Properties

Label 224.3.v.b.13.15
Level 224
Weight 3
Character 224.13
Analytic conductor 6.104
Analytic rank 0
Dimension 240
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(60\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 13.15
Character \(\chi\) \(=\) 224.13
Dual form 224.3.v.b.69.15

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.41192 + 1.41651i) q^{2} +(-2.79421 - 1.15740i) q^{3} +(-0.0129803 - 3.99998i) q^{4} +(-1.86072 - 4.49217i) q^{5} +(5.58465 - 2.32386i) q^{6} +(0.944293 - 6.93602i) q^{7} +(5.68432 + 5.62925i) q^{8} +(0.104065 + 0.104065i) q^{9} +O(q^{10})\) \(q+(-1.41192 + 1.41651i) q^{2} +(-2.79421 - 1.15740i) q^{3} +(-0.0129803 - 3.99998i) q^{4} +(-1.86072 - 4.49217i) q^{5} +(5.58465 - 2.32386i) q^{6} +(0.944293 - 6.93602i) q^{7} +(5.68432 + 5.62925i) q^{8} +(0.104065 + 0.104065i) q^{9} +(8.99036 + 3.70685i) q^{10} +(2.63807 + 6.36886i) q^{11} +(-4.59330 + 11.1918i) q^{12} +(-3.81272 + 9.20472i) q^{13} +(8.49165 + 11.1307i) q^{14} +14.7056i q^{15} +(-15.9997 + 0.103842i) q^{16} -18.4549 q^{17} +(-0.294341 + 0.000477579i) q^{18} +(6.94428 - 16.7650i) q^{19} +(-17.9444 + 7.50114i) q^{20} +(-10.6663 + 18.2877i) q^{21} +(-12.7463 - 5.25546i) q^{22} +(-1.72229 - 1.72229i) q^{23} +(-9.36789 - 22.3083i) q^{24} +(0.960355 - 0.960355i) q^{25} +(-7.65530 - 18.3970i) q^{26} +(10.2463 + 24.7366i) q^{27} +(-27.7562 - 3.68712i) q^{28} +(-17.1745 + 41.4630i) q^{29} +(-20.8306 - 20.7632i) q^{30} +2.69268i q^{31} +(22.4431 - 22.8102i) q^{32} -20.8492i q^{33} +(26.0568 - 26.1415i) q^{34} +(-32.9148 + 8.66404i) q^{35} +(0.414908 - 0.417610i) q^{36} +(-63.1550 + 26.1596i) q^{37} +(13.9429 + 33.5073i) q^{38} +(21.3071 - 21.3071i) q^{39} +(14.7106 - 36.0094i) q^{40} +(4.62617 - 4.62617i) q^{41} +(-10.8448 - 40.9296i) q^{42} +(1.15439 + 2.78695i) q^{43} +(25.4411 - 10.6349i) q^{44} +(0.273843 - 0.661115i) q^{45} +(4.87136 - 0.00790397i) q^{46} -9.80819 q^{47} +(44.8266 + 18.2278i) q^{48} +(-47.2166 - 13.0993i) q^{49} +(0.00440728 + 2.71629i) q^{50} +(51.5668 + 21.3597i) q^{51} +(36.8682 + 15.1313i) q^{52} +(10.8678 + 26.2371i) q^{53} +(-49.5065 - 20.4122i) q^{54} +(23.7013 - 23.7013i) q^{55} +(44.4122 - 34.1109i) q^{56} +(-38.8075 + 38.8075i) q^{57} +(-34.4835 - 82.8701i) q^{58} +(30.6283 + 73.9432i) q^{59} +(58.8223 - 0.190883i) q^{60} +(25.7376 + 10.6609i) q^{61} +(-3.81420 - 3.80184i) q^{62} +(0.820067 - 0.623531i) q^{63} +(0.623044 + 63.9970i) q^{64} +48.4435 q^{65} +(29.5331 + 29.4374i) q^{66} +(29.2049 - 70.5070i) q^{67} +(0.239550 + 73.8192i) q^{68} +(2.81906 + 6.80581i) q^{69} +(34.2003 - 58.8570i) q^{70} +(33.8344 - 33.8344i) q^{71} +(0.00573093 + 1.17735i) q^{72} +(-70.7687 + 70.7687i) q^{73} +(52.1143 - 126.395i) q^{74} +(-3.79495 + 1.57192i) q^{75} +(-67.1496 - 27.5593i) q^{76} +(46.6656 - 12.2836i) q^{77} +(0.0977829 + 60.2654i) q^{78} -89.2961i q^{79} +(30.2373 + 71.6800i) q^{80} -82.3029i q^{81} +(0.0212305 + 13.0848i) q^{82} +(-54.0727 + 130.543i) q^{83} +(73.2890 + 42.4275i) q^{84} +(34.3394 + 82.9026i) q^{85} +(-5.57763 - 2.29973i) q^{86} +(95.9784 - 95.9784i) q^{87} +(-20.8563 + 51.0530i) q^{88} +(72.3174 + 72.3174i) q^{89} +(0.549830 + 1.32134i) q^{90} +(60.2437 + 35.1370i) q^{91} +(-6.86676 + 6.91148i) q^{92} +(3.11650 - 7.52391i) q^{93} +(13.8483 - 13.8934i) q^{94} -88.2324 q^{95} +(-89.1113 + 37.7609i) q^{96} -108.153i q^{97} +(85.2211 - 48.3876i) q^{98} +(-0.388246 + 0.937309i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} - 8q^{11} + 12q^{14} - 112q^{16} - 176q^{18} - 4q^{21} - 192q^{22} + 128q^{23} - 8q^{25} + 56q^{28} - 8q^{29} - 16q^{30} - 8q^{32} + 92q^{35} + 192q^{36} - 8q^{37} - 8q^{39} - 424q^{42} + 128q^{43} - 16q^{44} - 8q^{46} - 320q^{50} - 80q^{51} - 192q^{53} + 608q^{56} - 8q^{57} - 712q^{58} + 264q^{60} + 496q^{63} - 272q^{64} - 16q^{65} + 304q^{67} + 320q^{70} + 504q^{71} - 8q^{72} + 232q^{74} + 164q^{77} + 560q^{78} - 1000q^{84} - 208q^{85} - 8q^{86} - 800q^{88} + 188q^{91} + 1560q^{92} + 64q^{93} - 16q^{95} - 376q^{98} + 64q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41192 + 1.41651i −0.705959 + 0.708253i
\(3\) −2.79421 1.15740i −0.931403 0.385800i −0.135192 0.990819i \(-0.543165\pi\)
−0.796210 + 0.605020i \(0.793165\pi\)
\(4\) −0.0129803 3.99998i −0.00324507 0.999995i
\(5\) −1.86072 4.49217i −0.372143 0.898434i −0.993387 0.114816i \(-0.963372\pi\)
0.621243 0.783618i \(1.71337\pi\)
\(6\) 5.58465 2.32386i 0.930775 0.387310i
\(7\) 0.944293 6.93602i 0.134899 0.990859i
\(8\) 5.68432 + 5.62925i 0.710540 + 0.703656i
\(9\) 0.104065 + 0.104065i 0.0115628 + 0.0115628i
\(10\) 8.99036 + 3.70685i 0.899036 + 0.370685i
\(11\) 2.63807 + 6.36886i 0.239824 + 0.578988i 0.997264 0.0739174i \(-0.0235501\pi\)
−0.757440 + 0.652905i \(0.773550\pi\)
\(12\) −4.59330 + 11.1918i −0.382775 + 0.932650i
\(13\) −3.81272 + 9.20472i −0.293286 + 0.708055i 0.706714 + 0.707500i \(0.250177\pi\)
−1.00000 0.000555699i \(0.999823\pi\)
\(14\) 8.49165 + 11.1307i 0.606546 + 0.795048i
\(15\) 14.7056i 0.980376i
\(16\) −15.9997 + 0.103842i −0.999979 + 0.00649010i
\(17\) −18.4549 −1.08558 −0.542791 0.839868i \(-0.682633\pi\)
−0.542791 + 0.839868i \(0.682633\pi\)
\(18\) −0.294341 0.000477579i −0.0163523 2.65322e-5i
\(19\) 6.94428 16.7650i 0.365488 0.882367i −0.628989 0.777414i \(-0.716531\pi\)
0.994477 0.104952i \(-0.0334690\pi\)
\(20\) −17.9444 + 7.50114i −0.897221 + 0.375057i
\(21\) −10.6663 + 18.2877i −0.507918 + 0.870845i
\(22\) −12.7463 5.25546i −0.579376 0.238885i
\(23\) −1.72229 1.72229i −0.0748821 0.0748821i 0.668674 0.743556i \(-0.266862\pi\)
−0.743556 + 0.668674i \(0.766862\pi\)
\(24\) −9.36789 22.3083i −0.390329 0.929514i
\(25\) 0.960355 0.960355i 0.0384142 0.0384142i
\(26\) −7.65530 18.3970i −0.294435 0.707579i
\(27\) 10.2463 + 24.7366i 0.379491 + 0.916172i
\(28\) −27.7562 3.68712i −0.991292 0.131683i
\(29\) −17.1745 + 41.4630i −0.592225 + 1.42976i 0.289124 + 0.957292i \(0.406636\pi\)
−0.881349 + 0.472466i \(0.843364\pi\)
\(30\) −20.8306 20.7632i −0.694355 0.692105i
\(31\) 2.69268i 0.0868606i 0.999056 + 0.0434303i \(0.0138286\pi\)
−0.999056 + 0.0434303i \(0.986171\pi\)
\(32\) 22.4431 22.8102i 0.701347 0.712820i
\(33\) 20.8492i 0.631795i
\(34\) 26.0568 26.1415i 0.766376 0.768867i
\(35\) −32.9148 + 8.66404i −0.940423 + 0.247544i
\(36\) 0.414908 0.417610i 0.0115252 0.0116003i
\(37\) −63.1550 + 26.1596i −1.70689 + 0.707017i −1.00000 0.000305477i \(-0.999903\pi\)
−0.706891 + 0.707323i \(0.749903\pi\)
\(38\) 13.9429 + 33.5073i 0.366919 + 0.881772i
\(39\) 21.3071 21.3071i 0.546335 0.546335i
\(40\) 14.7106 36.0094i 0.367766 0.900235i
