Properties

Label 224.3.v.b.13.17
Level 224
Weight 3
Character 224.13
Analytic conductor 6.104
Analytic rank 0
Dimension 240
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(60\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 13.17
Character \(\chi\) \(=\) 224.13
Dual form 224.3.v.b.69.17

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.33217 - 1.49175i) q^{2} +(-2.62896 - 1.08895i) q^{3} +(-0.450649 + 3.97453i) q^{4} +(2.38974 + 5.76934i) q^{5} +(1.87778 + 5.37243i) q^{6} +(-3.62994 + 5.98528i) q^{7} +(6.52936 - 4.62250i) q^{8} +(-0.638332 - 0.638332i) q^{9} +O(q^{10})\) \(q+(-1.33217 - 1.49175i) q^{2} +(-2.62896 - 1.08895i) q^{3} +(-0.450649 + 3.97453i) q^{4} +(2.38974 + 5.76934i) q^{5} +(1.87778 + 5.37243i) q^{6} +(-3.62994 + 5.98528i) q^{7} +(6.52936 - 4.62250i) q^{8} +(-0.638332 - 0.638332i) q^{9} +(5.42289 - 11.2506i) q^{10} +(-4.95364 - 11.9592i) q^{11} +(5.51282 - 9.95817i) q^{12} +(6.06710 - 14.6473i) q^{13} +(13.7642 - 2.55844i) q^{14} -17.7697i q^{15} +(-15.5938 - 3.58224i) q^{16} +8.22837 q^{17} +(-0.101867 + 1.80260i) q^{18} +(-8.30680 + 20.0544i) q^{19} +(-24.0074 + 6.89815i) q^{20} +(16.0607 - 11.7822i) q^{21} +(-11.2410 + 23.3212i) q^{22} +(-26.4453 - 26.4453i) q^{23} +(-22.1991 + 5.04221i) q^{24} +(-9.89676 + 9.89676i) q^{25} +(-29.9325 + 10.4620i) q^{26} +(10.7836 + 26.0339i) q^{27} +(-22.1529 - 17.1246i) q^{28} +(7.68667 - 18.5573i) q^{29} +(-26.5080 + 23.6722i) q^{30} -59.4680i q^{31} +(15.4298 + 28.0343i) q^{32} +36.8344i q^{33} +(-10.9616 - 12.2747i) q^{34} +(-43.2057 - 6.63909i) q^{35} +(2.82473 - 2.24941i) q^{36} +(-20.1216 + 8.33464i) q^{37} +(40.9823 - 14.3242i) q^{38} +(-31.9004 + 31.9004i) q^{39} +(42.2722 + 26.6235i) q^{40} +(24.3694 - 24.3694i) q^{41} +(-38.9717 - 8.26256i) q^{42} +(-14.7173 - 35.5306i) q^{43} +(49.7644 - 14.2990i) q^{44} +(2.15731 - 5.20820i) q^{45} +(-4.22021 + 74.6794i) q^{46} -5.31825 q^{47} +(37.0947 + 26.3985i) q^{48} +(-22.6471 - 43.4524i) q^{49} +(27.9477 + 1.57935i) q^{50} +(-21.6321 - 8.96030i) q^{51} +(55.4820 + 30.7147i) q^{52} +(15.0826 + 36.4126i) q^{53} +(24.4706 - 50.7681i) q^{54} +(57.1585 - 57.1585i) q^{55} +(3.96576 + 55.8594i) q^{56} +(43.6766 - 43.6766i) q^{57} +(-37.9228 + 13.2548i) q^{58} +(6.55591 + 15.8274i) q^{59} +(70.6262 + 8.00789i) q^{60} +(-86.2481 - 35.7251i) q^{61} +(-88.7115 + 79.2215i) q^{62} +(6.13770 - 1.50349i) q^{63} +(21.2651 - 60.3639i) q^{64} +99.0039 q^{65} +(54.9479 - 49.0697i) q^{66} +(3.59372 - 8.67602i) q^{67} +(-3.70811 + 32.7039i) q^{68} +(40.7260 + 98.3213i) q^{69} +(47.6534 + 73.2966i) q^{70} +(22.3288 - 22.3288i) q^{71} +(-7.11858 - 1.21721i) q^{72} +(-92.1045 + 92.1045i) q^{73} +(39.2386 + 18.9133i) q^{74} +(36.7953 - 15.2411i) q^{75} +(-75.9634 - 42.0532i) q^{76} +(89.5603 + 13.7620i) q^{77} +(90.0842 + 5.09075i) q^{78} -125.782i q^{79} +(-16.5980 - 98.5267i) q^{80} -72.0604i q^{81} +(-68.8173 - 3.88894i) q^{82} +(9.80373 - 23.6683i) q^{83} +(39.5912 + 69.1433i) q^{84} +(19.6637 + 47.4723i) q^{85} +(-33.3970 + 69.2873i) q^{86} +(-40.4159 + 40.4159i) q^{87} +(-87.6252 - 55.1874i) q^{88} +(-22.0951 - 22.0951i) q^{89} +(-10.6432 + 3.72004i) q^{90} +(65.6449 + 89.4820i) q^{91} +(117.025 - 93.1901i) q^{92} +(-64.7578 + 156.339i) q^{93} +(7.08481 + 7.93351i) q^{94} -135.552 q^{95} +(-10.0364 - 90.5034i) q^{96} -126.184i q^{97} +(-34.6504 + 91.6698i) q^{98} +(-4.47184 + 10.7960i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} - 8q^{11} + 12q^{14} - 112q^{16} - 176q^{18} - 4q^{21} - 192q^{22} + 128q^{23} - 8q^{25} + 56q^{28} - 8q^{29} - 16q^{30} - 8q^{32} + 92q^{35} + 192q^{36} - 8q^{37} - 8q^{39} - 424q^{42} + 128q^{43} - 16q^{44} - 8q^{46} - 320q^{50} - 80q^{51} - 192q^{53} + 608q^{56} - 8q^{57} - 712q^{58} + 264q^{60} + 496q^{63} - 272q^{64} - 16q^{65} + 304q^{67} + 320q^{70} + 504q^{71} - 8q^{72} + 232q^{74} + 164q^{77} + 560q^{78} - 1000q^{84} - 208q^{85} - 8q^{86} - 800q^{88} + 188q^{91} + 1560q^{92} + 64q^{93} - 16q^{95} - 376q^{98} + 64q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33217 1.49175i −0.666085 0.745876i
\(3\) −2.62896 1.08895i −0.876321 0.362984i −0.101252 0.994861i \(-0.532285\pi\)
−0.775069 + 0.631877i \(0.782285\pi\)
\(4\) −0.450649 + 3.97453i −0.112662 + 0.993633i
\(5\) 2.38974 + 5.76934i 0.477948 + 1.15387i 0.960570 + 0.278039i \(0.0896845\pi\)
−0.482622 + 0.875829i \(0.660315\pi\)
\(6\) 1.87778 + 5.37243i 0.312963 + 0.895405i
\(7\) −3.62994 + 5.98528i −0.518562 + 0.855040i
\(8\) 6.52936 4.62250i 0.816170 0.577812i
\(9\) −0.638332 0.638332i −0.0709257 0.0709257i
\(10\) 5.42289 11.2506i 0.542289 1.12506i
\(11\) −4.95364 11.9592i −0.450331 1.08720i −0.972196 0.234167i \(-0.924764\pi\)
0.521865 0.853028i \(-0.325236\pi\)
\(12\) 5.51282 9.95817i 0.459401 0.829847i
\(13\) 6.06710 14.6473i 0.466700 1.12671i −0.498895 0.866663i \(-0.666260\pi\)
0.965595 0.260051i \(-0.0837395\pi\)
\(14\) 13.7642 2.55844i 0.983160 0.182746i
\(15\) 17.7697i 1.18465i
\(16\) −15.5938 3.58224i −0.974614 0.223890i
\(17\) 8.22837 0.484022 0.242011 0.970274i \(-0.422193\pi\)
0.242011 + 0.970274i \(0.422193\pi\)
\(18\) −0.101867 + 1.80260i −0.00565926 + 0.100144i
\(19\) −8.30680 + 20.0544i −0.437200 + 1.05549i 0.539711 + 0.841850i \(0.318533\pi\)
−0.976912 + 0.213644i \(0.931467\pi\)
\(20\) −24.0074 + 6.89815i −1.20037 + 0.344907i
\(21\) 16.0607 11.7822i 0.764793 0.561059i
\(22\) −11.2410 + 23.3212i −0.510954 + 1.06006i
\(23\) −26.4453 26.4453i −1.14979 1.14979i −0.986593 0.163202i \(-0.947818\pi\)
−0.163202 0.986593i \(-0.552182\pi\)
\(24\) −22.1991 + 5.04221i −0.924963 + 0.210092i
\(25\) −9.89676 + 9.89676i −0.395870 + 0.395870i
\(26\) −29.9325 + 10.4620i −1.15125 + 0.402386i
\(27\) 10.7836 + 26.0339i 0.399393 + 0.964220i
\(28\) −22.1529 17.1246i −0.791174 0.611592i
\(29\) 7.68667 18.5573i 0.265057 0.639905i −0.734180 0.678955i \(-0.762433\pi\)
0.999237 + 0.0390498i \(0.0124331\pi\)
\(30\) −26.5080 + 23.6722i −0.883599 + 0.789075i
\(31\) 59.4680i 1.91832i −0.282859 0.959162i \(-0.591283\pi\)
0.282859 0.959162i \(-0.408717\pi\)
