Properties

Label 224.3.v.b.13.4
Level 224
Weight 3
Character 224.13
Analytic conductor 6.104
Analytic rank 0
Dimension 240
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(60\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 13.4
Character \(\chi\) \(=\) 224.13
Dual form 224.3.v.b.69.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.91889 - 0.563790i) q^{2} +(4.49480 + 1.86181i) q^{3} +(3.36428 + 2.16370i) q^{4} +(-0.432309 - 1.04369i) q^{5} +(-7.57535 - 6.10672i) q^{6} +(0.951145 + 6.93508i) q^{7} +(-5.23581 - 6.04866i) q^{8} +(10.3729 + 10.3729i) q^{9} +O(q^{10})\) \(q+(-1.91889 - 0.563790i) q^{2} +(4.49480 + 1.86181i) q^{3} +(3.36428 + 2.16370i) q^{4} +(-0.432309 - 1.04369i) q^{5} +(-7.57535 - 6.10672i) q^{6} +(0.951145 + 6.93508i) q^{7} +(-5.23581 - 6.04866i) q^{8} +(10.3729 + 10.3729i) q^{9} +(0.241133 + 2.24645i) q^{10} +(4.35814 + 10.5215i) q^{11} +(11.0934 + 15.9890i) q^{12} +(5.75095 - 13.8840i) q^{13} +(2.08479 - 13.8439i) q^{14} -5.49603i q^{15} +(6.63677 + 14.5586i) q^{16} -2.83244 q^{17} +(-14.0563 - 25.7526i) q^{18} +(-11.1668 + 26.9590i) q^{19} +(0.803818 - 4.44664i) q^{20} +(-8.63657 + 32.9426i) q^{21} +(-2.43089 - 22.6467i) q^{22} +(-18.7312 - 18.7312i) q^{23} +(-12.2725 - 36.9356i) q^{24} +(16.7753 - 16.7753i) q^{25} +(-18.8631 + 23.3996i) q^{26} +(10.5555 + 25.4833i) q^{27} +(-11.8055 + 25.3896i) q^{28} +(0.210363 - 0.507862i) q^{29} +(-3.09861 + 10.5463i) q^{30} +35.8709i q^{31} +(-4.52724 - 31.6781i) q^{32} +55.4060i q^{33} +(5.43515 + 1.59690i) q^{34} +(6.82685 - 3.99079i) q^{35} +(12.4535 + 57.3413i) q^{36} +(59.9916 - 24.8494i) q^{37} +(36.6271 - 45.4356i) q^{38} +(51.6987 - 51.6987i) q^{39} +(-4.04941 + 8.07943i) q^{40} +(20.9255 - 20.9255i) q^{41} +(35.1454 - 58.3441i) q^{42} +(23.1324 + 55.8466i) q^{43} +(-8.10336 + 44.8270i) q^{44} +(6.34176 - 15.3104i) q^{45} +(25.3826 + 46.5035i) q^{46} +2.87518 q^{47} +(2.72564 + 77.7944i) q^{48} +(-47.1906 + 13.1925i) q^{49} +(-41.6477 + 22.7322i) q^{50} +(-12.7313 - 5.27346i) q^{51} +(49.3887 - 34.2664i) q^{52} +(-12.1364 - 29.3000i) q^{53} +(-5.88768 - 54.8509i) q^{54} +(9.09706 - 9.09706i) q^{55} +(36.9679 - 42.0639i) q^{56} +(-100.385 + 100.385i) q^{57} +(-0.689991 + 0.855930i) q^{58} +(-23.7882 - 57.4297i) q^{59} +(11.8918 - 18.4902i) q^{60} +(-48.9259 - 20.2658i) q^{61} +(20.2237 - 68.8323i) q^{62} +(-62.0709 + 81.8032i) q^{63} +(-9.17255 + 63.3393i) q^{64} -16.9767 q^{65} +(31.2373 - 106.318i) q^{66} +(18.8808 - 45.5823i) q^{67} +(-9.52913 - 6.12857i) q^{68} +(-49.3190 - 119.067i) q^{69} +(-15.3500 + 3.80898i) q^{70} +(40.7778 - 40.7778i) q^{71} +(8.43160 - 117.053i) q^{72} +(-59.6846 + 59.6846i) q^{73} +(-129.127 + 13.8605i) q^{74} +(106.634 - 44.1692i) q^{75} +(-95.8995 + 66.5360i) q^{76} +(-68.8221 + 40.2315i) q^{77} +(-128.351 + 70.0569i) q^{78} -89.6609i q^{79} +(12.3255 - 13.2205i) q^{80} +2.16916i q^{81} +(-51.9514 + 28.3562i) q^{82} +(23.1587 - 55.9100i) q^{83} +(-100.334 + 92.1413i) q^{84} +(1.22449 + 2.95618i) q^{85} +(-12.9028 - 120.205i) q^{86} +(1.89108 - 1.89108i) q^{87} +(40.8225 - 81.4494i) q^{88} +(32.4260 + 32.4260i) q^{89} +(-20.8010 + 25.8035i) q^{90} +(101.757 + 26.6776i) q^{91} +(-22.4882 - 103.546i) q^{92} +(-66.7846 + 161.232i) q^{93} +(-5.51716 - 1.62100i) q^{94} +32.9642 q^{95} +(38.6295 - 150.816i) q^{96} -29.3452i q^{97} +(97.9915 + 1.29059i) q^{98} +(-63.9319 + 154.345i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} - 8q^{11} + 12q^{14} - 112q^{16} - 176q^{18} - 4q^{21} - 192q^{22} + 128q^{23} - 8q^{25} + 56q^{28} - 8q^{29} - 16q^{30} - 8q^{32} + 92q^{35} + 192q^{36} - 8q^{37} - 8q^{39} - 424q^{42} + 128q^{43} - 16q^{44} - 8q^{46} - 320q^{50} - 80q^{51} - 192q^{53} + 608q^{56} - 8q^{57} - 712q^{58} + 264q^{60} + 496q^{63} - 272q^{64} - 16q^{65} + 304q^{67} + 320q^{70} + 504q^{71} - 8q^{72} + 232q^{74} + 164q^{77} + 560q^{78} - 1000q^{84} - 208q^{85} - 8q^{86} - 800q^{88} + 188q^{91} + 1560q^{92} + 64q^{93} - 16q^{95} - 376q^{98} + 64q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91889 0.563790i −0.959445 0.281895i
\(3\) 4.49480 + 1.86181i 1.49827 + 0.620602i 0.973097 0.230396i \(-0.0740022\pi\)
0.525169 + 0.850998i \(0.324002\pi\)
\(4\) 3.36428 + 2.16370i 0.841070 + 0.540926i
\(5\) −0.432309 1.04369i −0.0864617 0.208737i 0.874735 0.484602i \(-0.161036\pi\)
−0.961196 + 0.275865i \(0.911036\pi\)
\(6\) −7.57535 6.10672i −1.26256 1.01779i
\(7\) 0.951145 + 6.93508i 0.135878 + 0.990726i
\(8\) −5.23581 6.04866i −0.654476 0.756082i
\(9\) 10.3729 + 10.3729i 1.15255 + 1.15255i
\(10\) 0.241133 + 2.24645i 0.0241133 + 0.224645i
\(11\) 4.35814 + 10.5215i 0.396195 + 0.956499i 0.988560 + 0.150829i \(0.0481943\pi\)
−0.592365 + 0.805670i \(0.701806\pi\)
\(12\) 11.0934 + 15.9890i 0.924447 + 1.33242i
\(13\) 5.75095 13.8840i 0.442380 1.06800i −0.532731 0.846285i \(-0.678834\pi\)
0.975111 0.221716i \(-0.0711659\pi\)
\(14\) 2.08479 13.8439i 0.148913 0.988850i
\(15\) 5.49603i 0.366402i
\(16\) 6.63677 + 14.5586i 0.414798 + 0.909913i
\(17\) −2.83244 −0.166614 −0.0833071 0.996524i \(-0.526548\pi\)
−0.0833071 + 0.996524i \(0.526548\pi\)
\(18\) −14.0563 25.7526i −0.780908 1.43070i
\(19\) −11.1668 + 26.9590i −0.587725 + 1.41889i 0.297946 + 0.954583i \(0.403698\pi\)
−0.885672 + 0.464312i \(0.846302\pi\)
\(20\) 0.803818 4.44664i 0.0401909 0.222332i
\(21\) −8.63657 + 32.9426i −0.411265 + 1.56870i
\(22\) −2.43089 22.6467i −0.110495 1.02939i
\(23\) −18.7312 18.7312i −0.814398 0.814398i 0.170892 0.985290i \(-0.445335\pi\)
−0.985290 + 0.170892i \(0.945335\pi\)
\(24\) −12.2725 36.9356i −0.511353 1.53898i
\(25\) 16.7753 16.7753i 0.671011 0.671011i
\(26\) −18.8631 + 23.3996i −0.725504 + 0.899984i
\(27\) 10.5555 + 25.4833i 0.390946 + 0.943828i
\(28\) −11.8055 + 25.3896i −0.421626 + 0.906770i
\(29\) 0.210363 0.507862i 0.00725390 0.0175125i −0.920211 0.391422i \(-0.871983\pi\)
0.927465 + 0.373910i \(0.121983\pi\)
\(30\) −3.09861 + 10.5463i −0.103287 + 0.351543i
\(31\) 35.8709i 1.15713i 0.815638 + 0.578563i \(0.196386\pi\)
