Properties

Label 224.3.v.b.13.5
Level 224
Weight 3
Character 224.13
Analytic conductor 6.104
Analytic rank 0
Dimension 240
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(60\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 13.5
Character \(\chi\) \(=\) 224.13
Dual form 224.3.v.b.69.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.91469 - 0.577879i) q^{2} +(-2.09916 - 0.869500i) q^{3} +(3.33211 + 2.21292i) q^{4} +(-0.289108 - 0.697967i) q^{5} +(3.51678 + 2.87788i) q^{6} +(4.51230 + 5.35156i) q^{7} +(-5.10118 - 6.16263i) q^{8} +(-2.71353 - 2.71353i) q^{9} +O(q^{10})\) \(q+(-1.91469 - 0.577879i) q^{2} +(-2.09916 - 0.869500i) q^{3} +(3.33211 + 2.21292i) q^{4} +(-0.289108 - 0.697967i) q^{5} +(3.51678 + 2.87788i) q^{6} +(4.51230 + 5.35156i) q^{7} +(-5.10118 - 6.16263i) q^{8} +(-2.71353 - 2.71353i) q^{9} +(0.150212 + 1.50346i) q^{10} +(-4.20281 - 10.1465i) q^{11} +(-5.07050 - 7.54254i) q^{12} +(-5.80299 + 14.0096i) q^{13} +(-5.54713 - 12.8542i) q^{14} +1.71652i q^{15} +(6.20595 + 14.7474i) q^{16} -6.67995 q^{17} +(3.62749 + 6.76367i) q^{18} +(-4.52161 + 10.9161i) q^{19} +(0.581209 - 2.96548i) q^{20} +(-4.81885 - 15.1572i) q^{21} +(2.18366 + 21.8561i) q^{22} +(23.1208 + 23.1208i) q^{23} +(5.34978 + 17.3718i) q^{24} +(17.2741 - 17.2741i) q^{25} +(19.2068 - 23.4708i) q^{26} +(11.1622 + 26.9480i) q^{27} +(3.19291 + 27.8174i) q^{28} +(-12.5246 + 30.2370i) q^{29} +(0.991942 - 3.28662i) q^{30} +43.5456i q^{31} +(-3.36029 - 31.8231i) q^{32} +24.9534i q^{33} +(12.7901 + 3.86020i) q^{34} +(2.43067 - 4.69661i) q^{35} +(-3.03695 - 15.0466i) q^{36} +(-37.6230 + 15.5839i) q^{37} +(14.9657 - 18.2881i) q^{38} +(24.3628 - 24.3628i) q^{39} +(-2.82652 + 5.34212i) q^{40} +(-33.6938 + 33.6938i) q^{41} +(0.467609 + 31.8061i) q^{42} +(2.11801 + 5.11333i) q^{43} +(8.44913 - 43.1097i) q^{44} +(-1.10945 + 2.67845i) q^{45} +(-30.9083 - 57.6303i) q^{46} +80.2362 q^{47} +(-0.204400 - 36.3532i) q^{48} +(-8.27831 + 48.2956i) q^{49} +(-43.0569 + 23.0923i) q^{50} +(14.0223 + 5.80821i) q^{51} +(-50.3385 + 33.8402i) q^{52} +(-2.85046 - 6.88163i) q^{53} +(-5.79958 - 58.0475i) q^{54} +(-5.86685 + 5.86685i) q^{55} +(9.96160 - 55.1069i) q^{56} +(18.9832 - 18.9832i) q^{57} +(41.4540 - 50.6569i) q^{58} +(8.20694 + 19.8133i) q^{59} +(-3.79853 + 5.71965i) q^{60} +(-82.3062 - 34.0923i) q^{61} +(25.1641 - 83.3765i) q^{62} +(2.27735 - 26.7658i) q^{63} +(-11.9559 + 62.8733i) q^{64} +11.4560 q^{65} +(14.4200 - 47.7781i) q^{66} +(17.9668 - 43.3756i) q^{67} +(-22.2583 - 14.7822i) q^{68} +(-28.4307 - 68.6378i) q^{69} +(-7.36807 + 7.58795i) q^{70} +(-87.4287 + 87.4287i) q^{71} +(-2.88027 + 30.5646i) q^{72} +(12.3360 - 12.3360i) q^{73} +(81.0421 - 8.09699i) q^{74} +(-51.2809 + 21.2412i) q^{75} +(-39.2231 + 26.3678i) q^{76} +(35.3351 - 68.2755i) q^{77} +(-60.7260 + 32.5685i) q^{78} -68.3729i q^{79} +(8.49903 - 8.59514i) q^{80} -31.7360i q^{81} +(83.9843 - 45.0424i) q^{82} +(10.3384 - 24.9591i) q^{83} +(17.4848 - 61.1693i) q^{84} +(1.93122 + 4.66238i) q^{85} +(-1.10046 - 11.0144i) q^{86} +(52.5821 - 52.5821i) q^{87} +(-41.0897 + 77.6593i) q^{88} +(-82.5918 - 82.5918i) q^{89} +(3.67208 - 4.48730i) q^{90} +(-101.158 + 32.1607i) q^{91} +(25.8766 + 128.206i) q^{92} +(37.8629 - 91.4090i) q^{93} +(-153.628 - 46.3668i) q^{94} +8.92634 q^{95} +(-20.6164 + 69.7234i) q^{96} +94.9539i q^{97} +(43.7595 - 87.6876i) q^{98} +(-16.1283 + 38.9372i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} - 8q^{11} + 12q^{14} - 112q^{16} - 176q^{18} - 4q^{21} - 192q^{22} + 128q^{23} - 8q^{25} + 56q^{28} - 8q^{29} - 16q^{30} - 8q^{32} + 92q^{35} + 192q^{36} - 8q^{37} - 8q^{39} - 424q^{42} + 128q^{43} - 16q^{44} - 8q^{46} - 320q^{50} - 80q^{51} - 192q^{53} + 608q^{56} - 8q^{57} - 712q^{58} + 264q^{60} + 496q^{63} - 272q^{64} - 16q^{65} + 304q^{67} + 320q^{70} + 504q^{71} - 8q^{72} + 232q^{74} + 164q^{77} + 560q^{78} - 1000q^{84} - 208q^{85} - 8q^{86} - 800q^{88} + 188q^{91} + 1560q^{92} + 64q^{93} - 16q^{95} - 376q^{98} + 64q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91469 0.577879i −0.957347 0.288939i
\(3\) −2.09916 0.869500i −0.699719 0.289833i 0.00432364 0.999991i \(-0.498624\pi\)
−0.704043 + 0.710157i \(0.748624\pi\)
\(4\) 3.33211 + 2.21292i 0.833028 + 0.553231i
\(5\) −0.289108 0.697967i −0.0578215 0.139593i 0.892329 0.451387i \(-0.149070\pi\)
−0.950150 + 0.311793i \(0.899070\pi\)
\(6\) 3.51678 + 2.87788i 0.586130 + 0.479647i
\(7\) 4.51230 + 5.35156i 0.644614 + 0.764508i
\(8\) −5.10118 6.16263i −0.637647 0.770328i
\(9\) −2.71353 2.71353i −0.301503 0.301503i
\(10\) 0.150212 + 1.50346i 0.0150212 + 0.150346i
\(11\) −4.20281 10.1465i −0.382073 0.922407i −0.991565 0.129614i \(-0.958626\pi\)
0.609491 0.792793i \(-0.291374\pi\)
\(12\) −5.07050 7.54254i −0.422541 0.628545i
\(13\) −5.80299 + 14.0096i −0.446384 + 1.07767i 0.527283 + 0.849690i \(0.323211\pi\)
−0.973667 + 0.227976i \(0.926789\pi\)
\(14\) −5.54713 12.8542i −0.396223 0.918154i
\(15\) 1.71652i 0.114435i
\(16\) 6.20595 + 14.7474i 0.387872 + 0.921713i
\(17\) −6.67995 −0.392938 −0.196469 0.980510i \(-0.562948\pi\)
−0.196469 + 0.980510i \(0.562948\pi\)
\(18\) 3.62749 + 6.76367i 0.201527 + 0.375759i
\(19\) −4.52161 + 10.9161i −0.237980 + 0.574534i −0.997074 0.0764475i \(-0.975642\pi\)
0.759094 + 0.650981i \(0.225642\pi\)
\(20\) 0.581209 2.96548i 0.0290604 0.148274i
\(21\) −4.81885 15.1572i −0.229469 0.721772i
\(22\) 2.18366 + 21.8561i 0.0992575 + 0.993460i
\(23\) 23.1208 + 23.1208i 1.00525 + 1.00525i 0.999986 + 0.00526649i \(0.00167638\pi\)
0.00526649 + 0.999986i \(0.498324\pi\)
\(24\) 5.34978 + 17.3718i 0.222907 + 0.723825i
\(25\) 17.2741 17.2741i 0.690964 0.690964i
\(26\) 19.2068 23.4708i 0.738724 0.902722i
\(27\) 11.1622 + 26.9480i 0.413415 + 0.998072i
\(28\) 3.19291 + 27.8174i 0.114033 + 0.993477i
\(29\) −12.5246 + 30.2370i −0.431882 + 1.04265i 0.546799 + 0.837264i \(0.315846\pi\)
−0.978680 + 0.205390i \(0.934154\pi\)
\(30\) 0.991942 3.28662i 0.0330647 0.109554i
\(31\) 43.5456i 1.40470i 0.711834 + 0.702348i \(0.247865\pi\)
−0.711834 + 0.702348i \(0.752135\pi\)