\(41\) 4.62617 4.62617i 0.112833 0.112833i −0.648436 0.761269i \(-0.724577\pi\)
0.761269 + 0.648436i \(0.224577\pi\)
\(42\) −10.8448 40.9296i −0.258209 0.974515i
\(43\) 1.15439 + 2.78695i 0.0268463 + 0.0648127i 0.936734 0.350042i \(-0.113833\pi\)
−0.909888 + 0.414854i \(0.863833\pi\)
\(44\) 25.4411 10.6349i 0.578206 0.241702i
\(45\) 0.273843 0.661115i 0.00608540 0.0146915i
\(46\) 4.87136 0.00790397i 0.105899 0.000171825i
\(47\) −9.80819 −0.208685 −0.104342 0.994541i \(-0.533274\pi\)
−0.104342 + 0.994541i \(0.533274\pi\)
\(48\) 44.8266 + 18.2278i 0.933887 + 0.379747i
\(49\) −47.2166 13.0993i −0.963604 0.267332i
\(50\) 0.00440728 + 2.71629i 8.81457e−5 + 0.0543258i
\(51\) 51.5668 + 21.3597i 1.01111 + 0.418817i
\(52\) 36.8682 + 15.1313i 0.709003 + 0.290987i
\(53\) 10.8678 + 26.2371i 0.205052 + 0.495040i 0.992631 0.121174i \(-0.0386658\pi\)
−0.787579 + 0.616213i \(0.788666\pi\)
\(54\) −49.5065 20.4122i −0.916787 0.378004i
\(55\) 23.7013 23.7013i 0.430933 0.430933i
\(56\) 44.4122 34.1109i 0.793076 0.609123i
\(57\) −38.8075 + 38.8075i −0.680833 + 0.680833i
\(58\) −34.4835 82.8701i −0.594544 1.42879i
\(59\) 30.6283 + 73.9432i 0.519124 + 1.25328i 0.938442 + 0.345436i \(0.112269\pi\)
−0.419319 + 0.907839i \(0.637731\pi\)
\(60\) 58.8223 0.190883i 0.980371 0.00318139i
\(61\) 25.7376 + 10.6609i 0.421928 + 0.174768i 0.583537 0.812087i \(-0.301668\pi\)
−0.161609 + 0.986855i \(0.551668\pi\)
\(62\) −3.81420 3.80184i −0.0615193 0.0613200i
\(63\) 0.820067 0.623531i 0.0130169 0.00989731i
\(64\) 0.623044 + 63.9970i 0.00973506 + 0.999953i
\(65\) 48.4435 0.745285
\(66\) 29.5331 + 29.4374i 0.447471 + 0.446021i
\(67\) 29.2049 70.5070i 0.435895 1.05234i −0.541458 0.840728i \(-0.682128\pi\)
0.977353 0.211615i \(-0.0678724\pi\)
\(68\) 0.239550 + 73.8192i 0.00352279 + 1.08558i
\(69\) 2.81906 + 6.80581i 0.0408559 + 0.0986349i
\(70\) 34.2003 58.8570i 0.488576 0.840814i
\(71\) 33.8344 33.8344i 0.476541 0.476541i −0.427483 0.904024i \(-0.640599\pi\)
0.904024 + 0.427483i \(0.140599\pi\)
\(72\) 0.00573093 + 1.17735i 7.95962e−5 + 0.0163521i
\(73\) −70.7687 + 70.7687i −0.969434 + 0.969434i −0.999547 0.0301127i \(-0.990413\pi\)
0.0301127 + 0.999547i \(0.490413\pi\)
\(74\) 52.1143 126.395i 0.704247 1.70804i
\(75\) −3.79495 + 1.57192i −0.0505993 + 0.0209589i
\(76\) −67.1496 27.5593i −0.883548 0.362623i
\(77\) 46.6656 12.2836i 0.606047 0.159527i
\(78\) 0.0977829 + 60.2654i 0.00125363 + 0.772633i
\(79\) 89.2961i 1.13033i −0.824978 0.565165i \(-0.808812\pi\)
0.824978 0.565165i \(-0.191188\pi\)
\(80\) 30.2373 + 71.6800i 0.377967 + 0.896000i
\(81\) 82.3029i 1.01608i
\(82\) 0.0212305 + 13.0848i 0.000258909 + 0.159570i
\(83\) −54.0727 + 130.543i −0.651479 + 1.57281i 0.159154 + 0.987254i \(0.449123\pi\)
−0.810633 + 0.585555i \(0.800877\pi\)
\(84\) 73.2890 + 42.4275i 0.872489 + 0.505090i
\(85\) 34.3394 + 82.9026i 0.403993 + 0.975324i
\(86\) −5.57763 2.29973i −0.0648562 0.0267411i
\(87\) 95.9784 95.9784i 1.10320 1.10320i
\(88\) −20.8563 + 51.0530i −0.237003 + 0.580148i
\(89\) 72.3174 + 72.3174i 0.812555 + 0.812555i 0.985016 0.172461i \(-0.0551719\pi\)
−0.172461 + 0.985016i \(0.555172\pi\)
\(90\) 0.549830 + 1.32134i 0.00610923 + 0.0146816i
\(91\) 60.2437 + 35.1370i 0.662019 + 0.386121i