−0.815638 + 0.578563i \(0.803614\pi\)
\(32\) −4.52724 31.6781i −0.141476 0.989942i
\(33\) 55.4060i 1.67897i
\(34\) 5.43515 + 1.59690i 0.159857 + 0.0469678i
\(35\) 6.82685 3.99079i 0.195053 0.114023i
\(36\) 12.4535 + 57.3413i 0.345930 + 1.59281i
\(37\) 59.9916 24.8494i 1.62140 0.671604i 0.627167 0.778885i \(-0.284214\pi\)
0.994229 + 0.107281i \(0.0342143\pi\)
\(38\) 36.6271 45.4356i 0.963870 1.19567i
\(39\) 51.6987 51.6987i 1.32561 1.32561i
\(40\) −4.04941 + 8.07943i −0.101235 + 0.201986i
\(41\) 20.9255 20.9255i 0.510379 0.510379i −0.404264 0.914642i \(-0.632472\pi\)
0.914642 + 0.404264i \(0.132472\pi\)
\(42\) 35.1454 58.3441i 0.836794 1.38914i
\(43\) 23.1324 + 55.8466i 0.537964 + 1.29876i 0.926142 + 0.377175i \(0.123104\pi\)
−0.388178 + 0.921584i \(0.626896\pi\)
\(44\) −8.10336 + 44.8270i −0.184167 + 1.01879i
\(45\) 6.34176 15.3104i 0.140928 0.340230i
\(46\) 25.3826 + 46.5035i 0.551796 + 1.01095i
\(47\) 2.87518 0.0611741 0.0305870 0.999532i \(-0.490262\pi\)
0.0305870 + 0.999532i \(0.490262\pi\)
\(48\) 2.72564 + 77.7944i 0.0567841 + 1.62072i
\(49\) −47.1906 + 13.1925i −0.963074 + 0.269235i
\(50\) −41.6477 + 22.7322i −0.832953 + 0.454644i
\(51\) −12.7313 5.27346i −0.249632 0.103401i
\(52\) 49.3887 34.2664i 0.949782 0.658969i
\(53\) −12.1364 29.3000i −0.228990 0.552830i 0.767065 0.641569i \(-0.221716\pi\)
−0.996055 + 0.0887393i \(0.971716\pi\)
\(54\) −5.88768 54.8509i −0.109031 1.01576i
\(55\) 9.09706 9.09706i 0.165401 0.165401i
\(56\) 36.9679 42.0639i 0.660141 0.751141i
\(57\) −100.385 + 100.385i −1.76114 + 1.76114i
\(58\) −0.689991 + 0.855930i −0.0118964 + 0.0147574i
\(59\) −23.7882 57.4297i −0.403189 0.973385i −0.986887 0.161414i \(-0.948395\pi\)
0.583698 0.811971i \(1.69839\pi\)
\(60\) 11.8918 18.4902i 0.198196 0.308170i
\(61\) −48.9259 20.2658i −0.802065 0.332226i −0.0562815 0.998415i \(-0.517924\pi\)
−0.745783 + 0.666189i \(0.767924\pi\)
\(62\) 20.2237 68.8323i 0.326188 1.11020i
\(63\) −62.0709 + 81.8032i −0.985252 + 1.29846i
\(64\) −9.17255 + 63.3393i −0.143321 + 0.989676i
\(65\) −16.9767 −0.261180
\(66\) 31.2373 106.318i 0.473293 1.61088i
\(67\) 18.8808 45.5823i 0.281803 0.680333i −0.718074 0.695966i \(-0.754976\pi\)
0.999878 + 0.0156328i \(0.00497628\pi\)
\(68\) −9.52913 6.12857i −0.140134 0.0901260i
\(69\) −49.3190 119.067i −0.714768 1.72560i
\(70\) −15.3500 + 3.80898i −0.219285 + 0.0544140i
\(71\) 40.7778 40.7778i 0.574335 0.574335i −0.359002 0.933337i \(-0.616883\pi\)
0.933337 + 0.359002i \(0.116883\pi\)
\(72\) 8.43160 117.053i 0.117106 1.62573i
\(73\) −59.6846 + 59.6846i −0.817598 + 0.817598i −0.985759 0.168162i \(-0.946217\pi\)
0.168162 + 0.985759i \(0.446217\pi\)
\(74\) −129.127 + 13.8605i −1.74496 + 0.187304i
\(75\) 106.634 44.1692i 1.42178 0.588922i
\(76\) −95.8995 + 66.5360i −1.26184 + 0.875474i
\(77\) −68.8221 + 40.2315i −0.893794 + 0.522487i
\(78\) −128.351 + 70.0569i −1.64553 + 0.898165i
\(79\) 89.6609i 1.13495i −0.823391 0.567474i \(-0.807921\pi\)
0.823391 0.567474i \(-0.192079\pi\)
\(80\) 12.3255 13.2205i 0.154069 0.165257i
\(81\) 2.16916i 0.0267797i
\(82\) −51.9514 + 28.3562i −0.633554 + 0.345807i
\(83\) 23.1587 55.9100i 0.279020 0.673615i −0.720789 0.693155i \(-0.756220\pi\)
0.999809 + 0.0195402i \(0.00622023\pi\)
\(84\) −100.334 + 92.1413i −1.19445 + 1.09692i
\(85\) 1.22449 + 2.95618i 0.0144058 + 0.0347786i
\(86\) −12.9028 120.205i −0.150033 1.39774i
\(87\) 1.89108 1.89108i 0.0217366 0.0217366i
\(88\) 40.8225 81.4494i 0.463892 0.925562i
\(89\) 32.4260 + 32.4260i 0.364338 + 0.364338i 0.865407 0.501069i \(-0.167060\pi\)
−0.501069 + 0.865407i \(0.667060\pi\)
\(90\) −20.8010 + 25.8035i −0.231122 + 0.286705i
\(91\) 101.757 + 26.6776i 1.11821 + 0.293160i
\(92\) −22.4882 103.546i −0.244437 1.12550i
\(93\) −66.7846 + 161.232i −0.718114 + 1.73368i
\(94\) −5.51716 1.62100i −0.0586932 0.0172447i
\(95\) 32.9642 0.346992
\(96\) 38.6295 150.816i 0.402391 1.57100i
\(97\) 29.3452i 0.302528i −0.988493 0.151264i \(-0.951666\pi\)
0.988493 0.151264i \(-0.0483343\pi\)
\(98\) 97.9915 + 1.29059i 0.999913 + 0.0131693i
\(99\) −63.9319 + 154.345i −0.645776 + 1.55904i
\(100\) 92.7335 20.1400i 0.927335 0.201400i
\(101\) −39.6793 95.7942i −0.392864 0.948458i −0.989313 0.145807i \(-0.953422\pi\)
0.596449 0.802651i \(1.70342\pi\)
\(102\) 21.4568 + 17.2969i 0.210360 + 0.169578i
\(103\) −103.220 103.220i −1.00214 1.00214i −0.999998 0.00213996i \(-0.999319\pi\)
−0.00213996 0.999998i \(1.49932\pi\)
\(104\) −114.091 + 37.9086i −1.09702 + 0.364505i
\(105\) 38.1154 5.22752i 0.363004 0.0497859i
\(106\) 6.76947 + 63.0659i 0.0638629 + 0.594961i
\(107\) 51.9433 + 125.402i 0.485451 + 1.17198i 0.956986 + 0.290136i \(0.0937004\pi\)
−0.471534 + 0.881848i \(0.656300\pi\)
\(108\) −19.6266 + 108.572i −0.181728 + 1.00530i
\(109\) −106.571 44.1430i −0.977711 0.404981i −0.164134 0.986438i \(-0.552483\pi\)
−0.813577 + 0.581457i \(0.802483\pi\)
\(110\) −22.5851 + 12.3274i −0.205319 + 0.112068i
\(111\) 315.915 2.84608
\(112\) −94.6526 + 59.8739i −0.845113 + 0.534588i
\(113\) 128.823i 1.14002i −0.821637 0.570011i \(-0.806939\pi\)
0.821637 0.570011i \(-0.193061\pi\)
\(114\) 249.224 136.032i 2.18617 1.19326i
\(115\) −11.4518 + 27.6471i −0.0995808 + 0.240409i
\(116\) 1.80658 1.25343i 0.0155740 0.0108054i
\(117\) 203.672 84.3636i 1.74078 0.721057i
\(118\) 13.2686 + 123.613i 0.112446 + 1.04757i
\(119\) −2.69406 19.6432i −0.0226392 0.165069i
\(120\) −33.2436 + 28.7762i −0.277030 + 0.239801i
\(121\) −6.14836 + 6.14836i −0.0508129 + 0.0508129i
\(122\) 82.4579 + 66.4718i 0.675884 + 0.544851i
\(123\) 133.015 55.0967i 1.08143 0.447941i
\(124\) −77.6140 + 120.680i −0.625919 + 0.973224i
\(125\) −50.8524 21.0637i −0.406819 0.168510i
\(126\) 165.227 121.976i 1.31133 0.968066i
\(127\) −8.00592 −0.0630388 −0.0315194 0.999503i \(-0.510035\pi\)
−0.0315194 + 0.999503i \(0.510035\pi\)
\(128\) 53.3112 116.370i 0.416494 0.909139i
\(129\) 294.087i 2.27975i
\(130\) 32.5765 + 9.57131i 0.250588 + 0.0736255i
\(131\) −140.038 58.0057i −1.06899 0.442791i −0.222358 0.974965i \(-0.571375\pi\)