\(32\) 15.4298 + 28.0343i 0.482182 + 0.876071i
\(33\) 36.8344i 1.11620i
\(34\) −10.9616 12.2747i −0.322400 0.361020i
\(35\) −43.2057 6.63909i −1.23445 0.189688i
\(36\) 2.82473 2.24941i 0.0784648 0.0624835i
\(37\) −20.1216 + 8.33464i −0.543827 + 0.225261i −0.637647 0.770329i \(-0.720092\pi\)
0.0938199 + 0.995589i \(0.470092\pi\)
\(38\) 40.9823 14.3242i 1.07848 0.376952i
\(39\) −31.9004 + 31.9004i −0.817958 + 0.817958i
\(40\) 42.2722 + 26.6235i 1.05681 + 0.665588i
\(41\) 24.3694 24.3694i 0.594376 0.594376i −0.344435 0.938810i \(-0.611929\pi\)
0.938810 + 0.344435i \(0.111929\pi\)
\(42\) −38.9717 8.26256i −0.927898 0.196728i
\(43\) −14.7173 35.5306i −0.342262 0.826294i −0.997486 0.0708592i \(-0.977426\pi\)
0.655224 0.755434i \(-0.272574\pi\)
\(44\) 49.7644 14.2990i 1.13101 0.324978i
\(45\) 2.15731 5.20820i 0.0479401 0.115738i
\(46\) −4.22021 + 74.6794i −0.0917436 + 1.62346i
\(47\) −5.31825 −0.113154 −0.0565771 0.998398i \(-0.518019\pi\)
−0.0565771 + 0.998398i \(0.518019\pi\)
\(48\) 37.0947 + 26.3985i 0.772807 + 0.549969i
\(49\) −22.6471 43.4524i −0.462186 0.886783i
\(50\) 27.9477 + 1.57935i 0.558953 + 0.0315870i
\(51\) −21.6321 8.96030i −0.424159 0.175692i
\(52\) 55.4820 + 30.7147i 1.06696 + 0.590667i
\(53\) 15.0826 + 36.4126i 0.284577 + 0.687030i 0.999931 0.0117325i \(-0.00373464\pi\)
−0.715354 + 0.698762i \(0.753735\pi\)
\(54\) 24.4706 50.7681i 0.453159 0.940150i
\(55\) 57.1585 57.1585i 1.03925 1.03925i
\(56\) 3.96576 + 55.8594i 0.0708171 + 0.997489i
\(57\) 43.6766 43.6766i 0.766255 0.766255i
\(58\) −37.9228 + 13.2548i −0.653841 + 0.228531i
\(59\) 6.55591 + 15.8274i 0.111117 + 0.268260i 0.969650 0.244499i \(-0.0786234\pi\)
−0.858533 + 0.512759i \(0.828623\pi\)
\(60\) 70.6262 + 8.00789i 1.17710 + 0.133465i
\(61\) −86.2481 35.7251i −1.41390 0.585658i −0.460583 0.887617i \(-0.652360\pi\)
−0.953321 + 0.301959i \(0.902360\pi\)
\(62\) −88.7115 + 79.2215i −1.43083 + 1.27777i
\(63\) 6.13770 1.50349i 0.0974238 0.0238649i
\(64\) 21.2651 60.3639i 0.332267 0.943185i
\(65\) 99.0039 1.52314
\(66\) 54.9479 49.0697i 0.832543 0.743481i
\(67\) 3.59372 8.67602i 0.0536377 0.129493i −0.894789 0.446489i \(-0.852674\pi\)
0.948427 + 0.316996i \(0.102674\pi\)
\(68\) −3.70811 + 32.7039i −0.0545310 + 0.480940i
\(69\) 40.7260 + 98.3213i 0.590232 + 1.42495i
\(70\) 47.6534 + 73.2966i 0.680764 + 1.04709i
\(71\) 22.3288 22.3288i 0.314490 0.314490i −0.532156 0.846646i \(-0.678618\pi\)
0.846646 + 0.532156i \(0.178618\pi\)
\(72\) −7.11858 1.21721i −0.0988692 0.0169057i
\(73\) −92.1045 + 92.1045i −1.26171 + 1.26171i −0.311440 + 0.950266i \(0.600811\pi\)
−0.950266 + 0.311440i \(0.899189\pi\)
\(74\) 39.2386 + 18.9133i 0.530252 + 0.255585i
\(75\) 36.7953 15.2411i 0.490604 0.203215i
\(76\) −75.9634 42.0532i −0.999519 0.553331i
\(77\) 89.5603 + 13.7620i 1.16312 + 0.178728i
\(78\) 90.0842 + 5.09075i 1.15493 + 0.0652660i
\(79\) 125.782i 1.59217i −0.605183 0.796086i \(-0.706900\pi\)
0.605183 0.796086i \(-0.293100\pi\)
\(80\) −16.5980 98.5267i −0.207475 1.23158i
\(81\) 72.0604i 0.889635i
\(82\) −68.8173 3.88894i −0.839235 0.0474260i
\(83\) 9.80373 23.6683i 0.118117 0.285160i −0.853753 0.520679i \(-0.825679\pi\)
0.971870 + 0.235519i \(0.0756789\pi\)
\(84\) 39.5912 + 69.1433i 0.471324 + 0.823134i
\(85\) 19.6637 + 47.4723i 0.231337 + 0.558497i
\(86\) −33.3970 + 69.2873i −0.388337 + 0.805667i
\(87\) −40.4159 + 40.4159i −0.464551 + 0.464551i
\(88\) −87.6252 55.1874i −0.995741 0.627130i
\(89\) −22.0951 22.0951i −0.248259 0.248259i 0.571997 0.820256i \(-0.306169\pi\)
−0.820256 + 0.571997i \(0.806169\pi\)
\(90\) −10.6432 + 3.72004i −0.118258 + 0.0413337i
\(91\) 65.6449 + 89.4820i 0.721372 + 0.983319i
\(92\) 117.025 93.1901i 1.27201 1.01294i
\(93\) −64.7578 + 156.339i −0.696321 + 1.68107i
\(94\) 7.08481 + 7.93351i 0.0753703 + 0.0843990i
\(95\) −135.552 −1.42686
\(96\) −10.0364 90.5034i −0.104546 0.942744i
\(97\) 126.184i 1.30086i −0.759566 0.650431i \(-0.774589\pi\)
0.759566 0.650431i \(-0.225411\pi\)
\(98\) −34.6504 + 91.6698i −0.353575 + 0.935406i
\(99\) −4.47184 + 10.7960i −0.0451701 + 0.109050i
\(100\) −34.8750 43.7950i −0.348750 0.437950i
\(101\) 36.0209 + 86.9622i 0.356643 + 0.861012i 0.995767 + 0.0919087i \(0.0292968\pi\)
−0.639125 + 0.769103i \(0.720703\pi\)
\(102\) 15.4511 + 44.2064i 0.151481 + 0.433396i
\(103\) 62.5866 + 62.5866i 0.607637 + 0.607637i 0.942328 0.334691i \(-0.108632\pi\)
−0.334691 + 0.942328i \(0.608632\pi\)
\(104\) −28.0927 123.683i −0.270122 1.18926i
\(105\) 106.357 + 64.5029i 1.01292 + 0.614313i
\(106\) 34.2260 71.0072i 0.322887 0.669879i
\(107\) 76.7971 + 185.405i 0.717730 + 1.73275i 0.679716 + 0.733475i \(0.262103\pi\)
0.0380135 + 0.999277i \(0.487897\pi\)
\(108\) −108.332 + 31.1276i −1.00308 + 0.288219i
\(109\) 70.2851 + 29.1130i 0.644817 + 0.267092i 0.681034 0.732252i \(-0.261531\pi\)
−0.0362167 + 0.999344i \(0.511531\pi\)
\(110\) −161.411 9.12151i −1.46737 0.0829228i
\(111\) 61.9750 0.558333
\(112\) 78.0453 80.3301i 0.696833 0.717233i
\(113\) 35.3129i 0.312504i −0.987717 0.156252i \(-0.950059\pi\)
0.987717 0.156252i \(-0.0499411\pi\)
\(114\) −123.339 6.97002i −1.08192 0.0611405i
\(115\) 89.3745 215.769i 0.777169 1.87625i
\(116\) 70.2924 + 38.9137i 0.605969 + 0.335463i
\(117\) −13.2226 + 5.47700i −0.113014 + 0.0468120i
\(118\) 14.8769 30.8645i 0.126076 0.261564i
\(119\) −29.8685 + 49.2491i −0.250996 + 0.413858i
\(120\) −82.1403 116.025i −0.684503 0.966873i
\(121\) −32.9228 + 32.9228i −0.272089 + 0.272089i
\(122\) 61.6041 + 176.253i 0.504951 + 1.44470i
\(123\) −90.6034 + 37.5292i −0.736613 + 0.305115i
\(124\) 236.358 + 26.7992i 1.90611 + 0.216123i
\(125\) 63.4851 + 26.2964i 0.507880 + 0.210371i
\(126\) −10.4193 7.15302i −0.0826927 0.0567700i
\(127\) −129.436 −1.01918 −0.509589 0.860418i \(-0.670203\pi\)
−0.509589 + 0.860418i \(0.670203\pi\)
\(128\) −118.377 + 48.6927i −0.924817 + 0.380412i
\(129\) 109.435i 0.848334i
\(130\) −131.890 147.689i −1.01454 1.13607i
\(131\) 45.8272 + 18.9823i 0.349826 + 0.144903i 0.550676 0.834719i \(-0.314370\pi\)
