\)
\(312\) −274.417 25.8598i −0.879543 0.0828840i
\(313\) 5.84131 + 5.84131i 0.0186623 + 0.0186623i 0.716376 0.697714i \(-0.245799\pi\)
−0.697714 + 0.716376i \(0.745799\pi\)
\(314\) −262.092 214.477i −0.834686 0.683048i
\(315\) −18.0233 + 9.32772i −0.0572168 + 0.0296118i
\(316\) 151.304 227.826i 0.478810 0.720969i
\(317\) −181.823 + 438.960i −0.573575 + 1.38473i 0.324918 + 0.945742i \(0.394663\pi\)
−0.898492 + 0.438989i \(0.855337\pi\)
\(318\) −9.78007 + 32.4045i −0.0307549 + 0.101901i
\(319\) 359.437 1.12676
\(320\) −47.3401 + 9.83229i −0.147938 + 0.0307259i
\(321\) 175.104i 0.545495i
\(322\) −94.6379 + 447.879i −0.293906 + 1.39093i
\(323\) 30.2041 72.9192i 0.0935112 0.225756i
\(324\) 70.2292 105.748i 0.216757 0.326382i
\(325\) −141.763 342.245i −0.436193 1.05306i
\(326\) 261.849 319.980i 0.803217 0.981533i
\(327\) 282.228 + 282.228i 0.863084 + 0.863084i
\(328\) −379.521 35.7642i −1.15708 0.109037i
\(329\) 429.389 + 362.050i 1.30513 + 1.10046i
\(330\) −37.5165 + 3.74831i −0.113686 + 0.0113585i
\(331\) 190.224 + 459.241i 0.574694 + 1.38743i 0.897519 + 0.440975i \(0.145367\pi\)
−0.322826 + 0.946458i \(0.604633\pi\)
\(332\) −89.6812 + 60.2884i −0.270124 + 0.181592i
\(333\) 144.378 + 59.8035i 0.433569 + 0.179590i
\(334\) −154.513 288.099i −0.462615 0.862573i
\(335\) 35.4691 0.105878
\(336\) 162.943 195.469i 0.484949 0.581752i
\(337\) 336.033i 0.997129i −0.866853 0.498565i \(-0.833861\pi\)
0.866853 0.498565i \(-0.166139\pi\)
\(338\) 57.6094 + 107.416i 0.170442 + 0.317799i
\(339\) −65.4726 + 158.065i −0.193135 + 0.466268i
\(340\) −3.88244 + 19.8092i −0.0114189 + 0.0582625i
\(341\) −441.834 + 183.014i −1.29570 + 0.536697i
\(342\) 90.2352 9.01548i 0.263846 0.0263610i
\(343\) 173.623 295.811i 0.506188 0.862423i
\(344\) 20.7072 39.1365i 0.0601953 0.113769i
\(345\) −39.6874 + 39.6874i −0.115036 + 0.115036i
\(346\) 141.788 173.265i 0.409791 0.500765i
\(347\) −142.386 + 58.9781i −0.410333 + 0.169966i −0.578295 0.815828i \(-0.696282\pi\)
0.167961 + 0.985794i \(0.446282\pi\)
\(348\) −291.569 + 58.8494i −0.837843 + 0.169107i
\(349\) −114.510 47.4314i −0.328108 0.135907i 0.212548 0.977151i \(-0.431824\pi\)
−0.540656 + 0.841244i \(0.681824\pi\)
\(350\) 334.621 + 70.7062i 0.956060 + 0.202018i
\(351\) −442.305 −1.26013
\(352\) −308.769 + 167.841i −0.877186 + 0.476822i
\(353\) 371.003i 1.05100i −0.850794 0.525499i \(-0.823878\pi\)
0.850794 0.525499i \(-0.176122\pi\)
\(354\) −28.1584 + 93.2977i −0.0795435 + 0.263553i
\(355\) −86.2987 35.7461i −0.243095 0.100693i
\(356\) 92.4360 + 457.975i 0.259652 + 1.28645i
\(357\) −48.8325 94.3556i −0.136786 0.264301i
\(358\) −198.667 162.575i −0.554935 0.454120i
\(359\) −82.3766 + 82.3766i −0.229461 + 0.229461i −0.812468 0.583006i \(-0.801876\pi\)
0.583006 + 0.812468i \(0.301876\pi\)
\(360\) −22.1658 + 6.82614i −0.0615718 + 0.0189615i
\(361\) 156.548 + 156.548i 0.433652 + 0.433652i
\(362\) 505.323 50.4872i 1.39592 0.139467i
\(363\) 0.809055 0.335122i 0.00222880 0.000923200i
\(364\) −422.086 46.0447i −1.15958 0.126496i
\(365\) −12.1765 5.04369i −0.0333604 0.0138183i
\(366\) −191.339 356.763i −0.522784 0.974762i
\(367\) 72.0402 0.196295 0.0981474 0.995172i \(-0.468708\pi\)