−0.846635 + 0.532174i \(0.821375\pi\)
\(132\) −119.882 + 186.401i −0.908198 + 1.41213i
\(133\) −197.584 51.8006i −1.48559 0.389478i
\(134\) −61.9291 + 76.8227i −0.462158 + 0.573304i
\(135\) 22.0333 22.0333i 0.163210 0.163210i
\(136\) 14.8301 + 17.1325i 0.109045 + 0.125974i
\(137\) 153.441 + 153.441i 1.12000 + 1.12000i 0.991740 + 0.128265i \(0.0409408\pi\)
0.128265 + 0.991740i \(0.459059\pi\)
\(138\) 27.5091 + 256.281i 0.199342 + 1.85711i
\(139\) −73.1241 + 30.2890i −0.526073 + 0.217907i −0.629882 0.776691i \(-0.716897\pi\)
0.103809 + 0.994597i \(0.466897\pi\)
\(140\) 31.6023 + 1.34514i 0.225731 + 0.00960816i
\(141\) 12.9234 + 5.35303i 0.0916550 + 0.0379648i
\(142\) −101.238 + 55.2580i −0.712945 + 0.389141i
\(143\) 171.144 1.19681
\(144\) −82.1726 + 219.858i −0.570643 + 1.52679i
\(145\) −0.620990 −0.00428269
\(146\) 148.178 80.8787i 1.01492 0.553964i
\(147\) −236.674 28.5620i −1.61003 0.194300i
\(148\) 255.595 + 46.2039i 1.72700 + 0.312189i
\(149\) −61.1532 147.637i −0.410424 0.990851i −0.985024 0.172417i \(-0.944842\pi\)
0.574600 0.818434i \(-0.305158\pi\)
\(150\) −229.521 + 24.6367i −1.53014 + 0.164245i
\(151\) 83.9951 + 83.9951i 0.556259 + 0.556259i 0.928240 0.371981i \(-0.121321\pi\)
−0.371981 + 0.928240i \(0.621321\pi\)
\(152\) 221.533 73.6082i 1.45745 0.484264i
\(153\) −29.3807 29.3807i −0.192031 0.192031i
\(154\) 154.744 38.3987i 1.00483 0.249342i
\(155\) 37.4379 15.5073i 0.241535 0.100047i
\(156\) 285.789 62.0683i 1.83198 0.397873i
\(157\) 16.8081 + 6.96214i 0.107058 + 0.0443448i 0.435570 0.900155i \(-0.356547\pi\)
−0.328512 + 0.944500i \(0.606547\pi\)
\(158\) −50.5499 + 172.049i −0.319936 + 1.08892i
\(159\) 154.293i 0.970397i
\(160\) −31.1048 + 18.4197i −0.194405 + 0.115123i
\(161\) 112.086 147.718i 0.696186 0.917504i
\(162\) 1.22295 4.16238i 0.00754908 0.0256937i
\(163\) 57.5378 138.909i 0.352993 0.852200i −0.643255 0.765652i \(-0.722416\pi\)
0.996248 0.0865478i \(-0.0275835\pi\)
\(164\) 115.676 25.1227i 0.705342 0.153187i
\(165\) 57.8264 23.9525i 0.350463 0.145167i
\(166\) −75.9605 + 94.2285i −0.457593 + 0.567642i
\(167\) 32.4664 + 32.4664i 0.194410 + 0.194410i 0.797599 0.603189i \(-0.206103\pi\)
−0.603189 + 0.797599i \(0.706103\pi\)
\(168\) 244.478 120.242i 1.45523 0.715725i
\(169\) −40.1914 40.1914i −0.237819 0.237819i
\(170\) −0.682996 6.36294i −0.00401762 0.0374291i
\(171\) −395.476 + 163.811i −2.31272 + 0.957961i
\(172\) −43.0116 + 237.936i −0.250067 + 1.38335i
\(173\) −125.307 + 302.519i −0.724319 + 1.74866i −0.0636656 + 0.997971i \(0.520279\pi\)
−0.660654 + 0.750691i \(0.729721\pi\)
\(174\) −4.69495 + 2.56260i −0.0269825 + 0.0147276i
\(175\) 132.294 + 100.382i 0.755964 + 0.573612i
\(176\) −124.254 + 133.277i −0.705990 + 0.757257i
\(177\) 302.424i 1.70861i
\(178\) −43.9405 80.5035i −0.246857 0.452267i
\(179\) −255.194 105.705i −1.42566 0.590529i −0.469386 0.882993i \(-0.655525\pi\)
−0.956276 + 0.292464i \(0.905525\pi\)
\(180\) 54.4626 37.7867i 0.302570 0.209926i
\(181\) 84.3482 34.9382i 0.466012 0.193029i −0.137307 0.990529i \(-0.543845\pi\)
0.603319 + 0.797500i \(0.293845\pi\)
\(182\) −180.219 108.561i −0.990217 0.596488i
\(183\) −182.181 182.181i −0.995526 0.995526i
\(184\) −15.2256 + 211.371i −0.0827477 + 1.14876i
\(185\) −51.8698 51.8698i −0.280377 0.280377i
\(186\) 219.054 271.735i 1.17771 1.46094i
\(187\) −12.3442 29.8015i −0.0660117 0.159366i
\(188\) 9.67292 + 6.22104i 0.0514517 + 0.0330907i
\(189\) −166.689 + 97.4419i −0.881953 + 0.515566i
\(190\) −63.2547 18.5849i −0.332920 0.0978153i
\(191\) −17.7129 −0.0927376 −0.0463688 0.998924i \(-0.514765\pi\)
−0.0463688 + 0.998924i \(0.514765\pi\)
\(192\) −159.154 + 267.620i −0.828928 + 1.39385i
\(193\) 315.395 1.63417 0.817086 0.576515i \(-0.195588\pi\)
0.817086 + 0.576515i \(0.195588\pi\)
\(194\) −16.5445 + 56.3102i −0.0852811 + 0.290259i
\(195\) −76.3069 31.6074i −0.391318 0.162089i
\(196\) −187.307 57.7232i −0.955650 0.294506i
\(197\) −115.495 + 47.8395i −0.586268 + 0.242840i −0.656044 0.754722i \(-0.727772\pi\)
0.0697760 + 0.997563i \(0.477772\pi\)
\(198\) 209.697 260.127i 1.05907 1.31377i
\(199\) 151.538 + 151.538i 0.761498 + 0.761498i 0.976593 0.215095i \(-0.0690063\pi\)
−0.215095 + 0.976593i \(0.569006\pi\)
\(200\) −189.300 13.6357i −0.946501 0.0681787i
\(201\) 169.731 169.731i 0.844433 0.844433i
\(202\) 22.1323 + 206.189i 0.109566 + 1.02074i
\(203\) 3.72215 + 0.975835i 0.0183357 + 0.00480707i
\(204\) −31.4213 45.2881i −0.154026 0.222000i
\(205\) −30.8860 12.7934i −0.150663 0.0624068i
\(206\) 139.874 + 256.263i 0.678998 + 1.24399i
\(207\) 388.594i 1.87726i
\(208\) 240.300 8.41924i 1.15529 0.0404771i
\(209\) −332.315 −1.59002
\(210\) −76.0865 11.4580i −0.362317 0.0545621i
\(211\) 40.5373 + 16.7911i 0.192120 + 0.0795787i 0.476669 0.879083i \(-0.341844\pi\)
−0.284549 + 0.958661i \(0.591844\pi\)
\(212\) 22.5660 124.833i 0.106444 0.588835i
\(213\) 259.208 107.368i 1.21694 0.504073i
\(214\) −28.9729 269.918i −0.135388 1.26130i
\(215\) 48.2860 48.2860i 0.224586 0.224586i
\(216\) 98.8732 197.273i 0.457746 0.913301i
\(217\) −248.767 + 34.1184i −1.14639 + 0.157228i
\(218\) 179.610 + 144.789i 0.823898 + 0.664169i
\(219\) −379.392 + 157.149i −1.73238 + 0.717576i
\(220\) 50.2884 10.9217i 0.228584 0.0496442i
\(221\) −16.2892 + 39.3257i −0.0737069 + 0.177944i
\(222\) −606.206 178.110i −2.73066 0.802296i
\(223\) 37.7997i 0.169505i 0.996402 + 0.0847527i \(0.0270100\pi\)
−0.996402 + 0.0847527i \(0.972990\pi\)
\(224\) 215.384 61.5273i 0.961537 0.274675i
\(225\) 348.017 1.54674
\(226\) −72.6289 + 247.196i −0.321367 + 1.09379i
\(227\) −301.113 124.725i −1.32649 0.549450i −0.396837 0.917889i \(-0.629892\pi\)
−0.929652 + 0.368439i \(0.879892\pi\)
\(228\) −554.926 + 120.520i −2.43389 + 0.528596i
\(229\) 93.8004 + 226.454i 0.409609 + 0.988883i 0.985241 + 0.171174i \(0.0547562\pi\)
−0.575632 + 0.817709i \(0.695244\pi\)
\(230\) 37.5619 46.5953i 0.163313 0.202588i
\(231\) −384.245 + 52.6991i −1.66340 + 0.228135i
\(232\) −4.17330 + 1.38665i −0.0179884 + 0.00597695i