\(32\) −3.36029 31.8231i −0.105009 0.994471i
\(33\) 24.9534i 0.756163i
\(34\) 12.7901 + 3.86020i 0.376178 + 0.113535i
\(35\) 2.43067 4.69661i 0.0694478 0.134189i
\(36\) −3.03695 15.0466i −0.0843598 0.417961i
\(37\) −37.6230 + 15.5839i −1.01684 + 0.421187i −0.827944 0.560810i \(-0.810490\pi\)
−0.188892 + 0.981998i \(0.560490\pi\)
\(38\) 14.9657 18.2881i 0.393834 0.481267i
\(39\) 24.3628 24.3628i 0.624686 0.624686i
\(40\) −2.82652 + 5.34212i −0.0706631 + 0.133553i
\(41\) −33.6938 + 33.6938i −0.821800 + 0.821800i −0.986366 0.164566i \(-0.947378\pi\)
0.164566 + 0.986366i \(0.447378\pi\)
\(42\) 0.467609 + 31.8061i 0.0111336 + 0.757289i
\(43\) 2.11801 + 5.11333i 0.0492560 + 0.118915i 0.946592 0.322433i \(-0.104501\pi\)
−0.897336 + 0.441347i \(0.854501\pi\)
\(44\) 8.44913 43.1097i 0.192026 0.979766i
\(45\) −1.10945 + 2.67845i −0.0246545 + 0.0595212i
\(46\) −30.9083 57.6303i −0.671919 1.25283i
\(47\) 80.2362 1.70715 0.853577 0.520967i \(-0.174429\pi\)
0.853577 + 0.520967i \(0.174429\pi\)
\(48\) −0.204400 36.3532i −0.00425833 0.757359i
\(49\) −8.27831 + 48.2956i −0.168945 + 0.985625i
\(50\) −43.0569 + 23.0923i −0.861139 + 0.461846i
\(51\) 14.0223 + 5.80821i 0.274946 + 0.113886i
\(52\) −50.3385 + 33.8402i −0.968047 + 0.650772i
\(53\) −2.85046 6.88163i −0.0537823 0.129842i 0.894705 0.446658i \(-0.147386\pi\)
−0.948487 + 0.316816i \(0.897386\pi\)
\(54\) −5.79958 58.0475i −0.107400 1.07495i
\(55\) −5.86685 + 5.86685i −0.106670 + 0.106670i
\(56\) 9.96160 55.1069i 0.177886 0.984051i
\(57\) 18.9832 18.9832i 0.333038 0.333038i
\(58\) 41.4540 50.6569i 0.714725 0.873395i
\(59\) 8.20694 + 19.8133i 0.139101 + 0.335819i 0.978044 0.208401i \(-0.0668258\pi\)
−0.838943 + 0.544220i \(0.816826\pi\)
\(60\) −3.79853 + 5.71965i −0.0633088 + 0.0953274i
\(61\) −82.3062 34.0923i −1.34928 0.558891i −0.413189 0.910645i \(-0.635585\pi\)
−0.936092 + 0.351755i \(0.885585\pi\)
\(62\) 25.1641 83.3765i 0.405872 1.34478i
\(63\) 2.27735 26.7658i 0.0361483 0.424855i
\(64\) −11.9559 + 62.8733i −0.186812 + 0.982396i
\(65\) 11.4560 0.176246
\(66\) 14.4200 47.7781i 0.218485 0.723911i
\(67\) 17.9668 43.3756i 0.268161 0.647397i −0.731236 0.682124i \(-0.761056\pi\)
0.999397 + 0.0347271i \(0.0110562\pi\)
\(68\) −22.2583 14.7822i −0.327328 0.217385i
\(69\) −28.4307 68.6378i −0.412039 0.994750i
\(70\) −7.36807 + 7.58795i −0.105258 + 0.108399i
\(71\) −87.4287 + 87.4287i −1.23139 + 1.23139i −0.267960 + 0.963430i \(0.586350\pi\)
−0.963430 + 0.267960i \(0.913650\pi\)
\(72\) −2.88027 + 30.5646i −0.0400037 + 0.424509i
\(73\) 12.3360 12.3360i 0.168986 0.168986i −0.617548 0.786534i \(-0.711874\pi\)
0.786534 + 0.617548i \(0.211874\pi\)
\(74\) 81.0421 8.09699i 1.09516 0.109419i
\(75\) −51.2809 + 21.2412i −0.683745 + 0.283216i
\(76\) −39.2231 + 26.3678i −0.516093 + 0.346945i
\(77\) 35.3351 68.2755i 0.458898 0.886695i
\(78\) −60.7260 + 32.5685i −0.778538 + 0.417545i
\(79\) 68.3729i 0.865480i −0.901519 0.432740i \(-0.857547\pi\)
0.901519 0.432740i \(-0.142453\pi\)
\(80\) 8.49903 8.59514i 0.106238 0.107439i
\(81\) 31.7360i 0.391802i
\(82\) 83.9843 45.0424i 1.02420 0.549298i
\(83\) 10.3384 24.9591i 0.124559 0.300712i −0.849283 0.527938i \(-0.822965\pi\)
0.973842 + 0.227226i \(0.0729655\pi\)
\(84\) 17.4848 61.1693i 0.208152 0.728205i
\(85\) 1.93122 + 4.66238i 0.0227203 + 0.0548516i
\(86\) −1.10046 11.0144i −0.0127960 0.128075i
\(87\) 52.5821 52.5821i 0.604392 0.604392i
\(88\) −41.0897 + 77.6593i −0.466928 + 0.882492i
\(89\) −82.5918 82.5918i −0.927998 0.927998i 0.0695783 0.997576i \(-0.477835\pi\)
−0.997576 + 0.0695783i \(0.977835\pi\)
\(90\) 3.67208 4.48730i 0.0408009 0.0498588i
\(91\) −101.158 + 32.1607i −1.11163 + 0.353414i
\(92\) 25.8766 + 128.206i 0.281267 + 1.39354i
\(93\) 37.8629 91.4090i 0.407128 0.982893i
\(94\) −153.628 46.3668i −1.63434 0.493264i
\(95\) 8.92634 0.0939615
\(96\) −20.6164 + 69.7234i −0.214754 + 0.726286i
\(97\) 94.9539i 0.978906i 0.872030 + 0.489453i \(0.162804\pi\)
−0.872030 + 0.489453i \(0.837196\pi\)
\(98\) 43.7595 87.6876i 0.446525 0.894771i
\(99\) −16.1283 + 38.9372i −0.162912 + 0.393305i
\(100\) 95.7855 19.3330i 0.957855 0.193330i
\(101\) −30.7044 74.1270i −0.304004 0.733931i −0.999876 0.0157648i \(-0.994982\pi\)
0.695872 0.718166i \(1.74498\pi\)
\(102\) −23.4919 19.2241i −0.230313 0.188472i
\(103\) 116.227 + 116.227i 1.12842 + 1.12842i 0.990434 + 0.137984i \(0.0440623\pi\)
0.137984 + 0.990434i \(0.455938\pi\)
\(104\) 115.938 35.7041i 1.11479 0.343308i
\(105\) −9.18607 + 7.74546i −0.0874864 + 0.0737663i
\(106\) 1.48102 + 14.8234i 0.0139719 + 0.139844i
\(107\) −29.4921 71.2003i −0.275627 0.665423i 0.724078 0.689719i \(-0.242266\pi\)
−0.999705 + 0.0242955i \(0.992266\pi\)
\(108\) −22.4400 + 114.495i −0.207778 + 1.06014i
\(109\) 162.294 + 67.2242i 1.48893 + 0.616736i 0.971084 0.238737i \(-0.0767333\pi\)
0.517848 + 0.855473i \(0.326733\pi\)
\(110\) 14.6235 7.84290i 0.132941 0.0712991i
\(111\) 92.5267 0.833574
\(112\) −50.9185 + 99.7562i −0.454629 + 0.890681i
\(113\) 75.2992i 0.666364i 0.942862 + 0.333182i \(0.108122\pi\)
−0.942862 + 0.333182i \(0.891878\pi\)
\(114\) −47.3169 + 25.3770i −0.415061 + 0.222605i
\(115\) 9.45317 22.8220i 0.0822015 0.198452i
\(116\) −108.645 + 73.0371i −0.936598 + 0.629630i
\(117\) 53.7621 22.2690i 0.459505 0.190333i
\(118\) −4.26410 42.6791i −0.0361365 0.361687i
\(119\) −30.1419 35.7481i −0.253293 0.300404i
\(120\) 10.5783 8.75629i 0.0881524 0.0729691i
\(121\) 0.272532 0.272532i 0.00225233 0.00225233i
\(122\) 137.890 + 112.839i 1.13025 + 0.924913i
\(123\) 100.025 41.4319i 0.813215 0.336845i
\(124\) −96.3630 + 145.099i −0.777121 + 1.17015i
\(125\) −34.5000 14.2904i −0.276000 0.114323i
\(126\) −19.8278 + 49.9324i −0.157364 + 0.396289i
\(127\) 58.6231 0.461600 0.230800 0.973001i \(-0.425866\pi\)
0.230800 + 0.973001i \(0.425866\pi\)
\(128\) 59.2251 113.474i 0.462696 0.886517i
\(129\) 12.5753i 0.0974829i
\(130\) −21.9347 6.62016i −0.168728 0.0509243i
\(131\) −38.7012 16.0306i −0.295429 0.122371i 0.230046 0.973180i \(-0.426112\pi\)