0.0981474 + 0.995172i \(0.468708\pi\)
\(368\) −197.486 + 484.459i −0.536645 + 1.31646i
\(369\) −182.858 −0.495551
\(370\) 29.0813 + 54.2238i 0.0785981 + 0.146551i
\(371\) −15.7975 + 49.6896i −0.0425810 + 0.133934i
\(372\) 328.444 220.798i 0.882915 0.593542i
\(373\) 99.9056 + 241.193i 0.267843 + 0.646631i 0.999381 0.0351696i \(-0.0111972\pi\)
−0.731538 + 0.681801i \(0.761197\pi\)
\(374\) 14.5868 + 145.998i 0.0390020 + 0.390368i
\(375\) 59.9955 + 59.9955i 0.159988 + 0.159988i
\(376\) 409.299 + 494.466i 1.08856 + 1.31507i
\(377\) 350.929 + 350.929i 0.930847 + 0.930847i
\(378\) 230.891 336.814i 0.610823 0.891042i
\(379\) 454.762 188.368i 1.19990 0.497014i 0.308933 0.951084i \(-0.400028\pi\)
0.890966 + 0.454069i \(0.150028\pi\)
\(380\) 29.7436 + 19.7533i 0.0782726 + 0.0519824i
\(381\) 123.059 + 50.9728i 0.322990 + 0.133787i
\(382\) −162.449 49.0292i −0.425260 0.128349i
\(383\) 348.756i 0.910590i −0.890341 0.455295i \(-0.849534\pi\)
0.890341 0.455295i \(-0.150466\pi\)
\(384\) 222.989 186.704i 0.580700 0.486208i
\(385\) −57.8697 + 4.92379i −0.150311 + 0.0127891i
\(386\) −401.568 121.198i −1.04033 0.313985i
\(387\) 8.12788 19.6224i 0.0210023 0.0507040i
\(388\) 210.126 316.397i 0.541561 0.815457i
\(389\) 63.3197 26.2279i 0.162775 0.0674238i −0.299808 0.954000i \(-0.596923\pi\)
0.462583 + 0.886576i \(0.346923\pi\)
\(390\) −40.2881 32.9689i −0.103303 0.0845357i
\(391\) 154.446 + 154.446i 0.395002 + 0.395002i
\(392\) 255.399 297.381i 0.651528 0.758625i
\(393\) 67.3014 + 67.3014i 0.171250 + 0.171250i
\(394\) −61.9107 + 6.18555i −0.157134 + 0.0156994i
\(395\) 47.7221 19.7671i 0.120815 0.0500434i
\(396\) −139.906 + 94.0524i −0.353299 + 0.237506i
\(397\) 40.9820 98.9394i 0.103229 0.249218i −0.863823 0.503795i \(-0.831937\pi\)
0.967052 + 0.254578i \(0.0819365\pi\)
\(398\) −223.953 417.573i −0.562696 1.04918i
\(399\) −187.247 + 15.9317i −0.469291 + 0.0399292i
\(400\) 361.950 + 147.546i 0.904876 + 0.368865i
\(401\) 228.115i 0.568866i −0.958696 0.284433i \(-0.908195\pi\)
0.958696 0.284433i \(-0.0918053\pi\)
\(402\) −188.015 + 100.836i −0.467700 + 0.250837i
\(403\) −610.058 252.694i −1.51379 0.627033i
\(404\) −61.7268 + 314.946i −0.152789 + 0.779570i
\(405\) 22.1507 9.17511i 0.0546930 0.0226546i
\(406\) −450.423 + 84.0403i −1.10942 + 0.206996i
\(407\) 316.244 + 316.244i 0.777013 + 0.777013i
\(408\) −35.7362 116.043i −0.0875888 0.284418i
\(409\) 257.465 + 257.465i 0.629499 + 0.629499i 0.947942 0.318443i \(-0.103160\pi\)
−0.318443 + 0.947942i \(0.603160\pi\)
\(410\) −55.7187 45.5962i −0.135899 0.111210i
\(411\) −39.9352 96.4121i −0.0971659 0.234579i
\(412\) −130.080 644.483i −0.315729 1.56428i
\(413\) −45.4837 + 143.064i −0.110130 + 0.346402i
\(414\) −72.5110 + 240.252i −0.175147 + 0.580319i
\(415\) −20.4095 −0.0491796
\(416\) −465.330 137.592i −1.11858 0.330751i
\(417\) 412.262 0.988637
\(418\) 248.458 + 74.9877i 0.594397 + 0.179396i
\(419\) −201.431 83.4352i −0.480741 0.199129i 0.129134 0.991627i \(-0.458780\pi\)
−0.609875 + 0.792498i \(0.708780\pi\)
\(420\) 46.1368 13.4689i 0.109850 0.0320688i
\(421\) 18.7520 7.76732i 0.0445415 0.0184497i −0.360301 0.932836i \(-0.617326\pi\)
0.404843 + 0.914386i \(0.367326\pi\)