\(233\) 2.60751 + 2.60751i 0.0111910 + 0.0111910i 0.712680 0.701489i \(-0.247481\pi\)
−0.701489 + 0.712680i \(0.747481\pi\)
\(234\) −438.387 + 47.0564i −1.87345 + 0.201096i
\(235\) −1.24297 3.00079i −0.00528922 0.0127693i
\(236\) 44.2308 244.680i 0.187419 1.03678i
\(237\) 166.931 403.007i 0.704351 1.70045i
\(238\) −5.90504 + 39.2121i −0.0248111 + 0.164757i
\(239\) 440.423i 1.84277i 0.388648 + 0.921386i \(0.372942\pi\)
−0.388648 + 0.921386i \(0.627058\pi\)
\(240\) 80.0146 36.4759i 0.333394 0.151983i
\(241\) 323.395 1.34189 0.670944 0.741508i \(-0.265889\pi\)
0.670944 + 0.741508i \(0.265889\pi\)
\(242\) 15.2644 8.33164i 0.0630760 0.0344283i
\(243\) 90.9614 219.600i 0.374327 0.903704i
\(244\) −120.751 174.041i −0.494883 0.713283i
\(245\) 34.1698 + 43.5489i 0.139469 + 0.177751i
\(246\) −286.305 + 30.7319i −1.16384 + 0.124926i
\(247\) 310.080 + 310.080i 1.25538 + 1.25538i
\(248\) 216.971 187.813i 0.874882 0.757311i
\(249\) 208.187 208.187i 0.836093 0.836093i
\(250\) 85.7046 + 69.0891i 0.342818 + 0.276356i
\(251\) 121.162 + 292.510i 0.482716 + 1.16538i 0.958314 + 0.285716i \(0.0922315\pi\)
−0.475599 + 0.879662i \(0.657768\pi\)
\(252\) −385.822 + 140.906i −1.53104 + 0.559150i
\(253\) 115.447 278.713i 0.456311 1.10163i
\(254\) 15.3625 + 4.51366i 0.0604822 + 0.0177703i
\(255\) 15.5672i 0.0610478i
\(256\) −167.906 + 193.244i −0.655885 + 0.754861i
\(257\) 99.4686i 0.387037i 0.981097 + 0.193519i \(0.0619900\pi\)
−0.981097 + 0.193519i \(0.938010\pi\)
\(258\) 165.804 564.322i 0.642650 2.18729i
\(259\) 229.393 + 392.411i 0.885687 + 1.51510i
\(260\) −57.1145 36.7326i −0.219671 0.141279i
\(261\) 7.45009 3.08593i 0.0285444 0.0118235i
\(262\) 236.015 + 190.259i 0.900820 + 0.726178i
\(263\) −14.8302 + 14.8302i −0.0563887 + 0.0563887i −0.734739 0.678350i \(-0.762695\pi\)
0.678350 + 0.734739i \(0.262695\pi\)
\(264\) 335.132 290.095i 1.26944 1.09885i
\(265\) −25.3333 + 25.3333i −0.0955972 + 0.0955972i
\(266\) 349.937 + 210.796i 1.31555 + 0.792465i
\(267\) 85.3775 + 206.120i 0.319766 + 0.771983i
\(268\) 162.147 112.499i 0.605026 0.419774i
\(269\) 57.9041 139.793i 0.215257 0.519676i −0.778959 0.627075i \(-0.784252\pi\)
0.994216 + 0.107399i \(0.0342521\pi\)
\(270\) −54.7018 + 29.8574i −0.202599 + 0.110583i
\(271\) −178.407 −0.658328 −0.329164 0.944273i \(-0.606767\pi\)
−0.329164 + 0.944273i \(0.606767\pi\)
\(272\) −18.7983 41.2364i −0.0691113 0.151605i
\(273\) 407.707 + 309.361i 1.49343 + 1.13319i
\(274\) −207.927 380.944i −0.758859 1.39031i
\(275\) 249.610 + 103.392i 0.907673 + 0.375970i
\(276\) 91.7018 507.285i 0.332253 1.83799i
\(277\) 51.5626 + 124.483i 0.186147 + 0.449397i 0.989212 0.146494i \(-0.0467989\pi\)
−0.803065 + 0.595891i \(0.796799\pi\)
\(278\) 157.394 16.8946i 0.566165 0.0607720i
\(279\) −372.086 + 372.086i −1.33364 + 1.33364i
\(280\) −59.8831 20.3983i −0.213868 0.0728510i
\(281\) 139.673 139.673i 0.497055 0.497055i −0.413465 0.910520i \(-0.635682\pi\)
0.910520 + 0.413465i \(0.135682\pi\)
\(282\) −21.7805 17.5579i −0.0772359 0.0622622i
\(283\) −142.114 343.093i −0.502168 1.21234i −0.948300 0.317375i \(-0.897199\pi\)
0.446132 0.894967i \(1.64720\pi\)
\(284\) 225.419 48.9569i 0.793728 0.172383i
\(285\) 148.167 + 61.3730i 0.519886 + 0.215344i
\(286\) −328.406 96.4893i −1.14827 0.337375i
\(287\) 165.023 + 125.217i 0.574995 + 0.436296i
\(288\) 281.634 375.555i 0.977896 1.30401i
\(289\) −280.977 −0.972240
\(290\) 1.19161 + 0.350108i 0.00410901 + 0.00120727i
\(291\) 54.6351 131.901i 0.187749 0.453267i
\(292\) −329.936 + 71.6560i −1.12992 + 0.245397i
\(293\) 202.833 + 489.683i 0.692264 + 1.67127i 0.740168 + 0.672422i \(0.234746\pi\)
−0.0479038 + 0.998852i \(0.515254\pi\)
\(294\) 438.049 + 188.242i 1.48996 + 0.640279i
\(295\) −49.6547 + 49.6547i −0.168321 + 0.168321i
\(296\) −464.410 232.762i −1.56895 0.786360i
\(297\) −222.120 + 222.120i −0.747879 + 0.747879i
\(298\) 34.1100 + 317.776i 0.114463 + 1.06636i
\(299\) −367.786 + 152.342i −1.23005 + 0.509504i
\(300\) 454.315 + 82.1264i 1.51438 + 0.273755i
\(301\) −365.299 + 213.544i −1.21362 + 0.709447i
\(302\) −113.822 208.533i −0.376893 0.690507i
\(303\) 504.451i 1.66485i
\(304\) −466.597 + 16.3479i −1.53486 + 0.0537760i
\(305\) 59.8244i 0.196145i
\(306\) 39.8138 + 72.9429i 0.130110 + 0.238375i
\(307\) −29.3441 + 70.8430i −0.0955835 + 0.230759i −0.964438 0.264308i \(-0.914856\pi\)
0.868855 + 0.495067i \(0.164856\pi\)
\(308\) −318.586 13.5605i −1.03437 0.0440276i
\(309\) −271.778 656.130i −0.879540 2.12340i
\(310\) −80.5821 + 8.64966i −0.259942 + 0.0279021i
\(311\) 290.745 290.745i 0.934873 0.934873i −0.0631324 0.998005i \(-0.520109\pi\)
0.998005 + 0.0631324i \(0.0201090\pi\)
\(312\) −583.392 42.0231i −1.86985 0.134690i
\(313\) 171.163 + 171.163i 0.546848 + 0.546848i 0.925528 0.378680i \(-0.123622\pi\)
−0.378680 + 0.925528i \(0.623622\pi\)
\(314\) −28.3277 22.8358i −0.0902156 0.0727255i
\(315\) 112.211 + 29.4182i 0.356224 + 0.0933912i
\(316\) 194.000 301.644i 0.613923 0.954571i
\(317\) −107.931 + 260.569i −0.340477 + 0.821985i 0.657190 + 0.753725i \(0.271745\pi\)
−0.997668 + 0.0682601i \(0.978255\pi\)
\(318\) −86.9890 + 296.072i −0.273550 + 0.931043i
\(319\) 6.26025 0.0196246
\(320\) 70.0717 17.8089i 0.218974 0.0556527i
\(321\) 660.366i 2.05721i
\(322\) −298.363 + 220.262i −0.926593 + 0.684043i
\(323\) 31.6293 76.3598i 0.0979234 0.236408i
\(324\) −4.69342 + 7.29766i −0.0144859 + 0.0225236i
\(325\) −136.434 329.382i −0.419798 1.01348i
\(326\) −188.724 + 234.111i −0.578908 + 0.718132i
\(327\) −396.827 396.827i −1.21354 1.21354i
\(328\) −236.134 17.0093i −0.719919 0.0518575i
\(329\) 2.73472 + 19.9396i 0.00831221 + 0.0606067i
\(330\) −124.467 + 13.3602i −0.377172 + 0.0404855i
\(331\) 21.0396 + 50.7941i 0.0635638 + 0.153457i 0.952470 0.304633i \(-0.0985339\pi\)
−0.888906 + 0.458090i \(0.848534\pi\)
\(332\) 198.885 137.988i 0.599051 0.415628i
\(333\) 880.049 + 364.528i 2.64279 + 1.09468i
\(334\) −43.9953 80.6038i −0.131722 0.241329i
\(335\) −55.7360 −0.166376
\(336\) −536.918 + 92.8963i −1.59797 + 0.276477i