−0.200849 + 0.979622i \(0.564370\pi\)
\(132\) −146.400 16.5994i −1.10909 0.125753i
\(133\) −89.8780 122.515i −0.675774 0.921163i
\(134\) −17.7299 + 6.19698i −0.132313 + 0.0462461i
\(135\) −124.429 + 124.429i −0.921693 + 0.921693i
\(136\) 53.7260 38.0356i 0.395044 0.279674i
\(137\) −26.4380 26.4380i −0.192978 0.192978i 0.604004 0.796982i \(-0.293571\pi\)
−0.796982 + 0.604004i \(0.793571\pi\)
\(138\) 92.4170 191.734i 0.669689 1.38937i
\(139\) −158.211 + 65.5330i −1.13821 + 0.471461i −0.870563 0.492057i \(-0.836245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(140\) 45.8579 168.731i 0.327556 1.20522i
\(141\) 13.9815 + 5.79132i 0.0991594 + 0.0410732i
\(142\) −63.0547 3.56328i −0.444047 0.0250935i
\(143\) −205.223 −1.43513
\(144\) 7.66738 + 12.2407i 0.0532457 + 0.0850048i
\(145\) 125.432 0.865050
\(146\) 260.096 + 14.6983i 1.78148 + 0.100673i
\(147\) 12.2209 + 138.896i 0.0831352 + 0.944873i
\(148\) −24.0585 83.7300i −0.162558 0.565743i
\(149\) −24.8431 59.9766i −0.166732 0.402527i 0.818325 0.574756i \(-0.194903\pi\)
−0.985057 + 0.172229i \(0.944903\pi\)
\(150\) −71.7536 34.5857i −0.478357 0.230572i
\(151\) −153.458 153.458i −1.01628 1.01628i −0.999865 0.0164134i \(-0.994775\pi\)
−0.0164134 0.999865i \(-0.505225\pi\)
\(152\) 38.4632 + 169.341i 0.253048 + 1.11408i
\(153\) −5.25243 5.25243i −0.0343296 0.0343296i
\(154\) −98.7799 151.935i −0.641428 0.986591i
\(155\) 343.091 142.113i 2.21349 0.916858i
\(156\) −112.413 141.165i −0.720598 0.904904i
\(157\) −75.7760 31.3875i −0.482650 0.199920i 0.128073 0.991765i \(-0.459121\pi\)
−0.610723 + 0.791845i \(0.709121\pi\)
\(158\) −187.635 + 167.562i −1.18756 + 1.06052i
\(159\) 112.151i 0.705355i
\(160\) −124.866 + 156.014i −0.780413 + 0.975090i
\(161\) 254.277 62.2876i 1.57936 0.386880i
\(162\) −107.496 + 95.9967i −0.663557 + 0.592572i
\(163\) −67.4334 + 162.799i −0.413702 + 0.998764i 0.570434 + 0.821344i \(0.306775\pi\)
−0.984135 + 0.177420i \(0.943225\pi\)
\(164\) 85.8750 + 107.839i 0.523628 + 0.657555i
\(165\) −212.510 + 88.0247i −1.28794 + 0.533483i
\(166\) −48.3675 + 16.9055i −0.291370 + 0.101840i
\(167\) −1.60311 1.60311i −0.00959944 0.00959944i 0.702291 0.711890i \(-0.252161\pi\)
−0.711890 + 0.702291i \(0.752161\pi\)
\(168\) 50.4024 151.171i 0.300014 0.899826i
\(169\) −58.2321 58.2321i −0.344569 0.344569i
\(170\) 44.6215 92.5744i 0.262480 0.544555i
\(171\) 18.1039 7.49886i 0.105870 0.0438530i
\(172\) 147.850 42.4824i 0.859593 0.246991i
\(173\) −29.9048 + 72.1966i −0.172860 + 0.417322i −0.986438 0.164135i \(-0.947517\pi\)
0.813578 + 0.581456i \(0.197517\pi\)
\(174\) 114.131 + 6.44968i 0.655928 + 0.0370671i
\(175\) −23.3102 95.1595i −0.133201 0.543768i
\(176\) 34.4057 + 204.234i 0.195487 + 1.16042i
\(177\) 48.7486i 0.275416i
\(178\) −3.52599 + 62.3948i −0.0198090 + 0.350533i
\(179\) −24.0549 9.96388i −0.134385 0.0556641i 0.314477 0.949265i \(-0.398171\pi\)
−0.448863 + 0.893601i \(0.648171\pi\)
\(180\) 19.7280 + 10.9214i 0.109600 + 0.0606742i
\(181\) 5.89024 2.43982i 0.0325428 0.0134797i −0.366353 0.930476i \(-0.619394\pi\)
0.398895 + 0.916996i \(0.369394\pi\)
\(182\) 46.0349 217.131i 0.252939 1.19303i
\(183\) 187.840 + 187.840i 1.02645 + 1.02645i
\(184\) −294.914 50.4275i −1.60279 0.274063i
\(185\) −96.1708 96.1708i −0.519842 0.519842i
\(186\) 319.488 111.668i 1.71768 0.600364i
\(187\) −40.7604 98.4043i −0.217970 0.526226i
\(188\) 2.39666 21.1375i 0.0127482 0.112434i
\(189\) −194.964 29.9586i −1.03156 0.158511i
\(190\) 180.578 + 202.210i 0.950410 + 1.06426i
\(191\) −66.9175 −0.350353 −0.175177 0.984537i \(-0.556050\pi\)
−0.175177 + 0.984537i \(0.556050\pi\)
\(192\) −121.638 + 135.538i −0.633534 + 0.705926i
\(193\) −57.1735 −0.296236 −0.148118 0.988970i \(-0.547322\pi\)
−0.148118 + 0.988970i \(0.547322\pi\)
\(194\) −188.235 + 168.098i −0.970281 + 0.866484i
\(195\) −260.278 107.811i −1.33476 0.552875i
\(196\) 182.909 70.4299i 0.933208 0.359336i
\(197\) −219.277 + 90.8277i −1.11308 + 0.461054i −0.861998 0.506911i \(-0.830787\pi\)
−0.251085 + 0.967965i \(0.580787\pi\)
\(198\) 22.0622 7.71119i 0.111425 0.0389454i
\(199\) 60.0935 + 60.0935i 0.301977 + 0.301977i 0.841787 0.539810i \(-0.181504\pi\)
−0.539810 + 0.841787i \(0.681504\pi\)
\(200\) −18.8718 + 110.367i −0.0943589 + 0.551836i
\(201\) −18.8955 + 18.8955i −0.0940076 + 0.0940076i
\(202\) 81.7401 169.583i 0.404654 0.839518i
\(203\) 83.1682 + 113.368i 0.409696 + 0.558466i
\(204\) 45.3615 81.9395i 0.222360 0.401664i
\(205\) 198.832 + 82.3589i 0.969912 + 0.401751i
\(206\) 9.98775 176.740i 0.0484842 0.857960i
\(207\) 33.7617i 0.163100i
\(208\) −147.079 + 206.673i −0.707113 + 0.993622i
\(209\) 280.982 1.34441
\(210\) −45.4627 244.586i −0.216489 1.16470i
\(211\) −9.56309 3.96116i −0.0453227 0.0187733i 0.359907 0.932988i \(-0.382808\pi\)
−0.405230 + 0.914215i \(0.632808\pi\)
\(212\) −151.520 + 43.5369i −0.714717 + 0.205363i
\(213\) −83.0164 + 34.3865i −0.389748 + 0.161439i
\(214\) 174.271 361.552i 0.814350 1.68950i
\(215\) 169.818 169.818i 0.789850 0.789850i
\(216\) 190.752 + 120.138i 0.883110 + 0.556193i
\(217\) 355.933 + 215.865i 1.64024 + 0.994770i
\(218\) −50.2022 143.631i −0.230285 0.658860i
\(219\) 342.437 141.842i 1.56364 0.647680i
\(220\) 201.420 + 252.937i 0.915545 + 1.14971i
\(221\) 49.9224 120.523i 0.225893 0.545354i
\(222\) −82.5612 92.4513i −0.371897 0.416447i
\(223\) 385.896i 1.73047i 0.501363 + 0.865237i \(0.332832\pi\)
−0.501363 + 0.865237i \(0.667168\pi\)
\(224\) −223.802 9.41095i −0.999117 0.0420132i
\(225\) 12.6348 0.0561548
\(226\) −52.6781 + 47.0428i −0.233089 + 0.208154i
\(227\) 294.847 + 122.130i 1.29889 + 0.538016i 0.921622 0.388089i \(-0.126865\pi\)
0.377265 + 0.926106i \(0.376865\pi\)
\(228\) 153.911 + 193.277i 0.675049 + 0.847705i
\(229\) −112.540 271.695i −0.491440 1.18644i −0.953987 0.299847i \(-0.903064\pi\)
0.462547 0.886595i \(1.65306\pi\)
\(230\) −440.936 + 154.116i −1.91711 + 0.670071i
\(231\) −220.464 133.707i −0.954391 0.578817i
\(232\) −35.5918 156.699i −0.153413 0.675425i