\(422\) −88.7528 72.6290i −0.210315 0.172107i
\(423\) 217.723 + 217.723i 0.514712 + 0.514712i
\(424\) −27.8682 + 52.6708i −0.0657268 + 0.124223i
\(425\) 115.390 115.390i 0.271506 0.271506i
\(426\) 559.077 55.8579i 1.31239 0.131122i
\(427\) −286.631 553.837i −0.671268 1.29704i
\(428\) 59.2896 302.511i 0.138527 0.706802i
\(429\) −349.588 144.804i −0.814891 0.337539i
\(430\) 7.36955 3.95244i 0.0171385 0.00919171i
\(431\) 7.68510i 0.0178309i 0.999960 + 0.00891543i \(0.00283791\pi\)
−0.999960 + 0.00891543i \(0.997162\pi\)
\(432\) 328.140 331.851i 0.759584 0.768174i
\(433\) −582.001 −1.34411 −0.672057 0.740500i \(-0.734589\pi\)
−0.672057 + 0.740500i \(0.734589\pi\)
\(434\) 510.887 332.646i 1.17716 0.766466i
\(435\) −51.9025 21.4987i −0.119316 0.0494223i
\(436\) 392.019 + 583.142i 0.899125 + 1.33748i
\(437\) 356.933 147.847i 0.816781 0.338322i
\(438\) 78.8845 7.88142i 0.180102 0.0179941i
\(439\) −47.5409 + 47.5409i −0.108294 + 0.108294i −0.759177 0.650884i \(-0.774399\pi\)
0.650884 + 0.759177i \(0.274399\pi\)
\(440\) −66.0830 6.22735i −0.150189 0.0141531i
\(441\) 108.588 153.515i 0.246232 0.348107i
\(442\) −128.301 + 156.784i −0.290273 + 0.354714i
\(443\) −515.473 + 213.516i −1.16360 + 0.481977i −0.879071 0.476692i \(-0.841836\pi\)
−0.284525 + 0.958669i \(0.591836\pi\)
\(444\) −308.310 204.754i −0.694391 0.461159i
\(445\) −33.7685 + 81.5243i −0.0758842 + 0.183201i
\(446\) −52.5969 + 174.270i −0.117930 + 0.390741i
\(447\) 43.6012i 0.0975418i
\(448\) 347.686 282.521i 0.776085 0.630628i
\(449\) 191.980 0.427573 0.213787 0.976880i \(-0.431420\pi\)
0.213787 + 0.976880i \(0.431420\pi\)
\(450\) 179.498 + 54.1746i 0.398884 + 0.120388i
\(451\) −483.482 200.265i −1.07202 0.444046i
\(452\) −166.631 + 250.905i −0.368653 + 0.555100i
\(453\) −122.590 295.958i −0.270618 0.653329i
\(454\) −430.670 352.430i −0.948612 0.776277i
\(455\) −61.3072 51.6927i −0.134741 0.113610i
\(456\) −213.823 20.1496i −0.468909 0.0441878i
\(457\) −514.716 514.716i −1.12629 1.12629i −0.990775 0.135519i \(-0.956730\pi\)
−0.135519 0.990775i \(-0.543270\pi\)
\(458\) −65.8838 659.426i −0.143851 1.43979i
\(459\) −74.5629 180.011i −0.162447 0.392181i
\(460\) −82.0023 + 55.1263i −0.178266 + 0.119840i
\(461\) 251.467 607.096i 0.545482 1.31691i −0.375325 0.926893i \(-0.622469\pi\)
0.920807 0.390018i \(-0.127531\pi\)
\(462\) 292.759 190.620i 0.633677 0.412597i
\(463\) 682.752i 1.47463i 0.675551 + 0.737313i \(0.263906\pi\)
−0.675551 + 0.737313i \(0.736094\pi\)
\(464\) −523.644 + 2.94425i −1.12854 + 0.00634536i
\(465\) 74.7470 0.160746
\(466\) 104.192 + 194.272i 0.223588 + 0.416892i
\(467\) −145.725 + 351.812i −0.312046 + 0.753345i 0.687583 + 0.726106i \(0.258672\pi\)
−0.999629 + 0.0272393i \(0.991328\pi\)
\(468\) −228.421 44.7686i −0.488079 0.0956593i
\(469\) −291.874 + 151.056i −0.622333 + 0.322080i
\(470\) 12.0525 + 120.632i 0.0256436 + 0.256664i
\(471\) 272.052 + 272.052i 0.577605 + 0.577605i
\(472\) −80.2370 + 151.648i −0.169994 + 0.321287i
\(473\) 42.9807 42.9807i 0.0908682 0.0908682i
\(474\) −196.769 + 240.453i −0.415125 + 0.507284i
\(475\) −110.460 266.673i −0.232547 0.561417i
\(476\) −52.4150 179.544i −0.110116 0.377193i