\(92\) −6.86676 + 6.91148i −0.0746387 + 0.0751247i
\(93\) 3.11650 7.52391i 0.0335108 0.0809022i
\(94\) 13.8483 13.8934i 0.147323 0.147802i
\(95\) −88.2324 −0.928762
\(96\) −89.1113 + 37.7609i −0.928242 + 0.393343i
\(97\) 108.153i 1.11498i −0.830185 0.557489i \(-0.811765\pi\)
0.830185 0.557489i \(-0.188235\pi\)
\(98\) 85.2211 48.3876i 0.869604 0.493751i
\(99\) −0.388246 + 0.937309i −0.00392168 + 0.00946777i
\(100\) −3.85387 3.82893i −0.0385387 0.0382893i
\(101\) −67.0471 161.866i −0.663832 1.60263i −0.791748 0.610848i \(-0.790829\pi\)
0.127915 0.991785i \(1.54083\pi\)
\(102\) −103.064 + 42.8867i −1.01043 + 0.420457i
\(103\) −33.5902 33.5902i −0.326119 0.326119i 0.524990 0.851109i \(-0.324069\pi\)
−0.851109 + 0.524990i \(0.824069\pi\)
\(104\) −73.4884 + 30.8598i −0.706619 + 0.296729i
\(105\) 101.999 + 13.8864i 0.971415 + 0.132252i
\(106\) −52.5094 21.6504i −0.495372 0.204249i
\(107\) −28.1712 68.0112i −0.263282 0.635619i 0.735856 0.677138i \(-0.236780\pi\)
−0.999138 + 0.0415197i \(0.986780\pi\)
\(108\) 98.8131 41.3059i 0.914936 0.382462i
\(109\) −127.290 52.7253i −1.16780 0.483718i −0.287334 0.957830i \(-0.592769\pi\)
−0.880464 + 0.474113i \(0.842769\pi\)
\(110\) 0.108771 + 67.0373i 0.000988823 + 0.609430i
\(111\) 206.745 1.86257
\(112\) −14.3881 + 111.072i −0.128465 + 0.991714i
\(113\) 16.9678i 0.150157i 0.997178 + 0.0750786i \(0.0239208\pi\)
−0.997178 + 0.0750786i \(0.976079\pi\)
\(114\) −0.178096 109.764i −0.00156225 0.962842i
\(115\) −4.53212 + 10.9415i −0.0394097 + 0.0951435i
\(116\) 166.074 + 68.1595i 1.43167 + 0.587582i
\(117\) −1.35466 + 0.561120i −0.0115783 + 0.00479590i
\(118\) −147.986 61.0165i −1.25412 0.517089i
\(119\) −17.4268 + 128.004i −0.146444 + 1.07566i
\(120\) −82.7818 + 83.5916i −0.689848 + 0.696597i
\(121\) 51.9569 51.9569i 0.429396 0.429396i
\(122\) −51.4405 + 21.4052i −0.421644 + 0.175453i
\(123\) −18.2808 + 7.57216i −0.148624 + 0.0615623i
\(124\) 10.7707 0.0349517i 0.0868602 0.000281868i
\(125\) −118.405 49.0451i −0.947242 0.392361i
\(126\) −0.274632 + 2.04200i −0.00217962 + 0.0162064i
\(127\) −178.949 −1.40904 −0.704522 0.709682i \(-0.748839\pi\)
−0.704522 + 0.709682i \(0.748839\pi\)
\(128\) −91.5318 89.4759i −0.715092 0.699030i
\(129\) 9.12340i 0.0707240i
\(130\) −68.3983 + 68.6206i −0.526141 + 0.527851i
\(131\) −56.9742 23.5995i −0.434918 0.180149i 0.154473 0.987997i \(-0.450632\pi\)
−0.589391 + 0.807848i \(0.700632\pi\)
\(132\) −83.3965 + 0.270628i −0.631791 + 0.00205022i
\(133\) −109.725 63.9966i −0.824997 0.481178i
\(134\) 58.6386 + 140.919i 0.437602 + 1.05163i
\(135\) 92.0558 92.0558i 0.681895 0.681895i
\(136\) −104.904 103.887i −0.771350 0.763877i
\(137\) −77.2919 77.2919i −0.564175 0.564175i 0.366316 0.930491i \(-0.380619\pi\)
−0.930491 + 0.366316i \(0.880619\pi\)
\(138\) −13.6207 5.61602i −0.0987011 0.0406958i
\(139\) 103.517 42.8781i 0.744725 0.308475i 0.0221379 0.999755i \(-0.492953\pi\)
0.722587 + 0.691280i \(0.242953\pi\)
\(140\) 35.0832 + 131.546i 0.250594 + 0.939615i
\(141\) 27.4061 + 11.3520i 0.194370 + 0.0805105i
\(142\) 0.155274 + 95.6981i 0.00109348 + 0.673930i
\(143\) −68.6818 −0.480292
\(144\) −1.67582 1.65420i −0.0116376 0.0114875i
\(145\) 218.216 1.50493
\(146\) −0.324773 200.164i −0.00222447 1.37098i
\(147\) 116.772 + 91.2505i 0.794367 + 0.620752i