−0.525475 + 0.850809i \(0.676112\pi\)
\(132\) −55.2199 + 83.1475i −0.418333 + 0.629905i
\(133\) −78.8212 + 25.0592i −0.592641 + 0.188415i
\(134\) −59.4667 + 72.6685i −0.443782 + 0.542302i
\(135\) 15.5817 15.5817i 0.115420 0.115420i
\(136\) 34.0756 + 41.1660i 0.250556 + 0.302691i
\(137\) −32.4767 32.4767i −0.237056 0.237056i 0.578574 0.815630i \(-0.303609\pi\)
−0.815630 + 0.578574i \(0.803609\pi\)
\(138\) 14.7718 + 147.850i 0.107042 + 1.07138i
\(139\) −167.633 + 69.4357i −1.20599 + 0.499538i −0.892930 0.450196i \(-0.851354\pi\)
−0.313060 + 0.949733i \(0.601354\pi\)
\(140\) 18.4925 10.2708i 0.132089 0.0733626i
\(141\) −168.428 69.7654i −1.19453 0.494790i
\(142\) 217.922 116.876i 1.53467 0.823071i
\(143\) 166.537 1.16460
\(144\) 23.1775 56.8575i 0.160955 0.394844i
\(145\) 24.7254 0.170520
\(146\) −30.7483 + 16.4909i −0.210605 + 0.112952i
\(147\) 59.3705 94.1822i 0.403881 0.640695i
\(148\) −159.850 31.3292i −1.08007 0.211684i
\(149\) 7.34358 + 17.7290i 0.0492858 + 0.118986i 0.946605 0.322396i \(-0.104488\pi\)
−0.897319 + 0.441382i \(0.854488\pi\)
\(150\) 110.462 11.0364i 0.736414 0.0735757i
\(151\) −99.6942 99.6942i −0.660226 0.660226i 0.295207 0.955433i \(-0.404611\pi\)
−0.955433 + 0.295207i \(0.904611\pi\)
\(152\) 90.3376 27.8202i 0.594327 0.183027i
\(153\) 18.1262 + 18.1262i 0.118472 + 0.118472i
\(154\) −107.111 + 110.307i −0.695525 + 0.716282i
\(155\) 30.3934 12.5894i 0.196086 0.0812217i
\(156\) 135.092 27.2666i 0.865977 0.174786i
\(157\) −156.442 64.8003i −0.996444 0.412741i −0.175952 0.984399i \(-0.556300\pi\)
−0.820492 + 0.571658i \(0.806300\pi\)
\(158\) −39.5112 + 130.913i −0.250071 + 0.828565i
\(159\) 16.9241i 0.106441i
\(160\) −21.2400 + 11.5457i −0.132750 + 0.0721604i
\(161\) −19.4043 + 228.060i −0.120524 + 1.41652i
\(162\) −18.3395 + 60.7647i −0.113207 + 0.375091i
\(163\) −79.1127 + 190.995i −0.485354 + 1.17175i 0.471679 + 0.881770i \(0.343648\pi\)
−0.957033 + 0.289978i \(0.906352\pi\)
\(164\) −186.833 + 37.7098i −1.13923 + 0.229938i
\(165\) 17.4167 7.21422i 0.105555 0.0437225i
\(166\) −34.2182 + 41.8147i −0.206134 + 0.251896i
\(167\) −115.583 115.583i −0.692115 0.692115i 0.270582 0.962697i \(-0.412784\pi\)
−0.962697 + 0.270582i \(0.912784\pi\)
\(168\) −68.8264 + 107.016i −0.409681 + 0.637002i
\(169\) −43.0945 43.0945i −0.254997 0.254997i
\(170\) −1.00341 10.0431i −0.00590241 0.0590768i
\(171\) 41.8908 17.3517i 0.244975 0.101472i
\(172\) −4.25795 + 21.7252i −0.0247555 + 0.126309i
\(173\) 42.8385 103.421i 0.247621 0.597811i −0.750380 0.661007i \(-0.770129\pi\)
0.998001 + 0.0631963i \(0.0201294\pi\)
\(174\) −131.065 + 70.2926i −0.753245 + 0.403980i
\(175\) 170.389 + 14.4974i 0.973652 + 0.0828423i
\(176\) 123.552 124.949i 0.701999 0.709938i
\(177\) 48.7272i 0.275295i
\(178\) 110.410 + 205.866i 0.620282 + 1.15655i
\(179\) 118.584 + 49.1190i 0.662479 + 0.274408i 0.688481 0.725254i \(-0.258278\pi\)
−0.0260023 + 0.999662i \(0.508278\pi\)
\(180\) −9.62403 + 6.46978i −0.0534668 + 0.0359432i
\(181\) 234.591 97.1707i 1.29608 0.536855i 0.375289 0.926908i \(-0.377543\pi\)
0.920792 + 0.390053i \(0.127543\pi\)
\(182\) 212.272 3.12079i 1.16633 0.0171472i
\(183\) 143.130 + 143.130i 0.782133 + 0.782133i
\(184\) 24.5415 260.428i 0.133378 1.41537i
\(185\) 21.7542 + 21.7542i 0.117590 + 0.117590i
\(186\) −125.319 + 153.140i −0.673759 + 0.823335i
\(187\) 28.0745 + 67.7779i 0.150131 + 0.362449i
\(188\) 267.356 + 177.557i 1.42211 + 0.944449i
\(189\) −93.8463 + 181.332i −0.496541 + 0.959431i
\(190\) −17.0912 5.15834i −0.0899538 0.0271492i
\(191\) 84.8434 0.444206 0.222103 0.975023i \(-0.428708\pi\)
0.222103 + 0.975023i \(0.428708\pi\)
\(192\) 79.7658 121.585i 0.415447 0.633257i
\(193\) 209.730 1.08668 0.543341 0.839512i \(-0.317159\pi\)
0.543341 + 0.839512i \(0.317159\pi\)
\(194\) 54.8718 181.808i 0.282844 0.937153i
\(195\) −24.0479 9.96096i −0.123322 0.0510818i
\(196\) −134.459 + 142.607i −0.686014 + 0.727588i
\(197\) 28.7414 11.9051i 0.145895 0.0604319i −0.308541 0.951211i \(-0.599841\pi\)
0.454436 + 0.890779i \(0.349841\pi\)
\(198\) 53.3817 65.2326i 0.269605 0.329458i
\(199\) −167.527 167.527i −0.841844 0.841844i 0.147254 0.989099i \(-0.452956\pi\)
−0.989099 + 0.147254i \(0.952956\pi\)
\(200\) −194.572 18.3356i −0.972860 0.0916778i
\(201\) −75.4302 + 75.4302i −0.375275 + 0.375275i
\(202\) 15.9532 + 159.674i 0.0789761 + 0.790466i
\(203\) −218.329 + 69.4124i −1.07551 + 0.341933i
\(204\) 33.8706 + 50.3838i 0.166033 + 0.246979i
\(205\) 33.2583 + 13.7760i 0.162236 + 0.0672002i
\(206\) −155.374 289.705i −0.754244 1.40633i
\(207\) 125.478i 0.606173i
\(208\) −242.619 + 1.36415i −1.16644 + 0.00655843i
\(209\) 129.764 0.620879
\(210\) 22.0645 9.52177i 0.105069 0.0453418i
\(211\) 52.9763 + 21.9435i 0.251073 + 0.103998i 0.504671 0.863312i \(-0.331614\pi\)
−0.253598 + 0.967310i \(0.581614\pi\)
\(212\) 5.73044 29.2382i 0.0270304 0.137916i
\(213\) 259.546 107.507i 1.21853 0.504730i
\(214\) 15.3233 + 153.370i 0.0716042 + 0.716681i
\(215\) 2.95660 2.95660i 0.0137516 0.0137516i
\(216\) 109.130 206.255i 0.505230 0.954884i
\(217\) −233.037 + 196.491i −1.07390 + 0.905487i
\(218\) −271.895 222.500i −1.24723 1.02064i
\(219\) −36.6213 + 15.1690i −0.167221 + 0.0692650i
\(220\) −32.5319 + 6.56612i −0.147872 + 0.0298460i
\(221\) 38.7636 93.5837i 0.175401 0.423456i
\(222\) −177.160 53.4692i −0.798020 0.240852i
\(223\) 91.0173i 0.408149i 0.978955 + 0.204075i \(0.0654185\pi\)
−0.978955 + 0.204075i \(0.934581\pi\)
\(224\) 155.140 161.578i 0.692591 0.721331i
\(225\) −93.7475 −0.416655
\(226\) 43.5138 144.175i 0.192539 0.637942i
\(227\) −257.066 106.480i −1.13245 0.469076i −0.263836 0.964568i \(-0.584988\pi\)
−0.868613 + 0.495492i \(0.834988\pi\)
\(228\) 105.262 21.2458i 0.461677 0.0931832i
\(229\) −126.804 306.132i −0.553729 1.33682i −0.914659 0.404227i \(-0.867541\pi\)
0.360930 0.932593i \(1.61754\pi\)
\(230\) −31.2883 + 38.2343i −0.136036 + 0.166236i
\(231\) −133.539 + 112.597i −0.578093 + 0.487434i
\(232\) 250.229 77.0600i 1.07857 0.332155i
\(233\) −77.9402 77.9402i −0.334507 0.334507i 0.519788 0.854295i \(-0.326011\pi\)