\(477\) −10.9387 + 26.4083i −0.0229322 + 0.0553633i
\(478\) −13.3514 + 44.2373i −0.0279317 + 0.0925467i
\(479\) 281.780i 0.588268i 0.955764 + 0.294134i \(0.0950312\pi\)
−0.955764 + 0.294134i \(0.904969\pi\)
\(480\) 54.6250 5.76801i 0.113802 0.0120167i
\(481\) 617.518i 1.28382i
\(482\) 56.3451 + 17.0057i 0.116899 + 0.0352815i
\(483\) 157.566 495.607i 0.326223 1.02610i
\(484\) 1.51120 0.305016i 0.00312232 0.000630197i
\(485\) 66.2747 27.4519i 0.136649 0.0566018i
\(486\) 241.171 294.712i 0.496237 0.606403i
\(487\) 469.750 469.750i 0.964578 0.964578i −0.0348154 0.999394i \(-0.511084\pi\)
0.999394 + 0.0348154i \(0.0110843\pi\)
\(488\) −209.760 681.133i −0.429836 1.39576i
\(489\) −332.140 + 332.140i −0.679223 + 0.679223i
\(490\) 71.3672 19.7007i 0.145647 0.0402056i
\(491\) 104.088 + 251.291i 0.211992 + 0.511795i 0.993729 0.111814i \(-0.0356660\pi\)
−0.781737 + 0.623608i \(0.785666\pi\)
\(492\) 424.981 + 83.2927i 0.863783 + 0.169294i
\(493\) −83.6634 + 201.981i −0.169703 + 0.409699i
\(494\) 169.364 + 315.790i 0.342843 + 0.639251i
\(495\) −31.8397 −0.0643226
\(496\) 642.185 270.242i 1.29473 0.544842i
\(497\) 862.384 73.3751i 1.73518 0.147636i
\(498\) 108.187 58.0230i 0.217243 0.116512i
\(499\) 305.440 + 126.517i 0.612104 + 0.253542i 0.667128 0.744943i \(-0.267523\pi\)
−0.0550239 + 0.998485i \(0.517523\pi\)
\(500\) 83.3344 + 123.963i 0.166669 + 0.247926i
\(501\) 142.128 + 343.127i 0.283688 + 0.684884i
\(502\) −38.9861 390.209i −0.0776616 0.777309i
\(503\) 20.6455 20.6455i 0.0410447 0.0410447i −0.686287 0.727331i \(-0.740760\pi\)
0.727331 + 0.686287i \(0.240760\pi\)
\(504\) 153.331 150.572i 0.304228 0.298754i
\(505\) −42.8614 + 42.8614i −0.0848740 + 0.0848740i
\(506\) −454.843 + 555.819i −0.898899 + 1.09846i
\(507\) −52.9915 127.933i −0.104520 0.252333i
\(508\) 195.339 + 129.728i 0.384525 + 0.255371i
\(509\) 164.659 + 68.2039i 0.323495 + 0.133996i 0.538520 0.842612i \(-0.318983\pi\)
−0.215026 + 0.976608i \(0.568983\pi\)
\(510\) 6.62612 21.9544i 0.0129924 0.0430479i
\(511\) 121.680 10.3531i 0.238122 0.0202604i
\(512\) 448.454 247.048i 0.875887 0.482516i
\(513\) −344.639 −0.671810
\(514\) −275.088 + 911.454i −0.535191 + 1.77326i
\(515\) 47.5206 114.725i 0.0922730 0.222767i
\(516\) −27.8281 + 41.9023i −0.0539305 + 0.0812060i
\(517\) 337.217 + 814.115i 0.652258 + 1.57469i
\(518\) −470.237 322.355i −0.907794 0.622306i
\(519\) −179.849 + 179.849i −0.346531 + 0.346531i
\(520\) −58.4389 70.5988i −0.112383 0.135767i
\(521\) −261.960 + 261.960i −0.502803 + 0.502803i −0.912308 0.409505i \(-0.865701\pi\)
0.409505 + 0.912308i \(0.365701\pi\)
\(522\) −249.946 + 24.9723i −0.478823 + 0.0478396i
\(523\) −651.942 + 270.043i −1.24654 + 0.516335i −0.905754 0.423804i \(-0.860694\pi\)
−0.340790 + 0.940140i \(0.610694\pi\)
\(524\) 93.4824 + 139.058i 0.178402 + 0.265379i
\(525\) −370.279 117.721i −0.705294 0.224230i
\(526\) −569.121 + 305.231i −1.08198 + 0.580287i
\(527\) 290.882i 0.551959i
\(528\) 367.998 154.860i 0.696966 0.293295i
\(529\) 540.144i 1.02107i
\(530\) −9.91810 + 5.31927i −0.0187134 + 0.0100364i
\(531\) −31.4942 + 76.0337i −0.0593111 + 0.143190i
\(532\) −328.884 35.8774i −0.618203 0.0674387i
\(533\) −276.514 667.563i −0.518787 1.25246i