\(148\) 105.458 + 252.279i 0.712553 + 1.70459i
\(149\) 29.7091 + 71.7241i 0.199390 + 0.481370i 0.991673 0.128784i \(-0.0411075\pi\)
−0.792283 + 0.610154i \(0.791107\pi\)
\(150\) 3.13152 7.59498i 0.0208768 0.0506332i
\(151\) −90.0549 90.0549i −0.596390 0.596390i 0.342960 0.939350i \(-0.388571\pi\)
−0.939350 + 0.342960i \(0.888571\pi\)
\(152\) 133.848 56.2064i 0.880577 0.369779i
\(153\) −1.92052 1.92052i −0.0125524 0.0125524i
\(154\) −48.4882 + 83.4456i −0.314858 + 0.541855i
\(155\) 12.0960 5.01031i 0.0780385 0.0323246i
\(156\) −85.5044 84.9512i −0.548105 0.544559i
\(157\) −177.979 73.7215i −1.13363 0.469563i −0.264614 0.964354i \(-0.585245\pi\)
−0.869012 + 0.494791i \(0.835245\pi\)
\(158\) 126.489 + 126.079i 0.800560 + 0.797967i
\(159\) 85.8903i 0.540190i
\(160\) −144.228 58.3748i −0.901423 0.364843i
\(161\) −13.5722 + 10.3195i −0.0842992 + 0.0640961i
\(162\) 116.583 + 116.205i 0.719645 + 0.717314i
\(163\) −21.6782 + 52.3359i −0.132995 + 0.321079i −0.976322 0.216322i \(-0.930594\pi\)
0.843327 + 0.537401i \(0.180594\pi\)
\(164\) −18.5646 18.4445i −0.113199 0.112467i
\(165\) −93.6583 + 38.7945i −0.567626 + 0.235118i
\(166\) −108.569 260.910i −0.654030 1.57175i
\(167\) 168.495 + 168.495i 1.00895 + 1.00895i 0.999960 + 0.00899546i \(0.00286338\pi\)
0.00899546 + 0.999960i \(0.497137\pi\)
\(168\) −163.577 + 43.9102i −0.973672 + 0.261370i
\(169\) 49.3110 + 49.3110i 0.291781 + 0.291781i
\(170\) −165.916 68.4096i −0.975978 0.402410i
\(171\) 2.46731 1.02199i 0.0144287 0.00597657i
\(172\) 11.1327 4.65371i 0.0647252 0.0270565i
\(173\) −50.4636 + 121.830i −0.291697 + 0.704220i −0.999999 0.00169064i \(-0.999462\pi\)
0.708301 + 0.705910i \(0.249462\pi\)
\(174\) 0.440466 + 271.467i 0.00253141 + 1.56016i
\(175\) −5.75418 7.56790i −0.0328810 0.0432451i
\(176\) −42.8696 101.626i −0.243577 0.577419i
\(177\) 242.062i 1.36758i
\(178\) −204.544 + 0.331881i −1.14912 + 0.00186450i
\(179\) −22.2421 9.21300i −0.124258 0.0514693i 0.319688 0.947523i \(-0.396422\pi\)
−0.443946 + 0.896054i \(0.646422\pi\)
\(180\) −2.64800 1.08678i −0.0147111 0.00603769i
\(181\) 50.6351 20.9738i 0.279752 0.115877i −0.238396 0.971168i \(-0.576622\pi\)
0.518148 + 0.855291i \(0.326622\pi\)
\(182\) −134.831 + 35.7251i −0.740830 + 0.196292i
\(183\) −59.5773 59.5773i −0.325559 0.325559i
\(184\) −0.0948473 19.4852i −0.000515474 0.105898i
\(185\) 235.027 + 235.027i 1.27042 + 1.27042i
\(186\) 6.25741 + 15.0377i 0.0336420 + 0.0808477i
\(187\) −48.6853 117.537i −0.260349 0.628539i
\(188\) 0.127313 + 39.2325i 0.000677196 + 0.208684i
\(189\) 181.249 47.7095i 0.958991 0.252431i
\(190\) 124.577 124.982i 0.655667 0.657799i
\(191\) −240.133 −1.25724 −0.628621 0.777711i \(-0.716380\pi\)
−0.628621 + 0.777711i \(0.716380\pi\)
\(192\) 72.3291 179.542i 0.376714 0.935114i
\(193\) −237.252 −1.22928 −0.614642 0.788806i \(-0.710700\pi\)
−0.614642 + 0.788806i \(0.710700\pi\)
\(194\) 153.199 + 152.703i 0.789686 + 0.787128i
\(195\) −135.361 56.0685i −0.694161 0.287531i
\(196\) −51.7839 + 189.036i −0.264204 + 0.964467i
\(197\) −142.584 + 59.0603i −0.723777 + 0.299798i −0.713992 0.700154i \(-0.753115\pi\)
−0.00978503 + 0.999952i \(0.503115\pi\)
\(198\) −0.779533 1.87336i −0.00393704 0.00946140i
\(199\) 7.17452 + 7.17452i 0.0360529 + 0.0360529i 0.724903 0.688851i \(-0.241884\pi\)