−0.854295 + 0.519788i \(0.826011\pi\)
\(234\) −115.807 + 11.5704i −0.494901 + 0.0494460i
\(235\) −23.1969 56.0023i −0.0987102 0.238308i
\(236\) −16.4989 + 84.1815i −0.0699104 + 0.356701i
\(237\) −59.4502 + 143.526i −0.250845 + 0.605593i
\(238\) 37.0545 + 85.8651i 0.155691 + 0.360778i
\(239\) 23.1041i 0.0966699i −0.998831 0.0483350i \(-0.984609\pi\)
0.998831 0.0483350i \(-0.0153915\pi\)
\(240\) −25.3143 + 10.6527i −0.105476 + 0.0443861i
\(241\) 29.4277 0.122107 0.0610534 0.998135i \(-0.480554\pi\)
0.0610534 + 0.998135i \(0.480554\pi\)
\(242\) −0.679307 + 0.364326i −0.00280705 + 0.00150548i
\(243\) 72.8654 175.913i 0.299858 0.723921i
\(244\) −198.810 295.737i −0.814794 1.21204i
\(245\) 36.1021 8.18465i 0.147356 0.0334067i
\(246\) −215.461 + 21.5269i −0.875857 + 0.0875076i
\(247\) −126.692 126.692i −0.512925 0.512925i
\(248\) 268.355 222.134i 1.08208 0.895701i
\(249\) −43.4038 + 43.4038i −0.174313 + 0.174313i
\(250\) 57.7989 + 47.2985i 0.231196 + 0.189194i
\(251\) −75.0350 181.151i −0.298944 0.721715i −0.999963 0.00857265i \(-0.997271\pi\)
0.701019 0.713143i \(1.74727\pi\)
\(252\) 66.8191 84.1472i 0.265155 0.333918i
\(253\) 137.422 331.767i 0.543172 1.31133i
\(254\) −112.245 33.8771i −0.441911 0.133374i
\(255\) 11.4663i 0.0449658i
\(256\) −178.972 + 183.043i −0.699111 + 0.715013i
\(257\) 476.031i 1.85226i 0.377205 + 0.926130i \(0.376885\pi\)
−0.377205 + 0.926130i \(0.623115\pi\)
\(258\) −7.26699 + 24.0778i −0.0281666 + 0.0933250i
\(259\) −253.164 131.022i −0.977468 0.505876i
\(260\) 38.1726 + 25.3512i 0.146818 + 0.0975044i
\(261\) 116.035 48.0631i 0.444577 0.184150i
\(262\) 64.8373 + 53.0582i 0.247471 + 0.202512i
\(263\) 228.327 228.327i 0.868163 0.868163i −0.124106 0.992269i \(-0.539606\pi\)
0.992269 + 0.124106i \(0.0396063\pi\)
\(264\) 153.778 127.292i 0.582494 0.482166i
\(265\) −3.97906 + 3.97906i −0.0150153 + 0.0150153i
\(266\) 165.400 2.43168i 0.621803 0.00914167i
\(267\) 101.560 + 245.187i 0.380374 + 0.918303i
\(268\) 155.854 104.773i 0.581545 0.390946i
\(269\) −155.951 + 376.498i −0.579742 + 1.39962i 0.313303 + 0.949653i \(0.398564\pi\)
−0.893045 + 0.449967i \(0.851436\pi\)
\(270\) −38.8386 + 20.8299i −0.143847 + 0.0771477i
\(271\) 244.080 0.900664 0.450332 0.892861i \(-0.351306\pi\)
0.450332 + 0.892861i \(0.351306\pi\)
\(272\) −41.4554 98.5119i −0.152410 0.362176i
\(273\) 240.311 + 20.4466i 0.880259 + 0.0748960i
\(274\) 43.4153 + 80.9505i 0.158450 + 0.295440i
\(275\) −247.871 102.671i −0.901349 0.373351i
\(276\) 57.1558 291.624i 0.207086 1.05661i
\(277\) 19.5040 + 47.0868i 0.0704115 + 0.169988i 0.955167 0.296066i \(-0.0956750\pi\)
−0.884756 + 0.466055i \(0.845675\pi\)
\(278\) 361.091 36.0769i 1.29889 0.129773i
\(279\) 118.162 118.162i 0.423520 0.423520i
\(280\) −41.3428 + 8.97894i −0.147653 + 0.0320676i
\(281\) 243.350 243.350i 0.866014 0.866014i −0.126014 0.992028i \(-0.540219\pi\)
0.992028 + 0.126014i \(0.0402185\pi\)
\(282\) 282.173 + 230.911i 1.00061 + 0.818832i
\(283\) 194.439 + 469.416i 0.687062 + 1.65871i 0.750619 + 0.660736i \(0.229756\pi\)
−0.0635567 + 0.997978i \(0.520244\pi\)
\(284\) −484.795 + 97.8494i −1.70703 + 0.344540i
\(285\) −18.7378 7.76145i −0.0657467 0.0272332i
\(286\) −318.868 96.2384i −1.11492 0.336498i
\(287\) −332.351 28.2778i −1.15802 0.0985288i
\(288\) −77.2346 + 95.4710i −0.268176 + 0.331497i
\(289\) −244.378 −0.845600
\(290\) −47.3415 14.2883i −0.163247 0.0492699i
\(291\) 82.5624 199.323i 0.283720 0.684960i
\(292\) 68.4035 13.8063i 0.234258 0.0472819i
\(293\) 59.1298 + 142.752i 0.201808 + 0.487208i 0.992089 0.125537i \(-0.0400653\pi\)
−0.790281 + 0.612745i \(0.790065\pi\)
\(294\) −168.102 + 146.021i −0.571777 + 0.496671i
\(295\) 11.4564 11.4564i 0.0388351 0.0388351i
\(296\) 287.959 + 152.360i 0.972836 + 0.514729i
\(297\) 226.514 226.514i 0.762674 0.762674i
\(298\) −3.81553 38.1893i −0.0128038 0.128152i
\(299\) −458.084 + 189.745i −1.53205 + 0.634597i
\(300\) −217.879 42.7024i −0.726263 0.142341i
\(301\) −17.8072 + 34.4075i −0.0591600 + 0.114311i
\(302\) 133.273 + 248.495i 0.441301 + 0.822831i
\(303\) 182.302i 0.601656i
\(304\) −189.046 + 1.06293i −0.621861 + 0.00349648i
\(305\) 67.3034i 0.220667i
\(306\) −24.2314 45.1809i −0.0791877 0.147650i
\(307\) 55.8272 134.779i 0.181848 0.439019i −0.806500 0.591234i \(-0.798641\pi\)
0.988347 + 0.152216i \(0.0486408\pi\)
\(308\) 268.829 149.308i 0.872821 0.484766i
\(309\) −142.920 345.039i −0.462523 1.11663i
\(310\) −65.4692 + 6.54108i −0.211191 + 0.0211003i
\(311\) −378.064 + 378.064i −1.21564 + 1.21564i −0.246494 + 0.969144i \(0.579279\pi\)
−0.969144 + 0.246494i \(0.920721\pi\)
\(312\) −274.417 25.8598i −0.879543 0.0828840i
\(313\) −5.84131 5.84131i −0.0186623 0.0186623i 0.697714 0.716376i \(-0.254201\pi\)
−0.716376 + 0.697714i \(0.754201\pi\)
\(314\) 262.092 + 214.477i 0.834686 + 0.683048i
\(315\) −19.3401 + 6.14869i −0.0613971 + 0.0195197i
\(316\) 151.304 227.826i 0.478810 0.720969i
\(317\) −181.823 + 438.960i −0.573575 + 1.38473i 0.324918 + 0.945742i \(0.394663\pi\)
−0.898492 + 0.438989i \(0.855337\pi\)
\(318\) 9.78007 32.4045i 0.0307549 0.101901i
\(319\) 359.437 1.12676
\(320\) 47.3401 9.83229i 0.147938 0.0307259i
\(321\) 175.104i 0.545495i
\(322\) 168.944 425.453i 0.524672 1.32128i
\(323\) 30.2041 72.9192i 0.0935112 0.225756i
\(324\) 70.2292 105.748i 0.216757 0.326382i
\(325\) 141.763 + 342.245i 0.436193 + 1.05306i
\(326\) 261.849 319.980i 0.803217 0.981533i
\(327\) −282.228 282.228i −0.863084 0.863084i
\(328\) 379.521 + 35.7642i 1.15708 + 0.109037i
\(329\) 362.050 + 429.389i 1.10046 + 1.30513i
\(330\) −37.5165 + 3.74831i −0.113686 + 0.0113585i
\(331\) 190.224 + 459.241i 0.574694 + 1.38743i 0.897519 + 0.440975i \(0.145367\pi\)
−0.322826 + 0.946458i \(0.604633\pi\)
\(332\) 89.6812 60.2884i 0.270124 0.181592i
\(333\) 144.378 + 59.8035i 0.433569 + 0.179590i
\(334\) 154.513 + 288.099i 0.462615 + 0.862573i
\(335\) −35.4691 −0.105878
\(336\) 193.624 165.130i 0.576262 0.491460i
\(337\) 336.033i 0.997129i −0.866853 0.498565i \(-0.833861\pi\)