\(534\) −52.7677 528.147i −0.0988158 0.989040i
\(535\) 41.1691 41.1691i 0.0769515 0.0769515i
\(536\) −358.960 + 110.544i −0.669701 + 0.206239i
\(537\) 206.217 + 206.217i 0.384017 + 0.384017i
\(538\) −516.168 + 630.758i −0.959420 + 1.17241i
\(539\) 455.239 286.973i 0.844598 0.532417i
\(540\) 86.4011 17.4389i 0.160002 0.0322943i
\(541\) −65.5708 + 158.302i −0.121203 + 0.292610i −0.972823 0.231550i \(-0.925620\pi\)
0.851620 + 0.524159i \(0.175620\pi\)
\(542\) 467.339 + 141.049i 0.862248 + 0.260237i
\(543\) −576.933 −1.06249
\(544\) −22.4465 212.576i −0.0412620 0.390766i
\(545\) 132.711i 0.243506i
\(546\) 471.937 + 99.7214i 0.864354 + 0.182640i
\(547\) −164.242 + 396.515i −0.300260 + 0.724891i 0.699686 + 0.714451i \(0.253323\pi\)
−0.999945 + 0.0104405i \(0.996677\pi\)
\(548\) −36.3476 180.084i −0.0663277 0.328621i
\(549\) −130.830 315.850i −0.238305 0.575320i
\(550\) 415.265 + 339.824i 0.755028 + 0.617862i
\(551\) 273.440 + 273.440i 0.496261 + 0.496261i
\(552\) 277.959 525.341i 0.503549 0.951705i
\(553\) −308.519 + 365.902i −0.557901 + 0.661666i
\(554\) −10.1337 101.428i −0.0182919 0.183082i
\(555\) −26.7502 64.5806i −0.0481985 0.116362i
\(556\) 712.227 + 139.590i 1.28098 + 0.251062i
\(557\) 50.3084 + 20.8384i 0.0903203 + 0.0374119i 0.427386 0.904069i \(-0.359434\pi\)
−0.337066 + 0.941481i \(0.609434\pi\)
\(558\) 294.528 157.961i 0.527828 0.283084i
\(559\) 83.9267 0.150137
\(560\) 84.2669 7.64722i 0.150477 0.0136558i
\(561\) 166.687i 0.297125i
\(562\) −606.568 + 325.314i −1.07930 + 0.578851i
\(563\) −286.196 + 690.939i −0.508341 + 1.22724i 0.436496 + 0.899706i \(0.356219\pi\)
−0.944838 + 0.327539i \(0.893781\pi\)
\(564\) −406.837 605.185i −0.721343 1.07302i
\(565\) −52.5564 + 21.7696i −0.0930201 + 0.0385302i
\(566\) 101.025 + 1011.15i 0.178489 + 1.78648i
\(567\) −143.202 + 169.837i −0.252561 + 0.299536i
\(568\) 984.780 + 92.8011i 1.73377 + 0.163382i
\(569\) −636.268 + 636.268i −1.11822 + 1.11822i −0.126219 + 0.992002i \(0.540284\pi\)
−0.992002 + 0.126219i \(0.959716\pi\)
\(570\) −31.3920 25.6890i −0.0550737 0.0450684i
\(571\) 876.195 362.932i 1.53449 0.635608i 0.554062 0.832475i \(-0.313077\pi\)
0.980430 + 0.196868i \(0.0630769\pi\)
\(572\) −554.921 368.534i −0.970142 0.644291i
\(573\) 178.100 + 73.7713i 0.310820 + 0.128746i
\(574\) 652.692 + 137.915i 1.13709 + 0.240270i
\(575\) 798.782 1.38919
\(576\) 203.051 138.166i 0.352520 0.239871i
\(577\) 1068.87i 1.85247i 0.376951 + 0.926233i \(0.376972\pi\)
−0.376951 + 0.926233i \(0.623028\pi\)
\(578\) 467.910 + 141.221i 0.809533 + 0.244327i
\(579\) 440.256 + 182.360i 0.760373 + 0.314957i
\(580\) −82.3877 54.7153i −0.142048 0.0943368i
\(581\) 167.949 86.9200i 0.289069 0.149604i
\(582\) −273.266 + 333.932i −0.469530 + 0.573767i
\(583\) −57.8443 + 57.8443i −0.0992184 + 0.0992184i
\(584\) 138.950 + 13.0940i 0.237928 + 0.0224213i
\(585\) −31.0861 31.0861i −0.0531386 0.0531386i
\(586\) 30.7222 + 307.496i 0.0524270 + 0.524738i
\(587\) −17.5961 + 7.28853i −0.0299763 + 0.0124166i −0.397621 0.917550i \(-0.630164\pi\)
0.367645 + 0.929966i \(0.380164\pi\)
\(588\) −322.297 + 307.322i −0.548124 + 0.522657i
\(589\) −475.350 196.896i −0.807045 0.334289i