−0.688851 + 0.724903i \(0.741884\pi\)
\(200\) 10.8650 0.0528872i 0.0543252 0.000264436i
\(201\) −163.209 + 163.209i −0.811987 + 0.811987i
\(202\) 323.949 + 133.569i 1.60371 + 0.661231i
\(203\) 271.370 + 158.276i 1.33680 + 0.779684i
\(204\) 84.7690 206.544i 0.415534 1.01247i
\(205\) −29.3895 12.1735i −0.143364 0.0593832i
\(206\) 95.0074 0.154153i 0.461201 0.000748316i
\(207\) 0.358461i 0.00173170i
\(208\) 60.0464 147.668i 0.288685 0.709944i
\(209\) 125.093 0.598532
\(210\) −163.684 + 124.875i −0.779447 + 0.594644i
\(211\) 246.417 + 102.069i 1.16785 + 0.483740i 0.880482 0.474079i \(-0.157219\pi\)
0.287370 + 0.957820i \(0.407219\pi\)
\(212\) 104.807 43.8114i 0.494372 0.206657i
\(213\) −133.700 + 55.3805i −0.627701 + 0.260002i
\(214\) 136.114 + 56.1215i 0.636045 + 0.262250i
\(215\) 10.3714 10.3714i 0.0482392 0.0482392i
\(216\) −81.0058 + 198.290i −0.375027 + 0.918008i
\(217\) 18.6765 + 2.54268i 0.0860667 + 0.0117174i
\(218\) 254.409 105.863i 1.16701 0.485612i
\(219\) 279.650 115.835i 1.27694 0.528926i
\(220\) −95.1124 94.4971i −0.432329 0.429532i
\(221\) 70.3634 169.872i 0.318386 0.768653i
\(222\) −291.907 + 292.856i −1.31490 + 1.31917i
\(223\) 90.6780i 0.406628i −0.979114 0.203314i \(-0.934829\pi\)
0.979114 0.203314i \(-0.0651712\pi\)
\(224\) −137.019 177.205i −0.611693 0.791095i
\(225\) 0.199879 0.000888353
\(226\) −24.0349 23.9571i −0.106349 0.106005i
\(227\) −273.601 113.329i −1.20529 0.499248i −0.312586 0.949889i \(-0.601195\pi\)
−0.892705 + 0.450641i \(0.851195\pi\)
\(228\) 155.733 + 154.725i 0.683039 + 0.678620i
\(229\) 101.693 + 245.509i 0.444075 + 1.07209i 0.974506 + 0.224363i \(0.0720302\pi\)
−0.530431 + 0.847728i \(0.677970\pi\)
\(230\) −9.09973 21.8683i −0.0395641 0.0950795i
\(231\) −144.611 19.6878i −0.626020 0.0852285i
\(232\) −331.031 + 139.009i −1.42686 + 0.599177i
\(233\) 298.793 + 298.793i 1.28237 + 1.28237i 0.939313 + 0.343062i \(0.111464\pi\)
0.343062 + 0.939313i \(0.388536\pi\)
\(234\) 1.11784 2.71115i 0.00477711 0.0115861i
\(235\) 18.2503 + 44.0600i 0.0776607 + 0.187490i
\(236\) 295.374 123.472i 1.25158 0.523188i
\(237\) −103.351 + 249.512i −0.436081 + 1.05279i
\(238\) −156.713 205.416i −0.658456 0.863091i
\(239\) 277.379i 1.16058i −0.814410 0.580290i \(-0.802939\pi\)
0.814410 0.580290i \(-0.197061\pi\)
\(240\) −1.52706 235.285i −0.00636274 0.980356i
\(241\) 298.909 1.24028 0.620142 0.784489i \(-0.287075\pi\)
0.620142 + 0.784489i \(0.287075\pi\)
\(242\) 0.238442 + 146.956i 0.000985297 + 0.607257i
\(243\) −3.04096 + 7.34154i −0.0125143 + 0.0302121i
\(244\) 42.3091 103.088i 0.173398 0.422493i
\(245\) 29.0127 + 236.479i 0.118419 + 0.965221i
\(246\) 15.0850 36.5861i 0.0613210 0.148724i
\(247\) 127.840 + 127.840i 0.517572 + 0.517572i
\(248\) −15.1578 + 15.3061i −0.0611200 + 0.0617180i
\(249\) 302.181 302.181i 1.21358 1.21358i
\(250\) 236.651 98.4742i 0.946604 0.393897i
\(251\) −141.027 340.469i −0.561861 1.35645i −0.908277 0.418370i \(-0.862601\pi\)
0.346416 0.938081i \(1.61260\pi\)
\(252\) −2.50475 3.27216i −0.00993950 0.0129848i
\(253\) 6.42550 15.5125i 0.0253973 0.0613144i
\(254\) 252.661 253.482i 0.994727 0.997960i
\(255\) 271.391i 1.06428i
\(256\) 255.978 3.32286i 0.999916 0.0129799i
\(257\) 56.8547i 0.221225i −0.993864 0.110612i \(-0.964719\pi\)