\(233\) −78.6743 78.6743i −0.337658 0.337658i 0.517827 0.855485i \(-0.326741\pi\)
−0.855485 + 0.517827i \(0.826741\pi\)
\(234\) 25.7851 + 12.4286i 0.110193 + 0.0531138i
\(235\) −12.7092 30.6828i −0.0540818 0.130565i
\(236\) −65.8608 + 18.9241i −0.279071 + 0.0801868i
\(237\) −136.970 + 330.675i −0.577933 + 1.39525i
\(238\) 113.257 21.0518i 0.475871 0.0884529i
\(239\) 415.345i 1.73785i −0.494948 0.868923i \(-0.664813\pi\)
0.494948 0.868923i \(-0.335187\pi\)
\(240\) −63.6553 + 277.098i −0.265230 + 1.15457i
\(241\) 105.572 0.438060 0.219030 0.975718i \(-0.429711\pi\)
0.219030 + 0.975718i \(0.429711\pi\)
\(242\) 92.9714 + 5.25391i 0.384179 + 0.0217104i
\(243\) 18.5821 44.8612i 0.0764696 0.184614i
\(244\) 180.858 326.697i 0.741223 1.33892i
\(245\) 196.571 234.499i 0.802330 0.957138i
\(246\) 176.683 + 85.1626i 0.718225 + 0.346189i
\(247\) 243.344 + 243.344i 0.985199 + 0.985199i
\(248\) −274.891 388.288i −1.10843 1.56568i
\(249\) −51.5473 + 51.5473i −0.207017 + 0.207017i
\(250\) −45.3452 129.735i −0.181381 0.518941i
\(251\) −8.51793 20.5641i −0.0339360 0.0819287i 0.906003 0.423271i \(-0.139118\pi\)
−0.939939 + 0.341343i \(0.889118\pi\)
\(252\) 3.20972 + 25.0720i 0.0127370 + 0.0994922i
\(253\) −185.263 + 447.263i −0.732263 + 1.76784i
\(254\) 172.430 + 193.086i 0.678859 + 0.760181i
\(255\) 146.216i 0.573395i
\(256\) 230.335 + 111.722i 0.899747 + 0.436413i
\(257\) 252.000i 0.980547i 0.871569 + 0.490273i \(0.163103\pi\)
−0.871569 + 0.490273i \(0.836897\pi\)
\(258\) 163.250 145.786i 0.632752 0.565062i
\(259\) 23.1550 150.688i 0.0894016 0.581806i
\(260\) −44.6160 + 393.494i −0.171600 + 1.51344i
\(261\) −16.7523 + 6.93904i −0.0641852 + 0.0265864i
\(262\) −32.7328 93.6505i −0.124934 0.357445i
\(263\) −37.2844 + 37.2844i −0.141766 + 0.141766i −0.774428 0.632662i \(-0.781962\pi\)
0.632662 + 0.774428i \(0.281962\pi\)
\(264\) 170.267 + 240.505i 0.644951 + 0.911005i
\(265\) −174.033 + 174.033i −0.656728 + 0.656728i
\(266\) −63.0289 + 297.286i −0.236951 + 1.11762i
\(267\) 34.0267 + 82.1477i 0.127441 + 0.307669i
\(268\) 32.8636 + 18.1932i 0.122625 + 0.0678851i
\(269\) 73.4951 177.433i 0.273216 0.659602i −0.726401 0.687271i \(-0.758808\pi\)
0.999617 + 0.0276690i \(0.00880844\pi\)
\(270\) 351.377 + 19.8566i 1.30139 + 0.0735431i
\(271\) 524.944 1.93706 0.968532 0.248889i \(-0.0800654\pi\)
0.968532 + 0.248889i \(0.0800654\pi\)
\(272\) −128.312 29.4760i −0.471735 0.108368i
\(273\) −75.1363 306.729i −0.275224 1.12355i
\(274\) −4.21905 + 74.6588i −0.0153980 + 0.272478i
\(275\) 167.382 + 69.3318i 0.608661 + 0.252116i
\(276\) −409.134 + 117.558i −1.48237 + 0.425936i
\(277\) −152.184 367.404i −0.549400 1.32637i −0.917926 0.396751i \(-0.870138\pi\)
0.368527 0.929617i \(-0.379862\pi\)
\(278\) 308.523 + 148.710i 1.10979 + 0.534929i
\(279\) −37.9603 + 37.9603i −0.136058 + 0.136058i
\(280\) −312.795 + 156.369i −1.11712 + 0.558461i
\(281\) −164.515 + 164.515i −0.585463 + 0.585463i −0.936399 0.350937i \(-0.885863\pi\)
0.350937 + 0.936399i \(0.385863\pi\)
\(282\) −9.98648 28.5719i −0.0354131 0.101319i
\(283\) 15.6042 + 37.6718i 0.0551384 + 0.133116i 0.949048 0.315131i \(-0.102049\pi\)
−0.893910 + 0.448247i \(0.852049\pi\)
\(284\) 78.6840 + 98.8088i 0.277056 + 0.347918i
\(285\) 356.360 + 147.609i 1.25039 + 0.517927i
\(286\) 273.392 + 306.142i 0.955917 + 1.07043i
\(287\) 57.3983 + 234.317i 0.199994 + 0.816436i
\(288\) 8.04583 27.7445i 0.0279369 0.0963351i
\(289\) −221.294 −0.765723
\(290\) −167.097 187.114i −0.576196 0.645220i
\(291\) −137.408 + 331.732i −0.472192 + 1.13997i
\(292\) −324.566 407.579i −1.11153 1.39582i
\(293\) −185.206 447.127i −0.632103 1.52603i −0.836974 0.547243i \(-0.815677\pi\)
0.204871 0.978789i \(1.56568\pi\)
\(294\) 190.919 203.264i 0.649383 0.691374i
\(295\) −75.6465 + 75.6465i −0.256429 + 0.256429i
\(296\) −92.8544 + 147.432i −0.313697 + 0.498081i
\(297\) 257.926 257.926i 0.868436 0.868436i
\(298\) −56.3749 + 116.959i −0.189178 + 0.392479i
\(299\) −547.798 + 226.905i −1.83210 + 0.758880i
\(300\) 43.9946 + 153.113i 0.146649 + 0.510375i
\(301\) 266.083 + 40.8870i 0.883998 + 0.135837i
\(302\) −24.4893 + 433.354i −0.0810902 + 1.43495i
\(303\) 267.845i 0.883978i
\(304\) 201.375 282.968i 0.662416 0.930815i
\(305\) 582.969i 1.91137i
\(306\) −0.838197 + 14.8325i −0.00273921 + 0.0484721i
\(307\) −55.1706 + 133.194i −0.179709 + 0.433856i −0.987905 0.155057i \(-0.950444\pi\)
0.808197 + 0.588913i \(0.200444\pi\)
\(308\) −95.0579 + 349.758i −0.308630 + 1.13558i
\(309\) −96.3841 232.692i −0.311923 0.753048i
\(310\) −669.053 322.488i −2.15824 1.04029i
\(311\) −281.152 + 281.152i −0.904025 + 0.904025i −0.995781 0.0917564i \(-0.970752\pi\)
0.0917564 + 0.995781i \(0.470752\pi\)
\(312\) −60.8297 + 355.748i −0.194967 + 1.14022i
\(313\) −164.448 164.448i −0.525394 0.525394i 0.393801 0.919196i \(-0.371160\pi\)
−0.919196 + 0.393801i \(0.871160\pi\)
\(314\) 54.1242 + 154.853i 0.172370 + 0.493161i
\(315\) 23.3416 + 31.8175i 0.0741004 + 0.101008i
\(316\) 499.923 + 56.6834i 1.58204 + 0.179378i
\(317\) 102.453 247.344i 0.323197 0.780267i −0.675868 0.737023i \(-0.736231\pi\)
0.999065 0.0432434i \(-0.0137691\pi\)
\(318\) −167.302 + 149.405i −0.526108 + 0.469826i
\(319\) −260.006 −0.815066
\(320\) 399.078 21.5684i 1.24712 0.0674014i
\(321\) 571.050i 1.77897i
\(322\) −431.658 296.341i −1.34055 0.920312i
\(323\) −68.3515 + 165.015i −0.211614 + 0.510882i
\(324\) 286.407 + 32.4740i 0.883971 + 0.100228i
\(325\) 84.9160 + 205.005i 0.261280 + 0.630785i
\(326\) 332.688 116.281i 1.02051 0.356691i
\(327\) −153.074 153.074i −0.468117 0.468117i
\(328\) 46.4692 271.764i 0.141674 0.828549i
\(329\) 19.3049 31.8312i 0.0586775 0.0967513i
\(330\) 414.411 + 199.749i 1.25579 + 0.605300i
\(331\) −42.2185 101.924i −0.127548 0.307929i 0.847186 0.531296i \(-0.178295\pi\)
−0.974734 + 0.223368i \(0.928295\pi\)
\(332\) 89.6524 + 49.6314i 0.270037 + 0.149492i
\(333\) 18.1645 + 7.52399i 0.0545481 + 0.0225946i
\(334\) −0.255828 + 4.52704i −0.000765952 + 0.0135540i
\(335\) 58.6430 0.175054
\(336\) −292.654 + 126.197i −0.870994 + 0.375587i