\(590\) −28.5558 + 15.3150i −0.0483997 + 0.0259577i
\(591\) 70.6842 0.119601
\(592\) −463.309 458.128i −0.782616 0.773865i
\(593\) 137.536 0.231933 0.115966 0.993253i \(-0.463004\pi\)
0.115966 + 0.993253i \(0.463004\pi\)
\(594\) 564.603 302.808i 0.950510 0.509777i
\(595\) 10.7030 33.6653i 0.0179883 0.0565803i
\(596\) −14.7632 + 75.3257i −0.0247705 + 0.126385i
\(597\) 206.001 + 497.330i 0.345060 + 0.833049i
\(598\) −986.741 + 98.5861i −1.65007 + 0.164860i
\(599\) −689.523 689.523i −1.15112 1.15112i −0.986328 0.164795i \(-0.947304\pi\)
−0.164795 0.986328i \(-0.552696\pi\)
\(600\) −392.495 207.670i −0.654158 0.346116i
\(601\) 789.713 + 789.713i 1.31400 + 1.31400i 0.918441 + 0.395557i \(0.129448\pi\)
0.395557 + 0.918441i \(0.370552\pi\)
\(602\) −43.8112 + 63.9099i −0.0727760 + 0.106163i
\(603\) −166.454 + 68.9476i −0.276044 + 0.114341i
\(604\) −111.577 552.808i −0.184730 0.915245i
\(605\) 0.269010 + 0.111427i 0.000444644 + 0.000184178i
\(606\) 105.348 349.052i 0.173842 0.575994i
\(607\) 45.3017i 0.0746322i −0.999304 0.0373161i \(-0.988119\pi\)
0.999304 0.0373161i \(-0.0118808\pi\)
\(608\) −362.579 107.210i −0.596347 0.176333i
\(609\) 518.662 44.1299i 0.851662 0.0724628i
\(610\) 38.8932 128.865i 0.0637593 0.211255i
\(611\) −465.610 + 1124.08i −0.762045 + 1.83974i
\(612\) −20.2867 100.511i −0.0331482 0.164233i
\(613\) −213.873 + 88.5890i −0.348895 + 0.144517i −0.550247 0.835002i \(-0.685467\pi\)
0.201352 + 0.979519i \(0.435467\pi\)
\(614\) 184.778 225.799i 0.300941 0.367751i
\(615\) 57.8362 + 57.8362i 0.0940426 + 0.0940426i
\(616\) 570.316 230.189i 0.925837 0.373684i
\(617\) −214.537 214.537i −0.347709 0.347709i 0.511546 0.859256i \(-0.329073\pi\)
−0.859256 + 0.511546i \(0.829073\pi\)
\(618\) 74.2571 + 743.234i 0.120157 + 1.20264i
\(619\) −482.960 + 200.048i −0.780226 + 0.323180i −0.737007 0.675886i \(-0.763761\pi\)
−0.0432191 + 0.999066i \(0.513761\pi\)
\(620\) 129.133 + 25.3091i 0.208280 + 0.0408211i
\(621\) 364.979 881.138i 0.587728 1.41890i
\(622\) −942.351 + 505.402i −1.51503 + 0.812543i
\(623\) −69.3158 814.674i −0.111261 1.30766i
\(624\) 510.482 + 208.094i 0.818080 + 0.333483i
\(625\) 582.520i 0.932032i
\(626\) −7.80877 14.5599i −0.0124741 0.0232586i
\(627\) −272.395 112.830i −0.434441 0.179951i
\(628\) 377.884 + 562.115i 0.601725 + 0.895088i
\(629\) −251.319 + 104.100i −0.399554 + 0.165501i
\(630\) 39.8994 7.44447i 0.0633324 0.0118166i
\(631\) −362.669 362.669i −0.574752 0.574752i 0.358701 0.933453i \(-0.383220\pi\)
−0.933453 + 0.358701i \(0.883220\pi\)
\(632\) −421.357 + 348.783i −0.666704 + 0.551871i
\(633\) 92.1258 + 92.1258i 0.145538 + 0.145538i
\(634\) 601.801 735.403i 0.949214 1.15994i
\(635\) 16.9484 + 40.9170i 0.0266904 + 0.0644363i
\(636\) 37.4517 56.3930i 0.0588863 0.0886682i
\(637\) 724.644 + 164.283i 1.13759 + 0.257901i
\(638\) −688.212 207.711i −1.07870 0.325566i
\(639\) 474.480 0.742536
\(640\) 96.3237 + 8.53098i 0.150506 + 0.0133297i
\(641\) −724.389 −1.13009 −0.565046 0.825059i \(-0.691142\pi\)
−0.565046 + 0.825059i \(0.691142\pi\)
\(642\) −101.189 + 335.271i −0.157615 + 0.522228i
\(643\) −1122.10 464.789i −1.74510 0.722844i −0.998330 0.0577611i \(-0.981604\pi\)