\(337\) 32.1675i 0.0954526i 0.998860 + 0.0477263i \(0.0151975\pi\)
−0.998860 + 0.0477263i \(0.984802\pi\)
\(338\) 54.4633 + 99.7824i 0.161134 + 0.295214i
\(339\) 239.843 579.031i 0.707500 1.70806i
\(340\) −2.27677 + 12.5949i −0.00669638 + 0.0370437i
\(341\) −377.415 + 156.330i −1.10679 + 0.458447i
\(342\) 851.230 91.3707i 2.48898 0.267166i
\(343\) −136.376 314.723i −0.397599 0.917559i
\(344\) 216.680 432.323i 0.629884 1.25675i
\(345\) −102.947 + 102.947i −0.298397 + 0.298397i
\(346\) 411.008 509.853i 1.18788 1.47356i
\(347\) 221.061 91.5666i 0.637065 0.263881i −0.0406867 0.999172i \(-0.512955\pi\)
0.677751 + 0.735291i \(0.262955\pi\)
\(348\) 10.4539 2.27039i 0.0300398 0.00652410i
\(349\) −479.801 198.740i −1.37479 0.569455i −0.431705 0.902015i \(-0.642088\pi\)
−0.943082 + 0.332559i \(0.892088\pi\)
\(350\) −197.262 267.208i −0.563607 0.763452i
\(351\) 414.515 1.18096
\(352\) 313.571 185.691i 0.890826 0.527531i
\(353\) 481.713i 1.36463i 0.731060 + 0.682313i \(0.239026\pi\)
−0.731060 + 0.682313i \(0.760974\pi\)
\(354\) −170.504 + 580.318i −0.481649 + 1.63932i
\(355\) −60.1878 24.9306i −0.169543 0.0702270i
\(356\) 38.9300 + 179.251i 0.109354 + 0.503513i
\(357\) 24.4626 93.3081i 0.0685226 0.261367i
\(358\) 430.093 + 346.711i 1.20138 + 0.968467i
\(359\) −408.722 + 408.722i −1.13850 + 1.13850i −0.149783 + 0.988719i \(0.547857\pi\)
−0.988719 + 0.149783i \(0.952143\pi\)
\(360\) −125.811 + 41.8030i −0.349476 + 0.116120i
\(361\) −346.825 346.825i −0.960734 0.960734i
\(362\) −181.553 + 19.4878i −0.501527 + 0.0538337i
\(363\) −39.0827 + 16.1886i −0.107666 + 0.0445966i
\(364\) 284.616 + 309.922i 0.781912 + 0.851434i
\(365\) 88.0942 + 36.4898i 0.241354 + 0.0999721i
\(366\) 246.874 + 452.298i 0.674518 + 1.23579i
\(367\) 403.985 1.10078 0.550389 0.834909i \(-0.314480\pi\)
0.550389 + 0.834909i \(0.314480\pi\)
\(368\) 148.385 397.014i 0.403221 1.07884i
\(369\) 434.118 1.17647
\(370\) 70.2888 + 128.776i 0.189970 + 0.348044i
\(371\) 191.654 112.036i 0.516588 0.301983i
\(372\) −573.541 + 397.929i −1.54178 + 1.06970i
\(373\) −136.799 330.263i −0.366754 0.885424i −0.994278 0.106826i \(-0.965931\pi\)
0.627523 0.778598i \(-0.284069\pi\)
\(374\) 6.88534 + 64.1454i 0.0184100 + 0.171512i
\(375\) −189.354 189.354i −0.504945 0.504945i
\(376\) −15.0539 17.3910i −0.0400370 0.0462527i
\(377\) −5.84137 5.84137i −0.0154944 0.0154944i
\(378\) 374.795 93.0026i 0.991521 0.246039i
\(379\) 417.974 173.130i 1.10283 0.456809i 0.244370 0.969682i \(-0.421419\pi\)
0.858464 + 0.512873i \(0.171419\pi\)
\(380\) 110.901 + 71.3248i 0.291844 + 0.187697i
\(381\) −35.9850 14.9055i −0.0944488 0.0391220i
\(382\) 33.9891 + 9.98635i 0.0889766 + 0.0261423i
\(383\) 311.639i 0.813680i 0.913499 + 0.406840i \(0.133369\pi\)
−0.913499 + 0.406840i \(0.866631\pi\)
\(384\) 456.281 423.803i 1.18823 1.10365i
\(385\) 71.7415 + 54.4362i 0.186341 + 0.141393i
\(386\) −605.209 177.817i −1.56790 0.460665i
\(387\) −339.342 + 819.244i −0.876852 + 2.11691i
\(388\) 63.4943 98.7255i 0.163645 0.254447i
\(389\) 69.8329 28.9257i 0.179519 0.0743592i −0.291114 0.956688i \(-0.594026\pi\)
0.470633 + 0.882329i \(0.344026\pi\)
\(390\) 128.605 + 103.672i 0.329756 + 0.265826i
\(391\) 53.0549 + 53.0549i 0.135690 + 0.135690i
\(392\) 326.878 + 216.366i 0.833874 + 0.551955i
\(393\) −521.448 521.448i −1.32684 1.32684i
\(394\) 248.593 26.6839i 0.630948 0.0677258i
\(395\) −93.5778 + 38.7612i −0.236906 + 0.0981296i
\(396\) −549.042 + 380.931i −1.38647 + 0.961947i
\(397\) −76.4542 + 184.577i −0.192580 + 0.464929i −0.990445 0.137907i \(-0.955963\pi\)
0.797865 + 0.602836i \(0.205963\pi\)
\(398\) −205.349 376.221i −0.515953 0.945278i
\(399\) −791.657 600.696i −1.98410 1.50550i
\(400\) 355.559 + 132.891i 0.888896 + 0.332228i
\(401\) 98.8758i 0.246573i 0.992371 + 0.123286i \(0.0393434\pi\)
−0.992371 + 0.123286i \(0.960657\pi\)
\(402\) −421.388 + 230.002i −1.04823 + 0.572145i
\(403\) 498.032 + 206.292i 1.23581 + 0.511890i
\(404\) 73.7781 408.133i 0.182619 1.01023i
\(405\) 2.26392 0.937746i 0.00558992 0.00231542i
\(406\) −6.59223 3.97103i −0.0162370 0.00978087i
\(407\) 522.904 + 522.904i 1.28478 + 1.28478i
\(408\) 34.7611 + 104.618i 0.0851988 + 0.256416i
\(409\) −273.389 273.389i −0.668432 0.668432i 0.288921 0.957353i \(-0.406703\pi\)
−0.957353 + 0.288921i \(0.906703\pi\)
\(410\) 52.0540 + 41.9623i 0.126961 + 0.102347i
\(411\) 404.008 + 975.361i 0.982988 + 2.37314i
\(412\) −123.924 570.600i −0.300786 1.38495i
\(413\) 375.654 219.597i 0.909573 0.531711i
\(414\) −219.085 + 745.668i −0.529191 + 1.80113i
\(415\) −68.3642 −0.164733
\(416\) −465.856 119.323i −1.11984 0.286834i
\(417\) −385.070 −0.923430
\(418\) 637.676 + 187.356i 1.52554 + 0.448220i
\(419\) −599.714 248.410i −1.43130 0.592863i −0.473626 0.880726i \(-0.657055\pi\)
−0.957672 + 0.287863i \(0.907055\pi\)
\(420\) 139.542 + 64.8836i 0.332242 + 0.154485i
\(421\) −313.459 + 129.839i −0.744557 + 0.308406i −0.722519 0.691351i \(-0.757016\pi\)
−0.0220386 + 0.999757i \(0.507016\pi\)
\(422\) −68.3200 55.0748i −0.161896 0.130509i
\(423\) 29.8240 + 29.8240i 0.0705060 + 0.0705060i
\(424\) −113.681 + 226.818i −0.268117 + 0.534949i
\(425\) −47.5150 + 47.5150i −0.111800 + 0.111800i
\(426\) −557.925 + 59.8875i −1.30968 + 0.140581i
\(427\) 94.0092 358.581i 0.220162 0.839768i
\(428\) −96.5814 + 534.278i −0.225657 + 1.24831i
\(429\) 769.257 + 318.637i 1.79314 + 0.742743i
\(430\) −119.879 + 65.4323i −0.278788 + 0.152168i
\(431\) 276.473i 0.641468i −0.947169 0.320734i \(-0.896070\pi\)
0.947169 0.320734i \(-0.103930\pi\)
\(432\) −300.947 + 322.801i −0.696638 + 0.747225i
\(433\) 47.4776 0.109648 0.0548240 0.998496i \(-0.482540\pi\)
0.0548240 + 0.998496i \(0.482540\pi\)
\(434\) 496.593 + 74.7831i 1.14422 + 0.172311i
\(435\) −2.79122 1.15616i −0.00641661 0.00265784i
\(436\) −263.021 379.096i −0.603259 0.869487i
\(437\) 714.140 295.806i 1.63419 0.676903i
\(438\) 816.610 87.6547i 1.86441 0.200125i
\(439\) −475.753 + 475.753i −1.08372 + 1.08372i −0.0875602 + 0.996159i \(0.527907\pi\)