\(337\) 84.3102i 0.250179i −0.992145 0.125089i \(-0.960078\pi\)
0.992145 0.125089i \(-0.0399217\pi\)
\(338\) −9.29284 + 164.443i −0.0274936 + 0.486518i
\(339\) −38.4541 + 92.8364i −0.113434 + 0.273854i
\(340\) −197.542 + 56.7605i −0.581005 + 0.166943i
\(341\) −711.187 + 294.583i −2.08559 + 0.863881i
\(342\) −35.3038 17.0167i −0.103228 0.0497564i
\(343\) 342.282 + 22.1801i 0.997907 + 0.0646650i
\(344\) −260.334 163.962i −0.756786 0.476633i
\(345\) −469.924 + 469.924i −1.36210 + 1.36210i
\(346\) 147.538 51.5676i 0.426410 0.149039i
\(347\) 273.373 113.235i 0.787818 0.326325i 0.0477521 0.998859i \(-0.484794\pi\)
0.740066 + 0.672534i \(0.234794\pi\)
\(348\) −142.421 178.848i −0.409256 0.513931i
\(349\) 78.2311 + 32.4044i 0.224158 + 0.0928492i 0.491936 0.870631i \(-0.336289\pi\)
−0.267778 + 0.963481i \(0.586289\pi\)
\(350\) −110.901 + 161.542i −0.316860 + 0.461548i
\(351\) 446.752 1.27280
\(352\) 258.832 323.399i 0.735319 0.918748i
\(353\) 47.5226i 0.134625i 0.997732 + 0.0673125i \(0.0214424\pi\)
−0.997732 + 0.0673125i \(0.978558\pi\)
\(354\) −72.7209 + 64.9414i −0.205426 + 0.183450i
\(355\) 182.182 + 75.4623i 0.513189 + 0.212570i
\(356\) 97.7748 77.8606i 0.274648 0.218709i
\(357\) 132.153 96.9487i 0.370177 0.271565i
\(358\) 17.1816 + 49.1576i 0.0479933 + 0.137312i
\(359\) 285.648 285.648i 0.795677 0.795677i −0.186734 0.982411i \(-0.559790\pi\)
0.982411 + 0.186734i \(0.0597902\pi\)
\(360\) −9.98904 43.9783i −0.0277473 0.122162i
\(361\) −77.9103 77.9103i −0.215818 0.215818i
\(362\) −11.4864 5.53653i −0.0317304 0.0152943i
\(363\) 122.404 50.7014i 0.337201 0.139673i
\(364\) −385.232 + 220.583i −1.05833 + 0.605996i
\(365\) −751.488 311.277i −2.05887 0.852812i
\(366\) 29.9760 530.446i 0.0819018 1.44931i
\(367\) 48.7938 0.132953 0.0664765 0.997788i \(-0.478824\pi\)
0.0664765 + 0.997788i \(0.478824\pi\)
\(368\) 317.650 + 507.116i 0.863179 + 1.37803i
\(369\) −31.1115 −0.0843131
\(370\) −15.3472 + 271.579i −0.0414789 + 0.733997i
\(371\) −272.688 41.9019i −0.735009 0.112943i
\(372\) −592.192 327.836i −1.59192 0.881280i
\(373\) 41.0112 + 99.0098i 0.109950 + 0.265442i 0.969272 0.245993i \(-0.0791141\pi\)
−0.859322 + 0.511435i \(0.829114\pi\)
\(374\) −92.4951 + 191.896i −0.247313 + 0.513090i
\(375\) −138.264 138.264i −0.368705 0.368705i
\(376\) −34.7247 + 24.5836i −0.0923530 + 0.0653818i
\(377\) −225.178 225.178i −0.597288 0.597288i
\(378\) 215.034 + 330.748i 0.568874 + 0.874995i
\(379\) 301.152 124.741i 0.794595 0.329132i 0.0518057 0.998657i \(-0.483502\pi\)
0.742789 + 0.669525i \(0.233502\pi\)
\(380\) 61.0862 538.755i 0.160753 1.41778i
\(381\) 340.281 + 140.949i 0.893127 + 0.369945i
\(382\) 89.1454 + 99.8243i 0.233365 + 0.261320i
\(383\) 531.504i 1.38774i −0.720100 0.693870i \(-0.755904\pi\)
0.720100 0.693870i \(-0.244096\pi\)
\(384\) 364.232 + 0.895203i 0.948520 + 0.00233126i
\(385\) 134.628 + 549.591i 0.349682 + 1.42751i
\(386\) 76.1648 + 85.2887i 0.197318 + 0.220955i
\(387\) −13.2858 + 32.0748i −0.0343303 + 0.0828807i
\(388\) 501.521 + 56.8645i 1.29258 + 0.146558i
\(389\) −122.261 + 50.6422i −0.314296 + 0.130186i −0.534255 0.845324i \(-0.679408\pi\)
0.219959 + 0.975509i \(0.429408\pi\)
\(390\) 185.907 + 531.892i 0.476686 + 1.36382i
\(391\) −217.602 217.602i −0.556526 0.556526i
\(392\) −348.730 179.030i −0.889616 0.456709i
\(393\) −99.8073 99.8073i −0.253963 0.253963i
\(394\) 427.607 + 206.110i 1.08530 + 0.523121i
\(395\) 725.677 300.585i 1.83716 0.760975i
\(396\) −40.8937 22.6387i −0.103267 0.0571683i
\(397\) 94.5605 228.289i 0.238188 0.575036i −0.758908 0.651198i \(-0.774267\pi\)
0.997095 + 0.0761623i \(0.0242667\pi\)
\(398\) 9.58988 169.699i 0.0240952 0.426380i
\(399\) 102.873 + 419.959i 0.257828 + 1.05253i
\(400\) 189.781 118.876i 0.474452 0.297190i
\(401\) 364.409i 0.908751i −0.890810 0.454375i \(-0.849862\pi\)
0.890810 0.454375i \(-0.150138\pi\)
\(402\) 53.3595 + 3.01540i 0.132735 + 0.00750100i
\(403\) −871.045 360.799i −2.16140 0.895282i
\(404\) −361.867 + 103.977i −0.895710 + 0.257369i
\(405\) 415.741 172.206i 1.02652 0.425199i
\(406\) 58.3235 275.092i 0.143654 0.677568i
\(407\) 199.351 + 199.351i 0.489805 + 0.489805i
\(408\) −182.663 + 41.4892i −0.447703 + 0.101689i
\(409\) −307.105 307.105i −0.750867 0.750867i 0.223774 0.974641i \(-0.428162\pi\)
−0.974641 + 0.223774i \(0.928162\pi\)
\(410\) −142.019 406.324i −0.346387 0.991034i
\(411\) 40.7148 + 98.2942i 0.0990628 + 0.239159i
\(412\) −276.957 + 220.548i −0.672226 + 0.535311i
\(413\) −118.529 18.2134i −0.286994 0.0441002i
\(414\) 50.3641 44.9763i 0.121652 0.108638i
\(415\) 159.979 0.385491
\(416\) 504.240 55.9180i 1.21212 0.134418i
\(417\) 487.293 1.16857
\(418\) −374.316 419.156i −0.895493 1.00277i
\(419\) 260.334 + 107.834i 0.621322 + 0.257360i 0.671061 0.741402i \(-0.265839\pi\)
−0.0497391 + 0.998762i \(0.515839\pi\)
\(420\) −304.298 + 393.649i −0.724520 + 0.937261i
\(421\) −514.444 + 213.090i −1.22196 + 0.506151i −0.898031 0.439931i \(-0.855003\pi\)
−0.323926 + 0.946083i \(0.605003\pi\)
\(422\) 6.83059 + 19.5427i 0.0161862 + 0.0463097i
\(423\) 3.39481 + 3.39481i 0.00802554 + 0.00802554i
\(424\) 266.796 + 168.032i 0.629237 + 0.396301i
\(425\) −81.4342 + 81.4342i −0.191610 + 0.191610i
\(426\) 161.888 + 78.0312i 0.380019 + 0.183172i
\(427\) 526.900 386.539i 1.23396 0.905244i
\(428\) −771.505 + 221.680i −1.80258 + 0.517944i
\(429\) 539.525 + 223.478i 1.25763 + 0.520929i
\(430\) −479.552 27.1000i −1.11524 0.0630232i
\(431\) 410.006i 0.951290i −0.879637 0.475645i \(-0.842215\pi\)
0.879637 0.475645i \(-0.157785\pi\)
\(432\) −74.8980 444.598i −0.173375 1.02916i
\(433\) −512.137 −1.18277 −0.591383 0.806391i \(-0.701418\pi\)
−0.591383 + 0.806391i \(0.701418\pi\)
\(434\) −152.145 818.532i −0.350565 1.88602i
\(435\) −329.757 136.590i −0.758061 0.313999i
\(436\) −147.385 + 266.231i −0.338038 + 0.610621i
\(437\) 750.019 310.668i 1.71629 0.710911i
\(438\) −667.777 321.873i −1.52460 0.734871i
\(439\) −469.838 + 469.838i −1.07025 + 1.07025i −0.0729066 + 0.997339i \(0.523227\pi\)
−0.997339 + 0.0729066i \(0.976773\pi\)