−0.746770 0.665083i \(1.23160\pi\)
\(644\) 440.022 802.863i 0.683265 1.24668i
\(645\) −8.77714 + 3.63561i −0.0136080 + 0.00563661i
\(646\) −99.9701 + 122.164i −0.154753 + 0.189108i
\(647\) −25.0563 25.0563i −0.0387269 0.0387269i 0.687478 0.726205i \(-0.258718\pi\)
−0.726205 + 0.687478i \(0.758718\pi\)
\(648\) −195.577 + 161.891i −0.301816 + 0.249832i
\(649\) −166.543 + 166.543i −0.256615 + 0.256615i
\(650\) 73.6560 + 737.217i 0.113317 + 1.13418i
\(651\) −615.090 + 318.332i −0.944839 + 0.488989i
\(652\) −686.270 + 461.347i −1.05256 + 0.707587i
\(653\) 1138.50 + 471.581i 1.74349 + 0.722176i 0.998480 + 0.0551197i \(0.0175540\pi\)
0.745007 + 0.667056i \(0.232446\pi\)
\(654\) −377.288 703.475i −0.576892 1.07565i
\(655\) 31.6467i 0.0483156i
\(656\) 705.999 + 287.794i 1.07622 + 0.438711i
\(657\) 66.9481 0.101900
\(658\) −612.927 941.349i −0.931501 1.43062i
\(659\) 1026.06 + 425.007i 1.55699 + 0.644928i 0.984564 0.175026i \(-0.0560011\pi\)
0.572429 + 0.819954i \(0.306001\pi\)
\(660\) 73.9988 + 14.5031i 0.112119 + 0.0219744i
\(661\) 426.275 176.569i 0.644895 0.267124i −0.0361718 0.999346i \(-0.511516\pi\)
0.681067 + 0.732221i \(0.261516\pi\)
\(662\) −98.8350 989.232i −0.149298 1.49431i
\(663\) 162.742 162.742i 0.245463 0.245463i
\(664\) 206.552 63.6091i 0.311072 0.0957969i
\(665\) −47.7698 40.2783i −0.0718343 0.0605689i
\(666\) −241.881 197.939i −0.363185 0.297205i
\(667\) −988.682 + 409.525i −1.48228 + 0.613981i
\(668\) 129.360 + 640.913i 0.193652 + 0.959450i
\(669\) 79.1395 191.060i 0.118295 0.285590i
\(670\) −67.9125 20.4968i −0.101362 0.0305923i
\(671\) 978.401i 1.45812i
\(672\) −424.943 + 280.102i −0.632355 + 0.416818i
\(673\) 209.915 0.311910 0.155955 0.987764i \(-0.450155\pi\)
0.155955 + 0.987764i \(0.450155\pi\)
\(674\) −194.186 + 643.400i −0.288110 + 0.954599i
\(675\) −658.318 272.684i −0.975287 0.403977i
\(676\) −48.2310 238.961i −0.0713476 0.353492i
\(677\) −5.00322 12.0788i −0.00739028 0.0178417i 0.920141 0.391586i \(-0.128074\pi\)
−0.927532 + 0.373745i \(0.878074\pi\)
\(678\) 216.702 264.811i 0.319620 0.390576i
\(679\) −428.460 + 508.151i −0.631017 + 0.748382i
\(680\) 18.8810 35.6851i 0.0277662 0.0524780i
\(681\) 447.037 + 447.037i 0.656442 + 0.656442i
\(682\) 951.737 95.0889i 1.39551 0.139427i
\(683\) 155.013 + 374.233i 0.226958 + 0.547926i 0.995804 0.0915081i \(-0.0291687\pi\)
−0.768846 + 0.639434i \(0.779169\pi\)
\(684\) −177.983 34.8831i −0.260209 0.0509987i
\(685\) 13.2784 32.0569i 0.0193845 0.0467984i
\(686\) −503.377 + 466.055i −0.733786 + 0.679381i
\(687\) 752.875i 1.09589i
\(688\) −62.2641 + 62.9682i −0.0905001 + 0.0915236i
\(689\) −112.950 −0.163934
\(690\) 98.9237 53.0548i 0.143368 0.0768909i
\(691\) 254.787 615.111i 0.368722 0.890175i −0.625238 0.780434i \(-0.714998\pi\)
0.993960 0.109740i \(-0.0350019\pi\)
\(692\) −371.606 + 249.813i −0.537003 + 0.361001i
\(693\) 262.008 135.599i 0.378078 0.195669i
\(694\) 306.707 30.6434i 0.441941 0.0441547i
\(695\) 96.9277 + 96.9277i 0.139464 + 0.139464i
\(696\) 592.274 + 55.8132i 0.850969 + 0.0801913i
\(697\) 225.073 225.073i 0.322917 0.322917i
\(698\) 191.841 + 156.989i 0.274844 + 0.224913i
\(699\) −95.8399 231.378i −0.137110 0.331013i