0.866853 0.498565i \(-0.166139\pi\)
\(338\) 57.6094 + 107.416i 0.170442 + 0.317799i
\(339\) 65.4726 158.065i 0.193135 0.466268i
\(340\) −3.88244 + 19.8092i −0.0114189 + 0.0582625i
\(341\) 441.834 183.014i 1.29570 0.536697i
\(342\) −90.2352 + 9.01548i −0.263846 + 0.0263610i
\(343\) −295.811 + 173.623i −0.862423 + 0.506188i
\(344\) 20.7072 39.1365i 0.0601953 0.113769i
\(345\) −39.6874 + 39.6874i −0.115036 + 0.115036i
\(346\) −141.788 + 173.265i −0.409791 + 0.500765i
\(347\) −142.386 + 58.9781i −0.410333 + 0.169966i −0.578295 0.815828i \(-0.696282\pi\)
0.167961 + 0.985794i \(0.446282\pi\)
\(348\) 291.569 58.8494i 0.837843 0.169107i
\(349\) 114.510 + 47.4314i 0.328108 + 0.135907i 0.540656 0.841244i \(-0.318176\pi\)
−0.212548 + 0.977151i \(0.568176\pi\)
\(350\) −317.866 126.222i −0.908187 0.360635i
\(351\) −442.305 −1.26013
\(352\) −308.769 + 167.841i −0.877186 + 0.476822i
\(353\) 371.003i 1.05100i 0.850794 + 0.525499i \(0.176122\pi\)
−0.850794 + 0.525499i \(0.823878\pi\)
\(354\) −28.1584 + 93.2977i −0.0795435 + 0.263553i
\(355\) 86.2987 + 35.7461i 0.243095 + 0.100693i
\(356\) −92.4360 457.975i −0.259652 1.28645i
\(357\) 32.1897 + 101.249i 0.0901672 + 0.283611i
\(358\) −198.667 162.575i −0.554935 0.454120i
\(359\) −82.3766 + 82.3766i −0.229461 + 0.229461i −0.812468 0.583006i \(-0.801876\pi\)
0.583006 + 0.812468i \(0.301876\pi\)
\(360\) 22.1658 6.82614i 0.0615718 0.0189615i
\(361\) 156.548 + 156.548i 0.433652 + 0.433652i
\(362\) −505.323 + 50.4872i −1.39592 + 0.139467i
\(363\) −0.809055 + 0.335122i −0.00222880 + 0.000923200i
\(364\) −408.240 116.692i −1.12154 0.320583i
\(365\) −12.1765 5.04369i −0.0333604 0.0138183i
\(366\) −191.339 356.763i −0.522784 0.974762i
\(367\) −72.0402 −0.196295 −0.0981474 0.995172i \(-0.531292\pi\)
−0.0981474 + 0.995172i \(0.531292\pi\)
\(368\) −197.486 + 484.459i −0.536645 + 1.31646i
\(369\) 182.858 0.495551
\(370\) −29.0813 54.2238i −0.0785981 0.146551i
\(371\) 23.9653 46.3064i 0.0645964 0.124815i
\(372\) 328.444 220.798i 0.882915 0.593542i
\(373\) 99.9056 + 241.193i 0.267843 + 0.646631i 0.999381 0.0351696i \(-0.0111972\pi\)
−0.731538 + 0.681801i \(0.761197\pi\)
\(374\) −14.5868 145.998i −0.0390020 0.390368i
\(375\) 59.9955 + 59.9955i 0.159988 + 0.159988i
\(376\) −409.299 494.466i −1.08856 1.31507i
\(377\) −350.929 350.929i −0.930847 0.930847i
\(378\) 284.475 292.964i 0.752580 0.775038i
\(379\) 454.762 188.368i 1.19990 0.497014i 0.308933 0.951084i \(-0.400028\pi\)
0.890966 + 0.454069i \(0.150028\pi\)
\(380\) 29.7436 + 19.7533i 0.0782726 + 0.0519824i
\(381\) −123.059 50.9728i −0.322990 0.133787i
\(382\) −162.449 49.0292i −0.425260 0.128349i
\(383\) 348.756i 0.910590i 0.890341 + 0.455295i \(0.150466\pi\)
−0.890341 + 0.455295i \(0.849534\pi\)
\(384\) −222.989 + 186.704i −0.580700 + 0.486208i
\(385\) −57.8697 4.92379i −0.150311 0.0127891i
\(386\) −401.568 121.198i −1.04033 0.313985i
\(387\) 8.12788 19.6224i 0.0210023 0.0507040i
\(388\) −210.126 + 316.397i −0.541561 + 0.815457i
\(389\) 63.3197 26.2279i 0.162775 0.0674238i −0.299808 0.954000i \(-0.596923\pi\)
0.462583 + 0.886576i \(0.346923\pi\)
\(390\) 40.2881 + 32.9689i 0.103303 + 0.0845357i
\(391\) −154.446 154.446i −0.395002 0.395002i
\(392\) 339.857 195.349i 0.866983 0.498338i
\(393\) 67.3014 + 67.3014i 0.171250 + 0.171250i
\(394\) −61.9107 + 6.18555i −0.157134 + 0.0156994i
\(395\) −47.7221 + 19.7671i −0.120815 + 0.0500434i
\(396\) −139.906 + 94.0524i −0.353299 + 0.237506i
\(397\) −40.9820 + 98.9394i −0.103229 + 0.249218i −0.967052 0.254578i \(-0.918063\pi\)
0.863823 + 0.503795i \(0.168063\pi\)
\(398\) 223.953 + 417.573i 0.562696 + 1.04918i
\(399\) 187.247 + 15.9317i 0.469291 + 0.0399292i
\(400\) 361.950 + 147.546i 0.904876 + 0.368865i
\(401\) 228.115i 0.568866i −0.958696 0.284433i \(-0.908195\pi\)
0.958696 0.284433i \(-0.0918053\pi\)
\(402\) 188.015 100.836i 0.467700 0.250837i
\(403\) −610.058 252.694i −1.51379 0.627033i
\(404\) 61.7268 314.946i 0.152789 0.779570i
\(405\) −22.1507 + 9.17511i −0.0546930 + 0.0226546i
\(406\) 458.146 6.73560i 1.12844 0.0165901i
\(407\) 316.244 + 316.244i 0.777013 + 0.777013i
\(408\) −35.7362 116.043i −0.0875888 0.284418i
\(409\) −257.465 257.465i −0.629499 0.629499i 0.318443 0.947942i \(-0.396840\pi\)
−0.947942 + 0.318443i \(0.896840\pi\)
\(410\) −55.7187 45.5962i −0.135899 0.111210i
\(411\) 39.9352 + 96.4121i 0.0971659 + 0.234579i
\(412\) 130.080 + 644.483i 0.315729 + 1.56428i
\(413\) −68.9999 + 133.324i −0.167070 + 0.322817i
\(414\) −72.5110 + 240.252i −0.175147 + 0.580319i
\(415\) −20.4095 −0.0491796
\(416\) 465.330 + 137.592i 1.11858 + 0.330751i
\(417\) 412.262 0.988637
\(418\) −248.458 74.9877i −0.594397 0.179396i
\(419\) 201.431 + 83.4352i 0.480741 + 0.199129i 0.609875 0.792498i \(-0.291220\pi\)
−0.129134 + 0.991627i \(0.541220\pi\)
\(420\) −47.7491 + 5.48071i −0.113688 + 0.0130493i
\(421\) 18.7520 7.76732i 0.0445415 0.0184497i −0.360301 0.932836i \(-0.617326\pi\)
0.404843 + 0.914386i \(0.367326\pi\)
\(422\) −88.7528 72.6290i −0.210315 0.172107i
\(423\) −217.723 217.723i −0.514712 0.514712i
\(424\) −27.8682 + 52.6708i −0.0657268 + 0.124223i
\(425\) −115.390 + 115.390i −0.271506 + 0.271506i
\(426\) −559.077 + 55.8579i −1.31239 + 0.131122i
\(427\) −188.943 594.301i −0.442490 1.39181i
\(428\) 59.2896 302.511i 0.138527 0.706802i
\(429\) −349.588 144.804i −0.814891 0.337539i
\(430\) −7.36955 + 3.95244i −0.0171385 + 0.00919171i
\(431\) 7.68510i 0.0178309i 0.999960 + 0.00891543i \(0.00283791\pi\)
−0.999960 + 0.00891543i \(0.997162\pi\)
\(432\) −328.140 + 331.851i −0.759584 + 0.768174i
\(433\) 582.001 1.34411 0.672057 0.740500i \(-0.265411\pi\)
0.672057 + 0.740500i \(0.265411\pi\)
\(434\) 559.742 241.553i 1.28973 0.556573i
\(435\) −51.9025 21.4987i −0.119316 0.0494223i
\(436\) 392.019 + 583.142i 0.899125 + 1.33748i
\(437\) −356.933 + 147.847i −0.816781 + 0.338322i
\(438\) 78.8845 7.88142i 0.180102 0.0179941i
\(439\) 47.5409 47.5409i 0.108294 0.108294i −0.650884 0.759177i \(-0.725601\pi\)
0.759177 + 0.650884i \(0.225601\pi\)
\(440\) 66.0830 + 6.22735i 0.150189 + 0.0141531i