−0.996159 + 0.0875602i \(0.972093\pi\)
\(440\) −102.656 7.39452i −0.233308 0.0168057i
\(441\) −626.350 352.660i −1.42029 0.799682i
\(442\) 53.4287 66.2779i 0.120879 0.149950i
\(443\) −474.354 + 196.484i −1.07078 + 0.443530i −0.847265 0.531171i \(-0.821752\pi\)
−0.223512 + 0.974701i \(0.571752\pi\)
\(444\) 1062.83 + 683.546i 2.39375 + 1.53952i
\(445\) 19.8245 47.8607i 0.0445495 0.107552i
\(446\) 21.3111 72.5335i 0.0477827 0.162631i
\(447\) 777.453i 1.73927i
\(448\) −447.987 3.36752i −0.999972 0.00751678i
\(449\) 614.837 1.36935 0.684674 0.728850i \(-0.259945\pi\)
0.684674 + 0.728850i \(0.259945\pi\)
\(450\) −667.807 196.209i −1.48402 0.436019i
\(451\) 311.364 + 128.971i 0.690386 + 0.285967i
\(452\) 278.734 433.395i 0.616668 0.958839i
\(453\) 221.158 + 533.924i 0.488208 + 1.17864i
\(454\) 507.484 + 409.098i 1.11781 + 0.901098i
\(455\) −16.1473 117.735i −0.0354887 0.258758i
\(456\) 1132.79 + 81.5976i 2.48419 + 0.178942i
\(457\) 103.149 + 103.149i 0.225710 + 0.225710i 0.810898 0.585188i \(-0.198979\pi\)
−0.585188 + 0.810898i \(0.698979\pi\)
\(458\) −52.3200 487.425i −0.114236 1.06425i
\(459\) −29.8980 72.1801i −0.0651372 0.157255i
\(460\) −98.3471 + 68.2343i −0.213798 + 0.148335i
\(461\) −18.1284 + 43.7659i −0.0393242 + 0.0949370i −0.942321 0.334709i \(-0.891362\pi\)
0.902997 + 0.429646i \(0.141362\pi\)
\(462\) 767.035 + 115.510i 1.66025 + 0.250021i
\(463\) 51.0602i 0.110281i 0.998479 + 0.0551406i \(0.0175607\pi\)
−0.998479 + 0.0551406i \(0.982439\pi\)
\(464\) 8.78990 0.307967i 0.0189437 0.000663721i
\(465\) 197.147 0.423973
\(466\) −3.53343 6.47360i −0.00758247 0.0138919i
\(467\) 251.810 607.923i 0.539208 1.30176i −0.386069 0.922470i \(-0.626167\pi\)
0.925277 0.379293i \(-0.123833\pi\)
\(468\) 867.747 + 156.862i 1.85416 + 0.335176i
\(469\) 334.076 + 87.5846i 0.712315 + 0.186747i
\(470\) 0.693302 + 6.45895i 0.00147511 + 0.0137425i
\(471\) 62.5868 + 62.5868i 0.132881 + 0.132881i
\(472\) −222.822 + 444.578i −0.472081 + 0.941902i
\(473\) −486.775 + 486.775i −1.02912 + 1.02912i
\(474\) −547.534 + 679.213i −1.15514 + 1.43294i
\(475\) 264.919 + 639.571i 0.557724 + 1.34646i
\(476\) 33.4385 71.9144i 0.0702489 0.151081i
\(477\) 178.036 429.817i 0.373241 0.901083i
\(478\) 248.306 845.123i 0.519469 1.76804i
\(479\) 729.759i 1.52351i 0.647868 + 0.761753i \(0.275661\pi\)
−0.647868 + 0.761753i \(0.724339\pi\)
\(480\) −174.104 + 24.8818i −0.362717 + 0.0518371i
\(481\) 975.832i 2.02876i
\(482\) −620.560 182.327i −1.28747 0.378272i
\(483\) 778.826 455.281i 1.61248 0.942610i
\(484\) −33.9880 + 7.38158i −0.0702232 + 0.0152512i
\(485\) −30.6272 + 12.6862i −0.0631488 + 0.0261571i
\(486\) −298.353 + 370.106i −0.613896 + 0.761534i
\(487\) 191.046 191.046i 0.392292 0.392292i −0.483211 0.875504i \(-0.660530\pi\)
0.875504 + 0.483211i \(0.160530\pi\)
\(488\) 133.586 + 402.044i 0.273742 + 0.823861i
\(489\) 517.242 517.242i 1.05775 1.05775i
\(490\) −41.0156 102.830i −0.0837053 0.209858i
\(491\) 6.44908 + 15.5695i 0.0131346 + 0.0317097i 0.930311 0.366772i \(-0.119537\pi\)
−0.917176 + 0.398482i \(0.869537\pi\)
\(492\) 566.714 + 102.445i 1.15186 + 0.208221i
\(493\) −0.595842 + 1.43849i −0.00120860 + 0.00291783i
\(494\) −420.189 769.828i −0.850585 1.55836i
\(495\) 188.726 0.381265
\(496\) −522.230 + 238.067i −1.05288 + 0.479974i
\(497\) 321.583 + 244.011i 0.647048 + 0.490969i
\(498\) −516.862 + 282.114i −1.03788 + 0.566495i
\(499\) −886.517 367.207i −1.77659 0.735887i −0.993481 0.113999i \(-0.963634\pi\)
−0.783106 0.621888i \(-0.786366\pi\)
\(500\) −125.506 180.894i −0.251012 0.361788i
\(501\) 85.4839 + 206.376i 0.170626 + 0.411929i
\(502\) −67.5816 629.605i −0.134625 1.25419i
\(503\) −387.368 + 387.368i −0.770115 + 0.770115i −0.978126 0.208012i \(-0.933301\pi\)
0.208012 + 0.978126i \(0.433301\pi\)
\(504\) 819.791 52.8605i 1.62657 0.104882i
\(505\) −82.8254 + 82.8254i −0.164011 + 0.164011i
\(506\) −378.665 + 469.731i −0.748349 + 0.928323i
\(507\) −105.824 255.481i −0.208725 0.503907i
\(508\) −26.9342 17.3224i −0.0530200 0.0340993i
\(509\) −606.452 251.201i −1.19146 0.493518i −0.303229 0.952918i \(-0.598065\pi\)
−0.888230 + 0.459400i \(0.848065\pi\)
\(510\) 8.77663 29.8717i 0.0172091 0.0585720i
\(511\) −470.687 357.149i −0.921109 0.698922i
\(512\) 431.143 276.151i 0.842077 0.539357i
\(513\) −804.877 −1.56896
\(514\) 56.0794 190.869i 0.109104 0.371341i
\(515\) −63.1064 + 152.352i −0.122537 + 0.295830i
\(516\) −636.318 + 989.393i −1.23317 + 1.91743i
\(517\) 12.5305 + 30.2512i 0.0242369 + 0.0585129i
\(518\) −218.942 882.324i −0.422669 1.70333i
\(519\) −1126.46 + 1126.46i −2.17045 + 2.17045i
\(520\) 88.8870 + 102.686i 0.170936 + 0.197474i
\(521\) −611.974 + 611.974i −1.17461 + 1.17461i −0.193517 + 0.981097i \(0.561989\pi\)
−0.981097 + 0.193517i \(0.938011\pi\)
\(522\) −16.0357 + 1.72127i −0.0307198 + 0.00329745i
\(523\) 609.300 252.380i 1.16501 0.482563i 0.285469 0.958388i \(-0.407851\pi\)
0.879540 + 0.475825i \(0.157851\pi\)
\(524\) −345.620 498.148i −0.659581 0.950665i
\(525\) 407.741 + 697.503i 0.776649 + 1.32858i
\(526\) 36.8187 20.0964i 0.0699975 0.0382062i
\(527\) 101.602i 0.192794i
\(528\) −806.634 + 367.717i −1.52772 + 0.696433i
\(529\) 172.713i 0.326489i
\(530\) 62.8944 34.3291i 0.118669 0.0647719i
\(531\) 348.961 842.466i 0.657177 1.58657i
\(532\) −552.647 601.785i −1.03881 1.13117i
\(533\) −170.189 410.872i −0.319303 0.770867i
\(534\) −47.6219 443.656i −0.0891796 0.830816i
\(535\) 108.425 108.425i 0.202663 0.202663i
\(536\) −374.568 + 124.457i −0.698822 + 0.232196i
\(537\) −950.242 950.242i −1.76954 1.76954i
\(538\) −189.925 + 235.601i −0.353021 + 0.437921i
\(539\) −344.469 439.021i −0.639088 0.814510i
\(540\) 121.800 26.4527i 0.225556 0.0489866i
\(541\) −151.319 + 365.317i −0.279703 + 0.675263i −0.999827 0.0185821i \(-0.994085\pi\)
0.720124 + 0.693845i \(0.244085\pi\)
\(542\) 342.343 + 100.584i 0.631630 + 0.185579i
\(543\) 444.176 0.818004
\(544\) 12.8231 + 89.7265i 0.0235719 + 0.164938i
\(545\) 130.310i 0.239100i
\(546\) −607.931 823.492i −1.11343 1.50823i