\(700\) −599.838 328.751i −0.856911 0.469644i
\(701\) 529.921 1279.34i 0.755949 1.82502i 0.233490 0.972359i \(-0.424985\pi\)
0.522459 0.852664i \(-0.325015\pi\)
\(702\) 846.880 + 255.599i 1.20638 + 0.364101i
\(703\) 481.162i 0.684441i
\(704\) 688.191 142.934i 0.977544 0.203031i
\(705\) 137.727i 0.195358i
\(706\) −214.394 + 710.357i −0.303675 + 1.00617i
\(707\) 170.167 535.243i 0.240689 0.757062i
\(708\) 107.830 162.365i 0.152302 0.229328i
\(709\) 296.905 122.982i 0.418766 0.173458i −0.163343 0.986569i \(-0.552228\pi\)
0.582109 + 0.813111i \(0.302228\pi\)
\(710\) 144.579 + 118.313i 0.203632 + 0.166638i
\(711\) −185.532 + 185.532i −0.260945 + 0.260945i
\(712\) 87.6670 930.298i 0.123128 1.30660i
\(713\) 1006.81 1006.81i 1.41207 1.41207i
\(714\) 38.9733 + 208.881i 0.0545845 + 0.292551i
\(715\) −48.1472 116.238i −0.0673388 0.162570i
\(716\) 286.438 + 426.087i 0.400053 + 0.595093i
\(717\) 20.0890 48.4992i 0.0280182 0.0676418i
\(718\) 205.330 110.122i 0.285974 0.153374i
\(719\) 161.235 0.224249 0.112124 0.993694i \(-0.464234\pi\)
0.112124 + 0.993694i \(0.464234\pi\)
\(720\) 46.3855 0.260808i 0.0644243 0.000362233i
\(721\) 97.5444 + 1146.45i 0.135290 + 1.59008i
\(722\) −209.277 390.209i −0.289857 0.540455i
\(723\) −61.7735 25.5874i −0.0854405 0.0353906i
\(724\) −996.714 195.347i −1.37668 0.269817i
\(725\) 305.966 + 738.667i 0.422022 + 1.01885i
\(726\) −1.74275 + 0.174120i −0.00240049 + 0.000239835i
\(727\) 164.695 164.695i 0.226541 0.226541i −0.584705 0.811246i \(-0.698790\pi\)
0.811246 + 0.584705i \(0.198790\pi\)
\(728\) 781.558 + 332.076i 1.07357 + 0.456148i
\(729\) −507.879 + 507.879i −0.696679 + 0.696679i
\(730\) 20.3997 + 16.6937i 0.0279448 + 0.0228681i
\(731\) 14.1482 + 34.1568i 0.0193546 + 0.0467261i
\(732\) 160.190 + 793.663i 0.218839 + 1.08424i
\(733\) −641.487 265.713i −0.875153 0.362500i −0.100538 0.994933i \(-0.532056\pi\)
−0.774615 + 0.632433i \(0.782056\pi\)
\(734\) −137.935 41.6305i −0.187922 0.0567173i
\(735\) −82.9006 + 14.2099i −0.112790 + 0.0193332i
\(736\) 658.083 813.468i 0.894134 1.10526i
\(737\) −515.621 −0.699621
\(738\) 350.118 + 105.670i 0.474414 + 0.143184i
\(739\) −187.738 + 453.240i −0.254044 + 0.613316i −0.998523 0.0543296i \(-0.982698\pi\)
0.744479 + 0.667646i \(0.232698\pi\)
\(740\) −24.3470 120.628i −0.0329014 0.163010i
\(741\) −155.788 376.106i −0.210241 0.507566i
\(742\) 58.9620 86.0113i 0.0794636 0.115918i
\(743\) −319.731 + 319.731i −0.430324 + 0.430324i −0.888738 0.458415i \(-0.848417\pi\)
0.458415 + 0.888738i \(0.348417\pi\)
\(744\) −756.465 + 232.959i −1.01675 + 0.313117i
\(745\) −10.2512 + 10.2512i −0.0137600 + 0.0137600i
\(746\) −51.9082 519.545i −0.0695820 0.696441i
\(747\) 95.7807 39.6737i 0.128220 0.0531107i
\(748\) 56.4398 287.970i 0.0754542 0.384987i
\(749\) −163.448 + 514.109i −0.218222 + 0.686394i
\(750\) −80.2030 149.543i −0.106937 0.199391i
\(751\) 1241.02i 1.65249i −0.563311 0.826245i \(-0.690473\pi\)
0.563311 0.826245i \(-0.309527\pi\)
\(752\) −497.942 1183.28i −0.662157 1.57351i
\(753\) 445.506i 0.591642i
\(754\) −469.128 874.718i −0.622186 1.16010i
\(755\) 40.7609 98.4056i 0.0539880 0.130339i
\(756\) −636.723 + 511.469i −0.842227 + 0.676546i