\(440\) 108.993 637.423i 0.247712 1.44869i
\(441\) −13.2807 + 42.1934i −0.0301149 + 0.0956766i
\(442\) −246.296 + 86.0856i −0.557231 + 0.194764i
\(443\) 86.8413 35.9709i 0.196030 0.0811983i −0.282509 0.959265i \(-0.591167\pi\)
0.478539 + 0.878066i \(0.341167\pi\)
\(444\) −27.9290 + 246.322i −0.0629031 + 0.554779i
\(445\) 74.6726 180.276i 0.167804 0.405114i
\(446\) 575.661 514.078i 1.29072 1.15264i
\(447\) 184.729i 0.413264i
\(448\) 284.104 + 346.394i 0.634160 + 0.773202i
\(449\) 33.6621 0.0749712 0.0374856 0.999297i \(-0.488065\pi\)
0.0374856 + 0.999297i \(0.488065\pi\)
\(450\) −16.8317 18.8480i −0.0374039 0.0418845i
\(451\) −412.155 170.720i −0.913869 0.378537i
\(452\) 140.352 + 15.9137i 0.310514 + 0.0352074i
\(453\) 236.327 + 570.544i 0.521693 + 1.25948i
\(454\) −210.599 602.536i −0.463875 1.32717i
\(455\) −359.378 + 592.566i −0.789842 + 1.30234i
\(456\) 83.2853 487.075i 0.182643 1.06815i
\(457\) 621.540 + 621.540i 1.36004 + 1.36004i 0.873853 + 0.486191i \(0.161614\pi\)
0.486191 + 0.873853i \(0.338386\pi\)
\(458\) −255.380 + 529.826i −0.557598 + 1.15682i
\(459\) 88.7315 + 214.217i 0.193315 + 0.466703i
\(460\) 817.305 + 452.458i 1.77675 + 0.983604i
\(461\) −284.099 + 685.876i −0.616267 + 1.48780i 0.239741 + 0.970837i \(0.422938\pi\)
−0.856008 + 0.516963i \(0.827062\pi\)
\(462\) 94.2387 + 506.998i 0.203980 + 1.09740i
\(463\) 342.743i 0.740266i 0.928979 + 0.370133i \(0.120688\pi\)
−0.928979 + 0.370133i \(0.879312\pi\)
\(464\) −186.341 + 261.843i −0.401597 + 0.564317i
\(465\) −1056.73 −2.27253
\(466\) −12.5551 + 222.170i −0.0269422 + 0.476760i
\(467\) −73.9541 + 178.541i −0.158360 + 0.382315i −0.983067 0.183245i \(-0.941340\pi\)
0.824707 + 0.565560i \(0.191340\pi\)
\(468\) −15.8097 55.0221i −0.0337815 0.117569i
\(469\) 38.8834 + 53.0028i 0.0829070 + 0.113012i
\(470\) −28.8403 + 59.8337i −0.0613622 + 0.127306i
\(471\) 165.033 + 165.033i 0.350388 + 0.350388i
\(472\) 115.968 + 73.0379i 0.245695 + 0.154741i
\(473\) −352.012 + 352.012i −0.744211 + 0.744211i
\(474\) 675.753 236.190i 1.42564 0.498291i
\(475\) −116.263 280.684i −0.244764 0.590914i
\(476\) −182.282 140.907i −0.382945 0.296024i
\(477\) 13.6156 32.8710i 0.0285442 0.0689119i
\(478\) −619.592 + 553.310i −1.29622 + 1.15755i
\(479\) 326.700i 0.682045i 0.940055 + 0.341023i \(0.110773\pi\)
−0.940055 + 0.341023i \(0.889227\pi\)
\(480\) 498.160 274.183i 1.03783 0.571215i
\(481\) 345.294i 0.717867i
\(482\) −140.640 157.488i −0.291785 0.326738i
\(483\) −736.313 113.144i −1.52446 0.234252i
\(484\) −116.016 145.689i −0.239703 0.301011i
\(485\) 727.996 301.546i 1.50102 0.621744i
\(486\) −91.6762 + 32.0428i −0.188634 + 0.0659316i
\(487\) −254.213 + 254.213i −0.521999 + 0.521999i −0.918175 0.396176i \(-0.870337\pi\)
0.396176 + 0.918175i \(0.370337\pi\)
\(488\) −728.284 + 165.419i −1.49239 + 0.338974i
\(489\) 354.560 354.560i 0.725071 0.725071i
\(490\) −611.680 + 19.1571i −1.24833 + 0.0390962i
\(491\) −91.2679 220.340i −0.185882 0.448758i 0.803278 0.595605i \(-0.203088\pi\)
−0.989159 + 0.146847i \(0.953088\pi\)
\(492\) −108.331 377.019i −0.220184 0.766298i
\(493\) 63.2488 152.696i 0.128294 0.309728i
\(494\) 38.8335 687.185i 0.0786104 1.39106i
\(495\) −72.9721 −0.147418
\(496\) −213.029 + 927.334i −0.429493 + 1.86963i
\(497\) 52.5918 + 214.696i 0.105819 + 0.431984i
\(498\) 145.566 + 8.22606i 0.292300 + 0.0165182i
\(499\) 531.863 + 220.305i 1.06586 + 0.441493i 0.845527 0.533933i \(-0.179286\pi\)
0.220331 + 0.975425i \(0.429286\pi\)
\(500\) −133.125 + 240.473i −0.266251 + 0.480946i
\(501\) 2.46880 + 5.96021i 0.00492774 + 0.0118966i
\(502\) −19.3292 + 40.1015i −0.0385044 + 0.0798834i
\(503\) 529.745 529.745i 1.05317 1.05317i 0.0546667 0.998505i \(-0.482590\pi\)
0.998505 0.0546667i \(-0.0174096\pi\)
\(504\) 33.1254 38.1883i 0.0657249 0.0757704i
\(505\) −415.634 + 415.634i −0.823037 + 0.823037i
\(506\) 914.007 319.465i 1.80634 0.631353i
\(507\) 89.6781 + 216.502i 0.176880 + 0.427026i
\(508\) 58.3300 514.446i 0.114823 1.01269i
\(509\) −97.2308 40.2743i −0.191023 0.0791244i 0.285121 0.958491i \(-0.407966\pi\)
−0.476145 + 0.879367i \(0.657966\pi\)
\(510\) −218.117 + 194.784i −0.427681 + 0.381929i
\(511\) −216.938 885.605i −0.424535 1.73308i
\(512\) −140.184 492.435i −0.273798 0.961787i
\(513\) −611.672 −1.19234
\(514\) 375.922 335.707i 0.731366 0.653127i
\(515\) −211.518 + 510.649i −0.410714 + 0.991552i
\(516\) −434.953 49.3168i −0.842933 0.0955752i
\(517\) 26.3447 + 63.6017i 0.0509568 + 0.123021i
\(518\) −255.635 + 166.200i −0.493504 + 0.320849i
\(519\) 157.237 157.237i 0.302962 0.302962i
\(520\) 646.432 457.645i 1.24314 0.880087i
\(521\) 162.950 162.950i 0.312764 0.312764i −0.533215 0.845980i \(-0.679016\pi\)
0.845980 + 0.533215i \(0.179016\pi\)
\(522\) 32.6683 + 15.7463i 0.0625829 + 0.0301654i
\(523\) −445.079 + 184.358i −0.851012 + 0.352501i −0.765186 0.643809i \(-0.777353\pi\)
−0.0858261 + 0.996310i \(0.527353\pi\)
\(524\) −96.0976 + 173.588i −0.183392 + 0.331274i
\(525\) −42.3423 + 275.554i −0.0806521 + 0.524866i
\(526\) 105.288 + 5.94995i 0.200168 + 0.0113117i
\(527\) 489.325i 0.928510i
\(528\) 131.950 574.390i 0.249905 1.08786i
\(529\) 869.704i 1.64405i
\(530\) 491.456 + 27.7727i 0.927275 + 0.0524012i
\(531\) 5.91826 14.2880i 0.0111455 0.0269076i
\(532\) 527.442 302.012i 0.991433 0.567691i
\(533\) −209.094 504.797i −0.392296 0.947087i
\(534\) 77.2147 160.194i 0.144597 0.299989i
\(535\) −886.137 + 886.137i −1.65633 + 1.65633i
\(536\) −16.6401 73.2608i −0.0310450 0.136681i
\(537\) 52.3893 + 52.3893i 0.0975593 + 0.0975593i
\(538\) −362.594 + 126.734i −0.673967 + 0.235566i
\(539\) −407.468 + 486.088i −0.755970 + 0.901833i
\(540\) −438.472 550.619i −0.811985 1.01967i
\(541\) 111.898 270.145i 0.206835 0.499344i −0.786086 0.618117i \(-0.787896\pi\)
0.992921 + 0.118773i \(0.0378959\pi\)
\(542\) −699.315 783.087i −1.29025 1.44481i
\(543\) −18.1421 −0.0334108
\(544\) 126.962 + 230.677i 0.233386 + 0.424038i
\(545\) 475.071i 0.871690i
\(546\) −357.469 + 520.700i −0.654706 + 0.953663i