\(441\) 153.515 108.588i 0.348107 0.246232i
\(442\) −128.301 + 156.784i −0.290273 + 0.354714i
\(443\) −515.473 + 213.516i −1.16360 + 0.481977i −0.879071 0.476692i \(-0.841836\pi\)
−0.284525 + 0.958669i \(0.591836\pi\)
\(444\) 308.310 + 204.754i 0.694391 + 0.461159i
\(445\) −33.7685 + 81.5243i −0.0758842 + 0.183201i
\(446\) 52.5969 174.270i 0.117930 0.390741i
\(447\) 43.6012i 0.0975418i
\(448\) −390.419 + 219.720i −0.871471 + 0.490447i
\(449\) 191.980 0.427573 0.213787 0.976880i \(-0.431420\pi\)
0.213787 + 0.976880i \(0.431420\pi\)
\(450\) 179.498 + 54.1746i 0.398884 + 0.120388i
\(451\) 483.482 + 200.265i 1.07202 + 0.444046i
\(452\) −166.631 + 250.905i −0.368653 + 0.555100i
\(453\) 122.590 + 295.958i 0.270618 + 0.653329i
\(454\) 430.670 + 352.430i 0.948612 + 0.776277i
\(455\) 51.6927 + 61.3072i 0.113610 + 0.134741i
\(456\) −213.823 20.1496i −0.468909 0.0441878i
\(457\) −514.716 514.716i −1.12629 1.12629i −0.990775 0.135519i \(-0.956730\pi\)
−0.135519 0.990775i \(-0.543270\pi\)
\(458\) 65.8838 + 659.426i 0.143851 + 1.43979i
\(459\) −74.5629 180.011i −0.162447 0.392181i
\(460\) 82.0023 55.1263i 0.178266 0.119840i
\(461\) −251.467 + 607.096i −0.545482 + 1.31691i 0.375325 + 0.926893i \(0.377531\pi\)
−0.920807 + 0.390018i \(0.872469\pi\)
\(462\) 320.755 138.420i 0.694275 0.299610i
\(463\) 682.752i 1.47463i 0.675551 + 0.737313i \(0.263906\pi\)
−0.675551 + 0.737313i \(0.736094\pi\)
\(464\) −523.644 + 2.94425i −1.12854 + 0.00634536i
\(465\) −74.7470 −0.160746
\(466\) 104.192 + 194.272i 0.223588 + 0.416892i
\(467\) 145.725 351.812i 0.312046 0.753345i −0.687583 0.726106i \(-0.741328\pi\)
0.999629 0.0272393i \(-0.00867163\pi\)
\(468\) 228.421 + 44.7686i 0.488079 + 0.0956593i
\(469\) 313.199 99.5736i 0.667801 0.212310i
\(470\) 12.0525 + 120.632i 0.0256436 + 0.256664i
\(471\) 272.052 + 272.052i 0.577605 + 0.577605i
\(472\) 80.2370 151.648i 0.169994 0.321287i
\(473\) 42.9807 42.9807i 0.0908682 0.0908682i
\(474\) 196.769 240.453i 0.415125 0.507284i
\(475\) 110.460 + 266.673i 0.232547 + 0.561417i
\(476\) −21.3285 185.818i −0.0448077 0.390375i
\(477\) −10.9387 + 26.4083i −0.0229322 + 0.0553633i
\(478\) −13.3514 + 44.2373i −0.0279317 + 0.0925467i
\(479\) 281.780i 0.588268i −0.955764 0.294134i \(-0.904969\pi\)
0.955764 0.294134i \(-0.0950312\pi\)
\(480\) 54.6250 5.76801i 0.113802 0.0120167i
\(481\) 617.518i 1.28382i
\(482\) −56.3451 17.0057i −0.116899 0.0352815i
\(483\) 239.031 461.863i 0.494888 0.956237i
\(484\) 1.51120 0.305016i 0.00312232 0.000630197i
\(485\) 66.2747 27.4519i 0.136649 0.0566018i
\(486\) −241.171 + 294.712i −0.496237 + 0.606403i
\(487\) 469.750 469.750i 0.964578 0.964578i −0.0348154 0.999394i \(-0.511084\pi\)
0.999394 + 0.0348154i \(0.0110843\pi\)
\(488\) 209.760 + 681.133i 0.429836 + 1.39576i
\(489\) 332.140 332.140i 0.679223 0.679223i
\(490\) −73.8543 5.19153i −0.150723 0.0105950i
\(491\) 104.088 + 251.291i 0.211992 + 0.511795i 0.993729 0.111814i \(-0.0356660\pi\)
−0.781737 + 0.623608i \(0.785666\pi\)
\(492\) 424.981 + 83.2927i 0.863783 + 0.169294i
\(493\) 83.6634 201.981i 0.169703 0.409699i
\(494\) 169.364 + 315.790i 0.342843 + 0.639251i
\(495\) 31.8397 0.0643226
\(496\) −642.185 + 270.242i −1.29473 + 0.544842i
\(497\) −862.384 73.3751i −1.73518 0.147636i
\(498\) 108.187 58.0230i 0.217243 0.116512i
\(499\) 305.440 + 126.517i 0.612104 + 0.253542i 0.667128 0.744943i \(-0.267523\pi\)
−0.0550239 + 0.998485i \(0.517523\pi\)
\(500\) −83.3344 123.963i −0.166669 0.247926i
\(501\) 142.128 + 343.127i 0.283688 + 0.684884i
\(502\) 38.9861 + 390.209i 0.0776616 + 0.777309i
\(503\) −20.6455 + 20.6455i −0.0410447 + 0.0410447i −0.727331 0.686287i \(-0.759240\pi\)
0.686287 + 0.727331i \(0.259240\pi\)
\(504\) −176.565 + 122.503i −0.350327 + 0.243061i
\(505\) −42.8614 + 42.8614i −0.0848740 + 0.0848740i
\(506\) −454.843 + 555.819i −0.898899 + 1.09846i
\(507\) 52.9915 + 127.933i 0.104520 + 0.252333i
\(508\) 195.339 + 129.728i 0.384525 + 0.255371i
\(509\) −164.659 68.2039i −0.323495 0.133996i 0.215026 0.976608i \(-0.431017\pi\)
−0.538520 + 0.842612i \(0.681017\pi\)
\(510\) −6.62612 + 21.9544i −0.0129924 + 0.0430479i
\(511\) 121.680 + 10.3531i 0.238122 + 0.0202604i
\(512\) 448.454 247.048i 0.875887 0.482516i
\(513\) −344.639 −0.671810
\(514\) 275.088 911.454i 0.535191 1.77326i
\(515\) 47.5206 114.725i 0.0922730 0.222767i
\(516\) 27.8281 41.9023i 0.0539305 0.0812060i
\(517\) −337.217 814.115i −0.652258 1.57469i
\(518\) 409.018 + 397.165i 0.789609 + 0.766728i
\(519\) −179.849 + 179.849i −0.346531 + 0.346531i
\(520\) −58.4389 70.5988i −0.112383 0.135767i
\(521\) 261.960 261.960i 0.502803 0.502803i −0.409505 0.912308i \(-0.634299\pi\)
0.912308 + 0.409505i \(0.134299\pi\)
\(522\) −249.946 + 24.9723i −0.478823 + 0.0478396i
\(523\) 651.942 270.043i 1.24654 0.516335i 0.340790 0.940140i \(-0.389306\pi\)
0.905754 + 0.423804i \(0.139306\pi\)
\(524\) −93.4824 139.058i −0.178402 0.265379i
\(525\) −345.068 178.586i −0.657273 0.340163i
\(526\) −569.121 + 305.231i −1.08198 + 0.580287i
\(527\) 290.882i 0.551959i
\(528\) −367.998 + 154.860i −0.696966 + 0.293295i
\(529\) 540.144i 1.02107i
\(530\) 9.91810 5.31927i 0.0187134 0.0100364i
\(531\) 31.4942 76.0337i 0.0593111 0.143190i
\(532\) −318.095 90.9250i −0.597923 0.170912i
\(533\) −276.514 667.563i −0.518787 1.25246i
\(534\) −52.7677 528.147i −0.0988158 0.989040i
\(535\) −41.1691 + 41.1691i −0.0769515 + 0.0769515i
\(536\) −358.960 + 110.544i −0.669701 + 0.206239i
\(537\) −206.217 206.217i −0.384017 0.384017i
\(538\) 516.168 630.758i 0.959420 1.17241i
\(539\) 524.823 118.982i 0.973697 0.220745i
\(540\) 86.4011 17.4389i 0.160002 0.0322943i
\(541\) −65.5708 + 158.302i −0.121203 + 0.292610i −0.972823 0.231550i \(-0.925620\pi\)
0.851620 + 0.524159i \(0.175620\pi\)
\(542\) −467.339 141.049i −0.862248 0.260237i
\(543\) −576.933 −1.06249
\(544\) 22.4465 + 212.576i 0.0412620 + 0.390766i
\(545\) 132.711i 0.243506i
\(546\) −448.306 178.019i −0.821074 0.326043i
\(547\) −164.242 + 396.515i −0.300260 + 0.724891i 0.699686 + 0.714451i \(0.253323\pi\)