\(547\) 179.196 432.617i 0.327598 0.790891i −0.671172 0.741302i \(-0.734209\pi\)
0.998770 0.0495891i \(-0.0157912\pi\)
\(548\) 184.217 + 848.218i 0.336163 + 1.54784i
\(549\) −297.289 717.720i −0.541511 1.30732i
\(550\) −420.683 339.125i −0.764878 0.616591i
\(551\) 11.3424 + 11.3424i 0.0205851 + 0.0205851i
\(552\) −461.968 + 921.724i −0.836899 + 1.66979i
\(553\) 621.805 85.2805i 1.12442 0.154214i
\(554\) −28.7606 267.940i −0.0519144 0.483646i
\(555\) −136.573 329.716i −0.246077 0.594083i
\(556\) −311.547 56.3182i −0.560336 0.101292i
\(557\) 99.1912 + 41.0863i 0.178081 + 0.0737636i 0.469943 0.882697i \(-0.344275\pi\)
−0.291861 + 0.956461i \(0.594275\pi\)
\(558\) 923.770 504.213i 1.65550 0.903608i
\(559\) 908.409 1.62506
\(560\) 103.409 + 72.9035i 0.184658 + 0.130185i
\(561\) 156.934i 0.279740i
\(562\) −346.762 + 189.270i −0.617015 + 0.336780i
\(563\) −271.295 + 654.963i −0.481873 + 1.16334i 0.476845 + 0.878987i \(0.341780\pi\)
−0.958718 + 0.284358i \(0.908220\pi\)
\(564\) 31.8954 + 45.9714i 0.0565522 + 0.0815096i
\(565\) −134.450 + 55.6911i −0.237965 + 0.0985683i
\(566\) 79.2682 + 738.480i 0.140050 + 1.30473i
\(567\) −15.0433 + 2.06319i −0.0265314 + 0.00363877i
\(568\) −460.156 33.1461i −0.810133 0.0583558i
\(569\) −82.1858 + 82.1858i −0.144439 + 0.144439i −0.775629 0.631190i \(-0.782567\pi\)
0.631190 + 0.775629i \(0.282567\pi\)
\(570\) −249.716 201.303i −0.438098 0.353164i
\(571\) 183.405 75.9688i 0.321199 0.133045i −0.216258 0.976336i \(-0.569385\pi\)
0.537457 + 0.843291i \(0.319385\pi\)
\(572\) 575.776 + 370.305i 1.00660 + 0.647386i
\(573\) −79.6158 32.9779i −0.138945 0.0575531i
\(574\) −246.066 333.316i −0.428686 0.580690i
\(575\) −628.441 −1.09294
\(576\) −752.159 + 561.867i −1.30583 + 0.975464i
\(577\) 988.829i 1.71374i −0.515531 0.856871i \(-0.672405\pi\)
0.515531 0.856871i \(-0.327595\pi\)
\(578\) 539.165 + 158.412i 0.932811 + 0.274070i
\(579\) 1417.64 + 587.205i 2.44842 + 1.01417i
\(580\) −2.08918 1.34364i −0.00360204 0.00231662i
\(581\) 409.768 + 107.429i 0.705280 + 0.184903i
\(582\) −179.203 + 222.300i −0.307909 + 0.381959i
\(583\) 255.387 255.387i 0.438056 0.438056i
\(584\) 673.510 + 48.5145i 1.15327 + 0.0830728i
\(585\) −176.098 176.098i −0.301023 0.301023i
\(586\) −113.136 1054.00i −0.193066 1.79864i
\(587\) 446.432 184.918i 0.760532 0.315023i 0.0315013 0.999504i \(-0.489971\pi\)
0.729031 + 0.684481i \(0.239971\pi\)
\(588\) −734.439 608.184i −1.24905 1.03433i
\(589\) −967.043 400.562i −1.64184 0.680072i
\(590\) 123.277 67.2871i 0.208944 0.114046i
\(591\) −608.194 −1.02909
\(592\) 759.923 + 708.476i 1.28365 + 1.19675i
\(593\) −336.542 −0.567524 −0.283762 0.958895i \(-0.591583\pi\)
−0.283762 + 0.958895i \(0.591583\pi\)
\(594\) 551.453 300.995i 0.928373 0.506726i
\(595\) −19.3367 + 11.3037i −0.0324986 + 0.0189978i
\(596\) 113.706 629.009i 0.190782 1.05538i
\(597\) 398.998 + 963.267i 0.668339 + 1.61351i
\(598\) 791.629 84.9732i 1.32379 0.142096i
\(599\) −372.989 372.989i −0.622685 0.622685i 0.323532 0.946217i \(-0.395130\pi\)
−0.946217 + 0.323532i \(0.895130\pi\)
\(600\) −825.479 413.730i −1.37580 0.689550i
\(601\) 296.333 + 296.333i 0.493067 + 0.493067i 0.909271 0.416204i \(-0.136640\pi\)
−0.416204 + 0.909271i \(0.636640\pi\)
\(602\) 821.362 203.815i 1.36439 0.338563i
\(603\) 668.671 276.973i 1.10891 0.459324i
\(604\) 100.843 + 464.324i 0.166958 + 0.768748i
\(605\) 9.07494 + 3.75896i 0.0149999 + 0.00621316i
\(606\) −284.404 + 967.986i −0.469314 + 1.59734i
\(607\) 780.189i 1.28532i −0.766152 0.642660i \(-0.777831\pi\)
0.766152 0.642660i \(-0.222169\pi\)
\(608\) 904.565 + 231.693i 1.48777 + 0.381074i
\(609\) 14.9135 + 11.3161i 0.0244885 + 0.0185814i
\(610\) 33.7284 114.796i 0.0552925 0.188191i
\(611\) 16.5350 39.9191i 0.0270622 0.0653340i
\(612\) −35.2738 162.416i −0.0576369 0.265386i
\(613\) −294.471 + 121.974i −0.480378 + 0.198979i −0.609713 0.792622i \(-0.708715\pi\)
0.129336 + 0.991601i \(0.458715\pi\)
\(614\) 96.2488 119.396i 0.156757 0.194456i
\(615\) −115.007 115.007i −0.187004 0.187004i
\(616\) 603.686 + 205.637i 0.980010 + 0.333826i
\(617\) 530.601 + 530.601i 0.859969 + 0.859969i 0.991334 0.131365i \(-0.0419359\pi\)
−0.131365 + 0.991334i \(0.541936\pi\)
\(618\) 151.592 + 1412.27i 0.245295 + 2.28522i
\(619\) −500.936 + 207.494i −0.809266 + 0.335209i −0.748661 0.662953i \(-0.769303\pi\)
−0.0606051 + 0.998162i \(0.519303\pi\)
\(620\) 159.505 + 28.8337i 0.257266 + 0.0465059i
\(621\) 279.615 675.050i 0.450266 1.08704i
\(622\) −721.828 + 393.989i −1.16050 + 0.633423i
\(623\) −194.035 + 255.719i −0.311453 + 0.410464i
\(624\) 1095.77 + 409.549i 1.75605 + 0.656328i
\(625\) 530.916i 0.849465i
\(626\) −231.944 424.944i −0.370517 0.678825i
\(627\) −1493.69 618.706i −2.38228 0.986772i
\(628\) 41.4831 + 59.7903i 0.0660559 + 0.0952075i
\(629\) −169.923 + 70.3844i −0.270148 + 0.111899i
\(630\) −198.734 119.714i −0.315451 0.190022i
\(631\) 350.392 + 350.392i 0.555296 + 0.555296i 0.927965 0.372669i \(-0.121557\pi\)
−0.372669 + 0.927965i \(0.621557\pi\)
\(632\) −542.328 + 469.448i −0.858114 + 0.742797i
\(633\) 150.945 + 150.945i 0.238460 + 0.238460i
\(634\) 354.015 439.153i 0.558383 0.692671i
\(635\) 3.46103 + 8.35567i 0.00545044 + 0.0131585i
\(636\) 333.845 519.086i 0.524913 0.816172i
\(637\) −88.2255 + 731.065i −0.138502 + 1.14767i
\(638\) −12.0127 3.52947i −0.0188287 0.00553208i
\(639\) 845.969 1.32389
\(640\) −144.500 5.33247i −0.225782 0.00833199i
\(641\) 605.808 0.945099 0.472550 0.881304i \(-0.343334\pi\)
0.472550 + 0.881304i \(0.343334\pi\)
\(642\) 372.308 1267.17i 0.579919 1.97378i
\(643\) −640.693 265.384i −0.996412 0.412727i −0.175932 0.984402i \(-0.556294\pi\)
−0.820480 + 0.571675i \(0.806294\pi\)
\(644\) 696.707 254.444i 1.08184 0.395100i
\(645\) 306.935 127.137i 0.475868 0.197111i
\(646\) −103.744 + 128.694i −0.160594 + 0.199216i
\(647\) −51.8672 51.8672i −0.0801656 0.0801656i 0.665887 0.746053i \(-0.268053\pi\)
−0.746053 + 0.665887i \(0.768053\pi\)
\(648\) 13.1205 11.3573i 0.0202477 0.0175267i