\(547\) 389.555 940.469i 0.712166 1.71932i 0.0176505 0.999844i \(-0.494381\pi\)
0.694516 0.719477i \(-0.255619\pi\)
\(548\) 116.993 93.1645i 0.213491 0.170008i
\(549\) 32.2504 + 77.8594i 0.0587439 + 0.141820i
\(550\) −119.555 342.054i −0.217373 0.621916i
\(551\) 308.303 + 308.303i 0.559533 + 0.559533i
\(552\) 720.404 + 453.719i 1.30508 + 0.821955i
\(553\) 752.838 + 456.579i 1.36137 + 0.825641i
\(554\) −345.341 + 716.465i −0.623359 + 1.29326i
\(555\) 148.104 + 357.555i 0.266854 + 0.644243i
\(556\) −189.166 658.346i −0.340226 1.18408i
\(557\) 962.583 + 398.715i 1.72816 + 0.715825i 0.999522 + 0.0309216i \(0.00984422\pi\)
0.728634 + 0.684904i \(0.240156\pi\)
\(558\) 107.197 + 6.05781i 0.192109 + 0.0108563i
\(559\) −609.718 −1.09073
\(560\) 649.960 + 258.302i 1.16064 + 0.461254i
\(561\) 303.088i 0.540263i
\(562\) 464.577 + 26.2537i 0.826650 + 0.0467149i
\(563\) −40.2258 + 97.1136i −0.0714490 + 0.172493i −0.955570 0.294766i \(-0.904758\pi\)
0.884121 + 0.467259i \(0.154758\pi\)
\(564\) −29.3185 + 52.9600i −0.0519832 + 0.0939007i
\(565\) 203.732 84.3886i 0.360588 0.149360i
\(566\) 35.4096 73.4627i 0.0625611 0.129793i
\(567\) 431.302 + 261.575i 0.760673 + 0.461331i
\(568\) 42.5779 249.007i 0.0749611 0.438393i
\(569\) 367.219 367.219i 0.645377 0.645377i −0.306495 0.951872i \(-0.599156\pi\)
0.951872 + 0.306495i \(0.0991564\pi\)
\(570\) −254.536 728.242i −0.446554 1.27762i
\(571\) −325.809 + 134.955i −0.570595 + 0.236348i −0.649277 0.760552i \(-0.724929\pi\)
0.0786828 + 0.996900i \(0.474929\pi\)
\(572\) 92.4837 815.667i 0.161685 1.42599i
\(573\) 175.924 + 72.8699i 0.307022 + 0.127173i
\(574\) 273.079 397.774i 0.475747 0.692986i
\(575\) 523.445 0.910339
\(576\) −52.1063 + 24.9580i −0.0904624 + 0.0433299i
\(577\) 268.418i 0.465195i −0.972573 0.232598i \(-0.925278\pi\)
0.972573 0.232598i \(-0.0747225\pi\)
\(578\) 294.801 + 330.116i 0.510036 + 0.571134i
\(579\) 150.307 + 62.2592i 0.259598 + 0.107529i
\(580\) −56.5259 + 498.535i −0.0974585 + 0.859542i
\(581\) 106.074 + 144.593i 0.182572 + 0.248868i
\(582\) 677.912 236.945i 1.16480 0.407121i
\(583\) 360.750 360.750i 0.618782 0.618782i
\(584\) −175.631 + 1027.14i −0.300738 + 1.75880i
\(585\) −63.1974 63.1974i −0.108030 0.108030i
\(586\) −420.277 + 871.931i −0.717197 + 1.48794i
\(587\) 24.3962 10.1052i 0.0415609 0.0172151i −0.361806 0.932253i \(-0.617840\pi\)
0.403367 + 0.915038i \(0.367840\pi\)
\(588\) −557.555 14.0212i −0.948223 0.0238456i
\(589\) 1192.60 + 493.989i 2.02478 + 0.838691i
\(590\) 213.620 + 12.0719i 0.362068 + 0.0204608i
\(591\) 675.379 1.14277
\(592\) 343.630 57.8886i 0.580456 0.0977848i
\(593\) 1008.99 1.70150 0.850749 0.525572i \(-0.176149\pi\)
0.850749 + 0.525572i \(0.176149\pi\)
\(594\) −728.362 41.1605i −1.22620 0.0692937i
\(595\) −355.513 54.6289i −0.597500 0.0918133i
\(596\) 249.574 71.7114i 0.418749 0.120321i
\(597\) −92.5446 223.422i −0.155016 0.374242i
\(598\) 1068.25 + 514.902i 1.78636 + 0.861040i
\(599\) 358.882 + 358.882i 0.599135 + 0.599135i 0.940082 0.340948i \(-0.110748\pi\)
−0.340948 + 0.940082i \(0.610748\pi\)
\(600\) 169.798 269.601i 0.282996 0.449335i
\(601\) 828.467 + 828.467i 1.37848 + 1.37848i 0.847189 + 0.531292i \(0.178293\pi\)
0.531292 + 0.847189i \(0.321707\pi\)
\(602\) −293.475 451.399i −0.487500 0.749832i
\(603\) −7.83216 + 3.24419i −0.0129887 + 0.00538008i
\(604\) 679.080 540.769i 1.12430 0.895312i
\(605\) −268.620 111.266i −0.443999 0.183911i
\(606\) −399.559 + 356.816i −0.659338 + 0.588805i
\(607\) 338.797i 0.558149i −0.960269 0.279075i \(-0.909972\pi\)
0.960269 0.279075i \(-0.0900277\pi\)
\(608\) −690.383 + 76.5603i −1.13550 + 0.125922i
\(609\) −95.1933 388.608i −0.156311 0.638108i
\(610\) −869.645 + 776.613i −1.42565 + 1.27314i
\(611\) −32.2664 + 77.8979i −0.0528091 + 0.127492i
\(612\) 23.2430 18.5090i 0.0379787 0.0302434i
\(613\) 561.283 232.491i 0.915634 0.379268i 0.125423 0.992103i \(-0.459971\pi\)
0.790211 + 0.612835i \(0.209971\pi\)
\(614\) 272.189 95.1356i 0.443304 0.154944i
\(615\) −433.037 433.037i −0.704125 0.704125i
\(616\) 648.386 324.135i 1.05257 0.526192i
\(617\) 178.617 + 178.617i 0.289492 + 0.289492i 0.836879 0.547387i \(-0.184378\pi\)
−0.547387 + 0.836879i \(0.684378\pi\)
\(618\) −218.719 + 453.766i −0.353914 + 0.734249i
\(619\) −267.269 + 110.707i −0.431776 + 0.178847i −0.587977 0.808878i \(-0.700075\pi\)
0.156201 + 0.987725i \(0.450075\pi\)
\(620\) 410.219 + 1427.67i 0.661644 + 2.30269i
\(621\) 403.299 973.650i 0.649435 1.56787i
\(622\) 793.951 + 44.8670i 1.27645 + 0.0721334i
\(623\) 212.449 52.0415i 0.341010 0.0835337i
\(624\) 611.724 383.174i 0.980327 0.614061i
\(625\) 779.012i 1.24642i
\(626\) −26.2431 + 464.389i −0.0419219 + 0.741836i
\(627\) −738.692 305.976i −1.17814 0.488001i
\(628\) 158.899 287.030i 0.253024 0.457054i
\(629\) −165.568 + 68.5806i −0.263224 + 0.109031i
\(630\) 16.3688 77.2062i 0.0259823 0.122550i
\(631\) 224.670 + 224.670i 0.356054 + 0.356054i 0.862356 0.506302i \(-0.168988\pi\)
−0.506302 + 0.862356i \(0.668988\pi\)
\(632\) −581.425 821.274i −0.919976 1.29948i
\(633\) 20.8275 + 20.8275i 0.0329028 + 0.0329028i
\(634\) −505.462 + 176.670i −0.797259 + 0.278659i
\(635\) −309.317 746.758i −0.487114 1.17600i
\(636\) 445.750 + 50.5410i 0.700865 + 0.0794669i
\(637\) −773.862 + 68.0887i −1.21485 + 0.106890i
\(638\) 346.372 + 387.864i 0.542903 + 0.607938i
\(639\) −28.5063 −0.0446108
\(640\) −563.814 566.592i −0.880959 0.885300i
\(641\) 983.789 1.53477 0.767386 0.641185i \(-0.221557\pi\)
0.767386 + 0.641185i \(0.221557\pi\)
\(642\) −851.865 + 760.735i −1.32689 + 1.18495i
\(643\) 597.032 + 247.299i 0.928511 + 0.384602i 0.795113 0.606461i \(-0.207411\pi\)
0.133397 + 0.991063i \(0.457411\pi\)
\(644\) 132.975 + 1038.70i 0.206482 + 1.61289i
\(645\) −631.368 + 261.521i −0.978865 + 0.405459i
\(646\) 337.217 117.865i 0.522008 0.182453i
\(647\) 6.01032 + 6.01032i 0.00928952 + 0.00928952i 0.711736 0.702447i \(-0.247909\pi\)
−0.702447 + 0.711736i \(0.747909\pi\)
\(648\) −333.099 470.508i −0.514042 0.726093i
\(649\) 156.806 156.806i 0.241612 0.241612i