−0.999945 + 0.0104405i \(0.996677\pi\)
\(548\) −36.3476 180.084i −0.0663277 0.328621i
\(549\) 130.830 + 315.850i 0.238305 + 0.575320i
\(550\) 415.265 + 339.824i 0.755028 + 0.617862i
\(551\) −273.440 273.440i −0.496261 0.496261i
\(552\) −277.959 + 525.341i −0.503549 + 0.951705i
\(553\) 365.902 308.519i 0.661666 0.557901i
\(554\) −10.1337 101.428i −0.0182919 0.183082i
\(555\) −26.7502 64.5806i −0.0481985 0.116362i
\(556\) −712.227 139.590i −1.28098 0.251062i
\(557\) 50.3084 + 20.8384i 0.0903203 + 0.0374119i 0.427386 0.904069i \(-0.359434\pi\)
−0.337066 + 0.941481i \(0.609434\pi\)
\(558\) −294.528 + 157.961i −0.527828 + 0.283084i
\(559\) −83.9267 −0.150137
\(560\) 84.3475 + 6.69917i 0.150621 + 0.0119628i
\(561\) 166.687i 0.297125i
\(562\) −606.568 + 325.314i −1.07930 + 0.578851i
\(563\) 286.196 690.939i 0.508341 1.22724i −0.436496 0.899706i \(-0.643781\pi\)
0.944838 0.327539i \(-0.106219\pi\)
\(564\) −406.837 605.185i −0.721343 1.07302i
\(565\) 52.5564 21.7696i 0.0930201 0.0385302i
\(566\) −101.025 1011.15i −0.178489 1.78648i
\(567\) 169.837 143.202i 0.299536 0.252561i
\(568\) 984.780 + 92.8011i 1.73377 + 0.163382i
\(569\) −636.268 + 636.268i −1.11822 + 1.11822i −0.126219 + 0.992002i \(0.540284\pi\)
−0.992002 + 0.126219i \(0.959716\pi\)
\(570\) 31.3920 + 25.6890i 0.0550737 + 0.0450684i
\(571\) 876.195 362.932i 1.53449 0.635608i 0.554062 0.832475i \(-0.313077\pi\)
0.980430 + 0.196868i \(0.0630769\pi\)
\(572\) 554.921 + 368.534i 0.970142 + 0.644291i
\(573\) −178.100 73.7713i −0.310820 0.128746i
\(574\) 620.010 + 246.202i 1.08016 + 0.428923i
\(575\) 798.782 1.38919
\(576\) 203.051 138.166i 0.352520 0.239871i
\(577\) 1068.87i 1.85247i −0.376951 0.926233i \(-0.623028\pi\)
0.376951 0.926233i \(-0.376972\pi\)
\(578\) 467.910 + 141.221i 0.809533 + 0.244327i
\(579\) −440.256 182.360i −0.760373 0.314957i
\(580\) 82.3877 + 54.7153i 0.142048 + 0.0943368i
\(581\) 180.220 57.2964i 0.310189 0.0986169i
\(582\) −273.266 + 333.932i −0.469530 + 0.573767i
\(583\) −57.8443 + 57.8443i −0.0992184 + 0.0992184i
\(584\) −138.950 13.0940i −0.237928 0.0224213i
\(585\) −31.0861 31.0861i −0.0531386 0.0531386i
\(586\) −30.7222 307.496i −0.0524270 0.524738i
\(587\) 17.5961 7.28853i 0.0299763 0.0124166i −0.367645 0.929966i \(-0.619836\pi\)
0.397621 + 0.917550i \(0.369836\pi\)
\(588\) 406.247 182.443i 0.690897 0.310278i
\(589\) −475.350 196.896i −0.807045 0.334289i
\(590\) −28.5558 + 15.3150i −0.0483997 + 0.0259577i
\(591\) −70.6842 −0.119601
\(592\) −463.309 458.128i −0.782616 0.773865i
\(593\) −137.536 −0.231933 −0.115966 0.993253i \(-0.536996\pi\)
−0.115966 + 0.993253i \(0.536996\pi\)
\(594\) −564.603 + 302.808i −0.950510 + 0.509777i
\(595\) −16.2368 + 31.3731i −0.0272887 + 0.0527279i
\(596\) −14.7632 + 75.3257i −0.0247705 + 0.126385i
\(597\) 206.001 + 497.330i 0.345060 + 0.833049i
\(598\) 986.741 98.5861i 1.65007 0.164860i
\(599\) −689.523 689.523i −1.15112 1.15112i −0.986328 0.164795i \(-0.947304\pi\)
−0.164795 0.986328i \(-0.552696\pi\)
\(600\) 392.495 + 207.670i 0.654158 + 0.346116i
\(601\) −789.713 789.713i −1.31400 1.31400i −0.918441 0.395557i \(-0.870552\pi\)
−0.395557 0.918441i \(1.37055\pi\)
\(602\) 53.9787 55.5895i 0.0896656 0.0923414i
\(603\) −166.454 + 68.9476i −0.276044 + 0.114341i
\(604\) −111.577 552.808i −0.184730 0.915245i
\(605\) −0.269010 0.111427i −0.000444644 0.000184178i
\(606\) 105.348 349.052i 0.173842 0.575994i
\(607\) 45.3017i 0.0746322i 0.999304 + 0.0373161i \(0.0118808\pi\)
−0.999304 + 0.0373161i \(0.988119\pi\)
\(608\) 362.579 + 107.210i 0.596347 + 0.176333i
\(609\) 518.662 + 44.1299i 0.851662 + 0.0724628i
\(610\) 38.8932 128.865i 0.0637593 0.211255i
\(611\) −465.610 + 1124.08i −0.762045 + 1.83974i
\(612\) 20.2867 + 100.511i 0.0331482 + 0.164233i
\(613\) −213.873 + 88.5890i −0.348895 + 0.144517i −0.550247 0.835002i \(-0.685467\pi\)
0.201352 + 0.979519i \(0.435467\pi\)
\(614\) −184.778 + 225.799i −0.300941 + 0.367751i
\(615\) −57.8362 57.8362i −0.0940426 0.0940426i
\(616\) −601.007 + 130.528i −0.975661 + 0.211897i
\(617\) −214.537 214.537i −0.347709 0.347709i 0.511546 0.859256i \(-0.329073\pi\)
−0.859256 + 0.511546i \(0.829073\pi\)
\(618\) 74.2571 + 743.234i 0.120157 + 1.20264i
\(619\) 482.960 200.048i 0.780226 0.323180i 0.0432191 0.999066i \(-0.486239\pi\)
0.737007 + 0.675886i \(0.236239\pi\)
\(620\) 129.133 + 25.3091i 0.208280 + 0.0408211i
\(621\) −364.979 + 881.138i −0.587728 + 1.41890i
\(622\) 942.351 505.402i 1.51503 0.812543i
\(623\) 69.3158 814.674i 0.111261 1.30766i
\(624\) 510.482 + 208.094i 0.818080 + 0.333483i
\(625\) 582.520i 0.932032i
\(626\) 7.80877 + 14.5599i 0.0124741 + 0.0232586i
\(627\) −272.395 112.830i −0.434441 0.179951i
\(628\) −377.884 562.115i −0.601725 0.895088i
\(629\) 251.319 104.100i 0.399554 0.165501i
\(630\) 40.5836 0.596654i 0.0644183 0.000947069i
\(631\) −362.669 362.669i −0.574752 0.574752i 0.358701 0.933453i \(-0.383220\pi\)
−0.933453 + 0.358701i \(0.883220\pi\)
\(632\) −421.357 + 348.783i −0.666704 + 0.551871i
\(633\) −92.1258 92.1258i −0.145538 0.145538i
\(634\) 601.801 735.403i 0.949214 1.15994i
\(635\) −16.9484 40.9170i −0.0266904 0.0644363i
\(636\) −37.4517 + 56.3930i −0.0588863 + 0.0886682i
\(637\) −628.566 396.235i −0.986760 0.622033i
\(638\) −688.212 207.711i −1.07870 0.325566i
\(639\) 474.480 0.742536
\(640\) −96.3237 8.53098i −0.150506 0.0133297i
\(641\) −724.389 −1.13009 −0.565046 0.825059i \(-0.691142\pi\)
−0.565046 + 0.825059i \(0.691142\pi\)
\(642\) 101.189 335.271i 0.157615 0.522228i
\(643\) 1122.10 + 464.789i 1.74510 + 0.722844i 0.998330 + 0.0577611i \(0.0183962\pi\)
0.746770 + 0.665083i \(0.231604\pi\)
\(644\) −569.337 + 716.983i −0.884064 + 1.11333i
\(645\) −8.77714 + 3.63561i −0.0136080 + 0.00563661i
\(646\) −99.9701 + 122.164i −0.154753 + 0.189108i
\(647\) 25.0563 + 25.0563i 0.0387269 + 0.0387269i 0.726205 0.687478i \(-0.241282\pi\)
−0.687478 + 0.726205i \(0.741282\pi\)
\(648\) −195.577 + 161.891i −0.301816 + 0.249832i
\(649\) 166.543 166.543i 0.256615 0.256615i