0.993864 0.110612i \(-0.0352812\pi\)
\(258\) 12.9233 + 12.8815i 0.0500905 + 0.0499282i
\(259\) 121.807 + 462.746i 0.470297 + 1.78666i
\(260\) −0.628810 193.773i −0.00241850 0.745281i
\(261\) −6.10213 + 2.52758i −0.0233798 + 0.00968423i
\(262\) 113.872 47.3838i 0.434625 0.180854i
\(263\) −183.481 + 183.481i −0.697648 + 0.697648i −0.963903 0.266255i \(-0.914214\pi\)
0.266255 + 0.963903i \(0.414214\pi\)
\(264\) 117.366 118.514i 0.444566 0.448916i
\(265\) 97.6397 97.6397i 0.368452 0.368452i
\(266\) 245.574 65.0677i 0.923209 0.244615i
\(267\) −118.370 285.770i −0.443333 1.07030i
\(268\) −282.405 115.904i −1.05375 0.432477i
\(269\) 106.389 256.846i 0.395498 0.954817i −0.593222 0.805039i \(-0.702144\pi\)
0.988720 0.149777i \(-0.0478557\pi\)
\(270\) 0.422465 + 260.373i 0.00156468 + 0.964344i
\(271\) −481.642 −1.77728 −0.888638 0.458610i \(-0.848347\pi\)
−0.888638 + 0.458610i \(0.848347\pi\)
\(272\) 295.272 1.91639i 1.08556 0.00704554i
\(273\) −127.666 167.906i −0.467641 0.615041i
\(274\) 218.614 0.354710i 0.797862 0.00129456i
\(275\) 8.64985 + 3.58289i 0.0314540 + 0.0130287i
\(276\) 27.1865 11.3645i 0.0985018 0.0411758i
\(277\) −105.701 255.184i −0.381591 0.921242i −0.991659 0.128893i \(-0.958858\pi\)
0.610068 0.792349i \(-0.291142\pi\)
\(278\) −85.4201 + 207.172i −0.307267 + 0.745225i
\(279\) −0.280215 + 0.280215i −0.00100435 + 0.00100435i
\(280\) −235.870 136.037i −0.842395 0.485845i
\(281\) 106.402 106.402i 0.378653 0.378653i −0.491963 0.870616i \(-0.663720\pi\)
0.870616 + 0.491963i \(0.163720\pi\)
\(282\) −54.7753 + 22.7929i −0.194239 + 0.0808258i
\(283\) 129.222 + 311.970i 0.456616 + 1.10237i 0.969759 + 0.244066i \(0.0784813\pi\)
−0.513142 + 0.858303i \(0.671519\pi\)
\(284\) −135.776 134.898i −0.478085 0.474992i
\(285\) 246.540 + 102.120i 0.865051 + 0.358316i
\(286\) 96.9730 97.2882i 0.339067 0.340169i
\(287\) −27.7187 36.4557i −0.0965810 0.127023i
\(288\) 4.70930 0.0382059i 0.0163518 0.000132659i
\(289\) 51.5836 0.178490
\(290\) −308.102 + 309.104i −1.06242 + 1.06587i
\(291\) −125.176 + 302.201i −0.430158 + 1.03849i
\(292\) 283.992 + 282.155i 0.972575 + 0.966283i
\(293\) −188.644 455.427i −0.643837 1.55436i −0.821463 0.570262i \(-0.806842\pi\)
0.177626 0.984098i \(1.55684\pi\)
\(294\) −294.129 + 36.5701i −1.00044 + 0.124388i
\(295\) 275.175 275.175i 0.932796 0.932796i
\(296\) −506.252 206.815i −1.71031 0.698700i
\(297\) −130.514 + 130.514i −0.439441 + 0.439441i
\(298\) −143.544 59.1854i −0.481693 0.198609i
\(299\) 22.4198 9.28658i 0.0749826 0.0310588i
\(300\) 6.33690 + 15.1593i 0.0211230 + 0.0505310i
\(301\) 20.4204 5.37518i 0.0678418 0.0178577i
\(302\) 254.713 0.413282i 0.843422 0.00136848i
\(303\) 529.887i 1.74880i
\(304\) −109.365 + 268.955i −0.359754 + 0.884720i
\(305\) 135.454i 0.444113i
\(306\) 5.43203 0.00881368i 0.0177517 2.88029e-5i
\(307\) −206.101 + 497.572i −0.671338 + 1.62075i 0.108000 + 0.994151i \(0.465555\pi\)
−0.779338 + 0.626603i \(0.784445\pi\)
\(308\) −49.7399 186.502i −0.161493 0.605526i
\(309\) 54.9808 + 132.735i 0.177931 + 0.429564i
\(310\) −9.98136 + 24.2082i −0.0321979 + 0.0780909i
\(311\) −72.8833 + 72.8833i −0.234351 + 0.234351i −0.814506 0.580155i \(-0.802992\pi\)
0.580155 + 0.814506i \(0.302992\pi\)
\(312\) 241.059 1.17339i 0.772625 0.00376087i