\(650\) 192.695 399.775i 0.296453 0.615039i
\(651\) −700.667 955.095i −1.07629 1.46712i
\(652\) −616.660 341.381i −0.945797 0.523591i
\(653\) 12.8469 + 5.32137i 0.0196737 + 0.00814911i 0.392499 0.919753i \(-0.371611\pi\)
−0.372825 + 0.927902i \(0.621611\pi\)
\(654\) −24.4280 + 432.269i −0.0373517 + 0.660962i
\(655\) 309.756i 0.472909i
\(656\) −467.309 + 292.715i −0.712362 + 0.446212i
\(657\) 117.586 0.178975
\(658\) −73.2016 + 13.6064i −0.111249 + 0.0206784i
\(659\) −536.835 222.364i −0.814620 0.337427i −0.0638243 0.997961i \(-0.520330\pi\)
−0.750796 + 0.660535i \(0.770330\pi\)
\(660\) −254.089 884.298i −0.384984 1.33985i
\(661\) −1131.08 + 468.510i −1.71117 + 0.708790i −0.711187 + 0.703003i \(0.751842\pi\)
−0.999983 + 0.00578751i \(0.998158\pi\)
\(662\) −95.8038 + 198.760i −0.144719 + 0.300242i
\(663\) −262.488 + 262.488i −0.395910 + 0.395910i
\(664\) −45.3945 199.857i −0.0683653 0.300989i
\(665\) 492.044 811.315i 0.739916 1.22002i
\(666\) −12.9743 37.1202i −0.0194809 0.0557361i
\(667\) −694.027 + 287.476i −1.04052 + 0.430998i
\(668\) 7.09403 5.64916i 0.0106198 0.00845682i
\(669\) 420.222 1014.51i 0.628134 1.51645i
\(670\) −78.1224 87.4808i −0.116601 0.130568i
\(671\) 1208.42i 1.80093i
\(672\) 578.120 + 268.451i 0.860297 + 0.399481i
\(673\) −631.845 −0.938848 −0.469424 0.882973i \(-0.655538\pi\)
−0.469424 + 0.882973i \(0.655538\pi\)
\(674\) −125.770 + 112.315i −0.186602 + 0.166640i
\(675\) −364.374 150.929i −0.539814 0.223598i
\(676\) 257.688 205.203i 0.381195 0.303555i
\(677\) −383.762 926.483i −0.566857 1.36851i −0.904191 0.427128i \(-0.859525\pi\)
0.337335 0.941385i \(1.60953\pi\)
\(678\) 189.716 66.3098i 0.279817 0.0978021i
\(679\) 755.243 + 458.038i 1.11229 + 0.674578i
\(680\) 347.831 + 219.068i 0.511517 + 0.322159i
\(681\) −642.149 642.149i −0.942950 0.942950i
\(682\) 1386.87 + 668.480i 2.03353 + 0.980176i
\(683\) 66.5040 + 160.555i 0.0973705 + 0.235073i 0.965058 0.262037i \(-0.0843944\pi\)
−0.867687 + 0.497110i \(0.834394\pi\)
\(684\) 21.6460 + 75.3337i 0.0316462 + 0.110137i
\(685\) 89.3499 215.710i 0.130438 0.314905i
\(686\) −422.891 540.148i −0.616459 0.787387i
\(687\) 836.827i 1.21809i
\(688\) 102.219 + 606.779i 0.148575 + 0.881947i
\(689\) 624.853 0.906898
\(690\) 1327.03 + 74.9918i 1.92323 + 0.108684i
\(691\) 450.399 1087.36i 0.651807 1.57360i −0.158346 0.987384i \(-0.550616\pi\)
0.810153 0.586218i \(-0.199384\pi\)
\(692\) −273.471 151.393i −0.395190 0.218776i
\(693\) −48.3844 65.9539i −0.0698188 0.0951716i
\(694\) −533.097 256.957i −0.768152 0.370255i
\(695\) −756.165 756.165i −1.08801 1.08801i
\(696\) −77.0677 + 450.712i −0.110729 + 0.647575i
\(697\) 200.521 200.521i 0.287691 0.287691i
\(698\) −55.8778 159.869i −0.0800541 0.229039i
\(699\) 121.159 + 292.504i 0.173332 + 0.418461i
\(700\) 388.719 49.7638i 0.555313 0.0710912i
\(701\) −22.9991 + 55.5246i −0.0328089 + 0.0792077i −0.939435 0.342728i \(-0.888649\pi\)
0.906626 + 0.421936i \(0.138649\pi\)
\(702\) −595.149 666.443i −0.847790 0.949349i
\(703\) 472.761i 0.672491i
\(704\) −827.240 + 44.7088i −1.17506 + 0.0635068i
\(705\) 94.5036i 0.134048i
\(706\) 70.8919 63.3082i 0.100414 0.0896716i
\(707\) −651.247 100.072i −0.921141 0.141545i
\(708\) 193.753 + 21.9685i 0.273662 + 0.0310290i
\(709\) 437.459 181.202i 0.617009 0.255574i −0.0522130 0.998636i \(-0.516627\pi\)
0.669222 + 0.743062i \(0.266627\pi\)
\(710\) −130.126 372.299i −0.183277 0.524365i
\(711\) −80.2904 + 80.2904i −0.112926 + 0.112926i
\(712\) −246.401 42.1323i −0.346069 0.0591746i
\(713\) −1572.65 + 1572.65i −2.20568 + 2.20568i
\(714\) −320.674 67.9874i −0.449123 0.0952205i
\(715\) −490.430 1184.00i −0.685916 1.65595i
\(716\) 50.4421 91.1169i 0.0704498 0.127258i
\(717\) −452.291 + 1091.93i −0.630810 + 1.52291i
\(718\) −806.647 45.5845i −1.12346 0.0634881i
\(719\) −668.803 −0.930184 −0.465092 0.885262i \(-0.653979\pi\)
−0.465092 + 0.885262i \(0.653979\pi\)
\(720\) −52.2977 + 73.4878i −0.0726357 + 0.102066i
\(721\) −601.784 + 147.413i −0.834652 + 0.204456i
\(722\) −12.4331 + 220.012i −0.0172204 + 0.304726i
\(723\) −277.546 114.963i −0.383881 0.159009i
\(724\) 7.04270 + 24.5105i 0.00972749 + 0.0338542i
\(725\) 107.584 + 259.730i 0.148391 + 0.358248i
\(726\) −238.697 115.054i −0.328784 0.158476i
\(727\) 570.615 570.615i 0.784890 0.784890i −0.195762 0.980651i \(-0.562718\pi\)
0.980651 + 0.195762i \(0.0627179\pi\)
\(728\) 842.249 + 280.817i 1.15694 + 0.385738i
\(729\) −556.293 + 556.293i −0.763091 + 0.763091i
\(730\) 536.762 + 1535.71i 0.735290 + 2.10371i
\(731\) −121.099 292.359i −0.165662 0.399944i
\(732\) −831.227 + 661.927i −1.13556 + 0.904272i
\(733\) −205.500 85.1210i −0.280355 0.116127i 0.238075 0.971247i \(-0.423483\pi\)
−0.518430 + 0.855120i \(0.673483\pi\)
\(734\) −65.0016 72.7882i −0.0885580 0.0991665i
\(735\) −772.135 + 402.432i −1.05052 + 0.547527i
\(736\) 333.329 1149.42i 0.452892 1.56171i
\(737\) −121.560 −0.164939
\(738\) 41.4458 + 46.4107i 0.0561597 + 0.0628871i
\(739\) −72.3032 + 174.555i −0.0978393 + 0.236205i −0.965219 0.261441i \(-0.915802\pi\)
0.867380 + 0.497646i \(0.165802\pi\)
\(740\) 425.573 338.895i 0.575099 0.457966i
\(741\) −374.753 904.733i −0.505739 1.22096i
\(742\) 300.760 + 462.604i 0.405336 + 0.623455i
\(743\) 244.158 244.158i 0.328611 0.328611i −0.523447 0.852058i \(-0.675354\pi\)
0.852058 + 0.523447i \(0.175354\pi\)
\(744\) 299.850 + 1320.14i 0.403024 + 1.77438i
\(745\) 286.657 286.657i 0.384774 0.384774i
\(746\) 93.0643 193.076i 0.124751 0.258816i
\(747\) −21.3663 + 8.85020i −0.0286028 + 0.0118477i
\(748\) 409.480 117.658i 0.547433 0.157297i
\(749\) −1388.47 213.355i −1.85376 0.284853i
\(750\) −22.0646 + 390.448i −0.0294195 + 0.520597i
\(751\) 982.403i 1.30813i −0.756440 0.654063i \(-0.773063\pi\)
0.756440 0.654063i \(-0.226937\pi\)
\(752\) 82.9318 + 19.0512i 0.110282 + 0.0253341i
\(753\) 63.3378i 0.0841140i
\(754\) −35.9344 + 635.884i −0.0476584 + 0.843347i
\(755\) 518.627 1252.08i 0.686923 1.65838i
\(756\) 206.932 761.391i 0.273720 1.00713i
\(757\) 343.365 +