\(650\) −73.6560 737.217i −0.113317 1.13418i
\(651\) 660.029 209.840i 1.01387 0.322334i
\(652\) −686.270 + 461.347i −1.05256 + 0.707587i
\(653\) 1138.50 + 471.581i 1.74349 + 0.722176i 0.998480 + 0.0551197i \(0.0175540\pi\)
0.745007 + 0.667056i \(0.232446\pi\)
\(654\) 377.288 + 703.475i 0.576892 + 1.07565i
\(655\) 31.6467i 0.0483156i
\(656\) −705.999 287.794i −1.07622 0.438711i
\(657\) −66.9481 −0.101900
\(658\) −445.080 1031.37i −0.676414 1.56743i
\(659\) 1026.06 + 425.007i 1.55699 + 0.644928i 0.984564 0.175026i \(-0.0560011\pi\)
0.572429 + 0.819954i \(0.306001\pi\)
\(660\) 73.9988 + 14.5031i 0.112119 + 0.0219744i
\(661\) −426.275 + 176.569i −0.644895 + 0.267124i −0.681067 0.732221i \(-0.738484\pi\)
0.0361718 + 0.999346i \(0.488484\pi\)
\(662\) −98.8350 989.232i −0.149298 1.49431i
\(663\) −162.742 + 162.742i −0.245463 + 0.245463i
\(664\) −206.552 + 63.6091i −0.311072 + 0.0957969i
\(665\) 40.2783 + 47.7698i 0.0605689 + 0.0718343i
\(666\) −241.881 197.939i −0.363185 0.297205i
\(667\) −988.682 + 409.525i −1.48228 + 0.613981i
\(668\) −129.360 640.913i −0.193652 0.959450i
\(669\) 79.1395 191.060i 0.118295 0.285590i
\(670\) 67.9125 + 20.4968i 0.101362 + 0.0305923i
\(671\) 978.401i 1.45812i
\(672\) −466.156 + 204.283i −0.693685 + 0.303993i
\(673\) 209.915 0.311910 0.155955 0.987764i \(-0.450155\pi\)
0.155955 + 0.987764i \(0.450155\pi\)
\(674\) −194.186 + 643.400i −0.288110 + 0.954599i
\(675\) 658.318 + 272.684i 0.975287 + 0.403977i
\(676\) −48.2310 238.961i −0.0713476 0.353492i
\(677\) 5.00322 + 12.0788i 0.00739028 + 0.0178417i 0.927532 0.373745i \(-0.121926\pi\)
−0.920141 + 0.391586i \(0.871926\pi\)
\(678\) −216.702 + 264.811i −0.319620 + 0.390576i
\(679\) −508.151 + 428.460i −0.748382 + 0.631017i
\(680\) 18.8810 35.6851i 0.0277662 0.0524780i
\(681\) 447.037 + 447.037i 0.656442 + 0.656442i
\(682\) −951.737 + 95.0889i −1.39551 + 0.139427i
\(683\) 155.013 + 374.233i 0.226958 + 0.547926i 0.995804 0.0915081i \(-0.0291687\pi\)
−0.768846 + 0.639434i \(0.779169\pi\)
\(684\) 177.983 + 34.8831i 0.260209 + 0.0509987i
\(685\) −13.2784 + 32.0569i −0.0193845 + 0.0467984i
\(686\) 666.721 161.491i 0.971896 0.235410i
\(687\) 752.875i 1.09589i
\(688\) −62.2641 + 62.9682i −0.0905001 + 0.0915236i
\(689\) 112.950 0.163934
\(690\) 98.9237 53.0548i 0.143368 0.0768909i
\(691\) −254.787 + 615.111i −0.368722 + 0.890175i 0.625238 + 0.780434i \(0.285002\pi\)
−0.993960 + 0.109740i \(0.964998\pi\)
\(692\) 371.606 249.813i 0.537003 0.361001i
\(693\) −281.150 + 89.3847i −0.405700 + 0.128982i
\(694\) 306.707 30.6434i 0.441941 0.0441547i
\(695\) 96.9277 + 96.9277i 0.139464 + 0.139464i
\(696\) −592.274 55.8132i −0.850969 0.0801913i
\(697\) 225.073 225.073i 0.322917 0.322917i
\(698\) −191.841 156.989i −0.274844 0.224913i
\(699\) 95.8399 + 231.378i 0.137110 + 0.331013i
\(700\) 535.674 + 425.365i 0.765249 + 0.607664i
\(701\) 529.921 1279.34i 0.755949 1.82502i 0.233490 0.972359i \(-0.424985\pi\)
0.522459 0.852664i \(-0.325015\pi\)
\(702\) 846.880 + 255.599i 1.20638 + 0.364101i
\(703\) 481.162i 0.684441i
\(704\) 688.191 142.934i 0.977544 0.203031i
\(705\) 137.727i 0.195358i
\(706\) 214.394 710.357i 0.303675 1.00617i
\(707\) 258.147 498.800i 0.365131 0.705516i
\(708\) 107.830 162.365i 0.152302 0.229328i
\(709\) 296.905 122.982i 0.418766 0.173458i −0.163343 0.986569i \(-0.552228\pi\)
0.582109 + 0.813111i \(0.302228\pi\)
\(710\) −144.579 118.313i −0.203632 0.166638i
\(711\) −185.532 + 185.532i −0.260945 + 0.260945i
\(712\) −87.6670 + 930.298i −0.123128 + 1.30660i
\(713\) −1006.81 + 1006.81i −1.41207 + 1.41207i
\(714\) −3.12360 212.463i −0.00437480 0.297568i
\(715\) −48.1472 116.238i −0.0673388 0.162570i
\(716\) 286.438 + 426.087i 0.400053 + 0.595093i
\(717\) −20.0890 + 48.4992i −0.0280182 + 0.0676418i
\(718\) 205.330 110.122i 0.285974 0.153374i
\(719\) −161.235 −0.224249 −0.112124 0.993694i \(-0.535766\pi\)
−0.112124 + 0.993694i \(0.535766\pi\)
\(720\) −46.3855 + 0.260808i −0.0644243 + 0.000362233i
\(721\) −97.5444 + 1146.45i −0.135290 + 1.59008i
\(722\) −209.277 390.209i −0.289857 0.540455i
\(723\) −61.7735 25.5874i −0.0854405 0.0353906i
\(724\) 996.714 + 195.347i 1.37668 + 0.269817i
\(725\) 305.966 + 738.667i 0.422022 + 1.01885i
\(726\) 1.74275 0.174120i 0.00240049 0.000239835i
\(727\) −164.695 + 164.695i −0.226541 + 0.226541i −0.811246 0.584705i \(-0.801210\pi\)
0.584705 + 0.811246i \(0.301210\pi\)
\(728\) 714.221 + 459.343i 0.981072 + 0.630965i
\(729\) −507.879 + 507.879i −0.696679 + 0.696679i
\(730\) 20.3997 + 16.6937i 0.0279448 + 0.0228681i
\(731\) −14.1482 34.1568i −0.0193546 0.0467261i
\(732\) 160.190 + 793.663i 0.218839 + 1.08424i
\(733\) 641.487 + 265.713i 0.875153 + 0.362500i 0.774615 0.632433i \(-0.217944\pi\)
0.100538 + 0.994933i \(0.467944\pi\)
\(734\) 137.935 + 41.6305i 0.187922 + 0.0567173i
\(735\) −82.9006 14.2099i −0.112790 0.0193332i
\(736\) 658.083 813.468i 0.894134 1.10526i
\(737\) −515.621 −0.699621
\(738\) −350.118 105.670i −0.474414 0.143184i
\(739\) −187.738 + 453.240i −0.254044 + 0.613316i −0.998523 0.0543296i \(-0.982698\pi\)
0.744479 + 0.667646i \(0.232698\pi\)
\(740\) 24.3470 + 120.628i 0.0329014 + 0.163010i
\(741\) 155.788 + 376.106i 0.210241 + 0.507566i
\(742\) −72.6456 + 74.8136i −0.0979052 + 0.100827i
\(743\) −319.731 + 319.731i −0.430324 + 0.430324i −0.888738 0.458415i \(-0.848417\pi\)
0.458415 + 0.888738i \(0.348417\pi\)
\(744\) −756.465 + 232.959i −1.01675 + 0.313117i
\(745\) 10.2512 10.2512i 0.0137600 0.0137600i
\(746\) −51.9082 519.545i −0.0695820 0.696441i
\(747\) −95.7807 + 39.6737i −0.128220 + 0.0531107i
\(748\) −56.4398 + 287.970i −0.0754542 + 0.384987i
\(749\) 247.955 479.106i 0.331048 0.639660i
\(750\) −80.2030 149.543i −0.106937 0.199391i
\(751\) 1241.02i 1.65249i −0.563311 0.826245i \(-0.690473\pi\)
0.563311 0.826245i \(-0.309527\pi\)
\(752\) 497.942 + 1183.28i 0.662157 + 1.57351i
\(753\) 445.506i 0.591642i
\(754\) 469.128 + 874.718i 0.622186 + 1.16010i
\(755\) −40.7609 + 98.4056i −0.0539880 + 0.130339i
\(756\) −713.981 + 396.546i −0.944419 + 0.524531i
\(757\) −226.507