\(649\) 500.574 500.574i 0.771300 0.771300i
\(650\) 76.1005 + 708.968i 0.117078 + 1.09072i
\(651\) −1181.68 309.801i −1.81518 0.475885i
\(652\) 494.130 342.833i 0.757869 0.525817i
\(653\) −838.149 347.173i −1.28354 0.531658i −0.366483 0.930425i \(-0.619438\pi\)
−0.917052 + 0.398767i \(0.869438\pi\)
\(654\) 537.741 + 985.196i 0.822234 + 1.50642i
\(655\) 171.232i 0.261423i
\(656\) 443.525 + 165.769i 0.676105 + 0.252696i
\(657\) −1238.21 −1.88464
\(658\) 5.99414 39.8037i 0.00910964 0.0604920i
\(659\) 335.066 + 138.789i 0.508447 + 0.210606i 0.622134 0.782911i \(-0.286266\pi\)
−0.113687 + 0.993517i \(0.536266\pi\)
\(660\) 246.370 + 44.5363i 0.373288 + 0.0674793i
\(661\) −213.596 + 88.4744i −0.323141 + 0.133849i −0.538356 0.842717i \(-0.680955\pi\)
0.215216 + 0.976567i \(0.430955\pi\)
\(662\) −11.7355 109.330i −0.0177273 0.165151i
\(663\) −146.434 + 146.434i −0.220865 + 0.220865i
\(664\) −459.435 + 152.655i −0.691920 + 0.229903i
\(665\) 31.3538 + 228.609i 0.0471485 + 0.343774i
\(666\) −1483.20 1195.65i −2.22703 1.79527i
\(667\) −13.4532 + 5.57249i −0.0201697 + 0.00835456i
\(668\) 38.9785 + 179.474i 0.0583510 + 0.268674i
\(669\) −70.3757 + 169.902i −0.105195 + 0.253964i
\(670\) 106.951 + 31.4234i 0.159629 + 0.0469006i
\(671\) 603.095i 0.898800i
\(672\) 1082.66 + 124.451i 1.61110 + 0.185195i
\(673\) −756.345 −1.12384 −0.561921 0.827191i \(-0.689937\pi\)
−0.561921 + 0.827191i \(0.689937\pi\)
\(674\) 18.1357 61.7259i 0.0269076 0.0915815i
\(675\) 604.563 + 250.418i 0.895648 + 0.370990i
\(676\) −48.2529 222.177i −0.0713800 0.328665i
\(677\) −241.253 582.435i −0.356355 0.860318i −0.995806 0.0914859i \(-0.970838\pi\)
0.639451 0.768832i \(1.72084\pi\)
\(678\) −786.684 + 975.877i −1.16030 + 1.43935i
\(679\) 203.511 27.9116i 0.299722 0.0411069i
\(680\) 11.4697 22.8845i 0.0168672 0.0336537i
\(681\) −1121.23 1121.23i −1.64644 1.64644i
\(682\) 812.356 87.1980i 1.19114 0.127856i
\(683\) 49.3785 + 119.210i 0.0722964 + 0.174539i 0.955897 0.293703i \(-0.0948876\pi\)
−0.883600 + 0.468242i \(0.844888\pi\)
\(684\) −1684.93 304.585i −2.46335 0.445299i
\(685\) 93.8101 226.478i 0.136949 0.330624i
\(686\) 84.2538 + 680.806i 0.122819 + 0.992429i
\(687\) 1192.50i 1.73581i
\(688\) −659.525 + 707.418i −0.958612 + 1.02822i
\(689\) −476.597 −0.691723
\(690\) 255.585 139.503i 0.370412 0.202179i
\(691\) −395.554 + 954.952i −0.572437 + 1.38198i 0.327038 + 0.945011i \(0.393950\pi\)
−0.899474 + 0.436973i \(0.856050\pi\)
\(692\) −1076.13 + 746.630i −1.55510 + 1.07894i
\(693\) −1131.20 296.568i −1.63233 0.427948i
\(694\) −475.817 + 51.0741i −0.685615 + 0.0735938i
\(695\) 63.2244 + 63.2244i 0.0909704 + 0.0909704i
\(696\) −21.3398 1.53716i −0.0306607 0.00220856i
\(697\) −59.2704 + 59.2704i −0.0850364 + 0.0850364i
\(698\) 808.637 + 651.867i 1.15851 + 0.933907i
\(699\) 6.86554 + 16.5749i 0.00982194 + 0.0237123i
\(700\) 227.876 + 623.958i 0.325537 + 0.891369i
\(701\) −106.143 + 256.252i −0.151416 + 0.365552i −0.981328 0.192344i \(-0.938391\pi\)
0.829911 + 0.557896i \(0.188391\pi\)
\(702\) −795.410 233.700i −1.13306 0.332906i
\(703\) 1894.80i 2.69531i
\(704\) −706.399 + 179.533i −1.00341 + 0.255018i
\(705\) 15.8021i 0.0224143i
\(706\) 271.585 924.354i 0.384681 1.30928i
\(707\) 626.600 366.293i 0.886280 0.518095i
\(708\) 654.356 1017.44i 0.924231 1.43706i
\(709\) 494.664 204.896i 0.697692 0.288994i −0.00550856 0.999985i \(-0.501753\pi\)
0.703201 + 0.710991i \(0.251753\pi\)
\(710\) 101.438 + 81.7723i 0.142871 + 0.115172i
\(711\) 930.045 930.045i 1.30808 1.30808i
\(712\) 26.3574 365.911i 0.0370189 0.513920i
\(713\) 671.903 671.903i 0.942361 0.942361i
\(714\) −99.5472 + 165.256i −0.139422 + 0.231451i
\(715\) −73.9870 178.620i −0.103478 0.249819i
\(716\) −629.829 907.783i −0.879650 1.26785i
\(717\) −819.982 + 1979.61i −1.14363 + 2.76096i
\(718\) 1014.73 553.859i 1.41327 0.771392i
\(719\) 319.042 0.443730 0.221865 0.975077i \(-0.428786\pi\)
0.221865 + 0.975077i \(0.428786\pi\)
\(720\) 264.987 9.28418i 0.368037 0.0128947i
\(721\) 617.663 814.018i 0.856675 1.12901i
\(722\) 469.983 + 861.056i 0.650945 + 1.19260i
\(723\) 1453.59 + 602.099i 2.01050 + 0.832778i
\(724\) 359.367 + 64.9627i 0.496363 + 0.0897274i
\(725\) −4.99062 12.0484i −0.00688362 0.0166185i
\(726\) 84.1223 9.02966i 0.115871 0.0124376i
\(727\) −215.811 + 215.811i −0.296852 + 0.296852i −0.839780 0.542927i \(-0.817316\pi\)
0.542927 + 0.839780i \(0.317316\pi\)
\(728\) −371.416 755.170i −0.510186 1.03732i
\(729\) 831.510 831.510i 1.14062 1.14062i
\(730\) −148.471 119.687i −0.203384 0.163954i
\(731\) −65.5213 158.182i −0.0896324 0.216392i
\(732\) −218.723 1007.09i −0.298801 1.37581i
\(733\) −255.220 105.715i −0.348185 0.144223i 0.201735 0.979440i \(-0.435342\pi\)
−0.549920 + 0.835217i \(0.685342\pi\)
\(734\) −775.203 227.763i −1.05614 0.310304i
\(735\) 72.5066 + 259.361i 0.0986484 + 0.352872i
\(736\) −508.568 + 678.168i −0.690989 + 0.921425i
\(737\) 561.879 0.762387
\(738\) −833.024 244.751i −1.12876 0.331641i
\(739\) 470.719 1136.42i 0.636967 1.53778i −0.193732 0.981054i \(-0.562059\pi\)
0.830700 0.556721i \(-0.187941\pi\)
\(740\) −62.2737 286.736i −0.0841537 0.387481i
\(741\) 816.437 + 1971.05i 1.10180 + 2.65999i
\(742\) −430.928 + 106.932i −0.580765 + 0.144113i
\(743\) 619.184 619.184i 0.833357 0.833357i −0.154617 0.987974i \(-0.549415\pi\)
0.987974 + 0.154617i \(0.0494145\pi\)
\(744\) 1324.91 440.225i 1.78079 0.591700i
\(745\) −127.649 + 127.649i −0.171341 + 0.171341i
\(746\) 76.3040 + 710.865i 0.102284 + 0.952902i
\(747\) 820.173 339.727i 1.09796 0.454788i
\(748\) 22.9523 126.970i 0.0306849 0.169746i
\(749\) −820.269 + 479.507i −1.09515 + 0.640196i
\(750\) 256.594 + 470.107i 0.342126 + 0.626809i
\(751\) 831.370i 1.10702i 0.832843 + 0.553509i \(0.186711\pi\)
−0.832843 + 0.553509i \(0.813289\pi\)
\(752\) 19.0819 + 41.8587i 0.0253749 + 0.0556631i
\(753\) 1540.35i 2.04562i
\(754\) 7.91564 + 14.5023i 0.0104982 + 0.0192338i
\(755\) 51.3527 123.976i 0.0680168 0.164207i
\(756\) −771.625 32.8439i −1.02067 0.0434443i
\(757\) 170.496 + 411.613i