\(313\) −410.097 410.097i −1.31021 1.31021i −0.921255 0.388960i \(-0.872834\pi\)
−0.388960 0.921255i \(1.37283\pi\)
\(314\) 355.719 148.020i 1.13286 0.471402i
\(315\) −4.32692 2.52367i −0.0137362 0.00801164i
\(316\) −357.183 + 1.15909i −1.13032 + 0.00366800i
\(317\) 35.1735 84.9163i 0.110957 0.267875i −0.858641 0.512578i \(-0.828691\pi\)
0.969598 + 0.244703i \(0.0786905\pi\)
\(318\) 121.664 + 121.270i 0.382591 + 0.381352i
\(319\) −309.380 −0.969842
\(320\) 286.326 121.879i 0.894768 0.380872i
\(321\) 222.643i 0.693591i
\(322\) 4.54517 33.7953i 0.0141154 0.104954i
\(323\) −128.156 + 309.396i −0.396768 + 0.957882i
\(324\) −329.210 + 1.06831i −1.01608 + 0.00329726i
\(325\) 5.17823 + 12.5014i 0.0159330 + 0.0384657i
\(326\) −43.5263 104.601i −0.133516 0.320863i
\(327\) 294.651 + 294.651i 0.901072 + 0.901072i
\(328\) 52.3385 0.254765i 0.159569 0.000776724i
\(329\) −9.26181 + 68.0297i −0.0281514 + 0.206777i
\(330\) 77.2850 187.442i 0.234197 0.568007i
\(331\) −125.459 302.885i −0.379030 0.915060i −0.992148 0.125068i \(-0.960085\pi\)
0.613118 0.789991i \(-0.289915\pi\)
\(332\) 522.871 + 214.595i 1.57491 + 0.646371i
\(333\) −9.29455 3.84993i −0.0279116 0.0115614i
\(334\) −476.577 + 0.773263i −1.42688 + 0.00231516i
\(335\) −371.071 −1.10768
\(336\) 168.758 293.705i 0.502256 0.874123i
\(337\) 151.596i 0.449839i 0.974377 + 0.224919i \(0.0722119\pi\)
−0.974377 + 0.224919i \(0.927788\pi\)
\(338\) −139.472 + 0.226299i −0.412640 + 0.000669524i
\(339\) 19.6385 47.4114i 0.0579306 0.139857i
\(340\) 331.163 138.433i 0.974008 0.407155i
\(341\) −17.1493 + 7.10347i −0.0502912 + 0.0208313i
\(342\) −2.03598 + 4.93793i −0.00595315 + 0.0144384i
\(343\) −135.443 + 315.126i −0.394878 + 0.918734i
\(344\) −9.12649 + 22.3403i −0.0265305 + 0.0649426i
\(345\) 25.3274 25.3274i 0.0734127 0.0734127i
\(346\) −101.322 243.496i −0.292840 0.703745i
\(347\) −242.136 + 100.296i −0.697798 + 0.289037i −0.703245 0.710948i \(-0.748266\pi\)
0.00544685 + 0.999985i \(0.498266\pi\)
\(348\) −385.157 382.666i −1.10677 1.09961i
\(349\) 265.623 + 110.025i 0.761098 + 0.315257i 0.729261 0.684236i \(-0.239864\pi\)
0.0318374 + 0.999493i \(0.489864\pi\)
\(350\) 18.8444 + 2.53441i 0.0538411 + 0.00724116i
\(351\) −266.760 −0.760000
\(352\) 204.482 + 82.7621i 0.580914 + 0.235120i
\(353\) 218.450i 0.618838i 0.950926 + 0.309419i \(0.100135\pi\)
−0.950926 + 0.309419i \(0.899865\pi\)
\(354\) 342.882 + 341.771i 0.968594 + 0.965456i
\(355\) −214.946 89.0336i −0.605482 0.250799i
\(356\) 288.329 290.207i 0.809914 0.815188i
\(357\) 196.845 337.499i 0.551388 0.945374i
\(358\) 44.4543 18.4982i 0.124174 0.0516708i
\(359\) −172.506 + 172.506i −0.480517 + 0.480517i −0.905297 0.424780i \(-0.860352\pi\)
0.424780 + 0.905297i \(0.360352\pi\)
\(360\) 5.27820 2.21646i 0.0146617 0.00615684i
\(361\) 22.4245 + 22.4245i 0.0621177 + 0.0621177i
\(362\) −41.7831 + 101.338i −0.115423 + 0.279940i
\(363\) −205.313 + 85.0436i −0.565601 + 0.234280i
\(364\) 139.765 241.430i 0.383971 0.663269i
\(365\) 449.585 + 186.224i 1.23174 + 0.510204i
\(366\) 168.510 0.273414i 0.460410 0.000747032i
\(367\) 440.096 1.19917 0.599586 0.800310i \(-0.295332\pi\)
0.599586 + 0.800310i \(0.295332\pi\)
\(368\) 27.7349 + 27.3772i 0.0753665 + 0.0743946i
\(369\) 0.962848 0.00260934
\(370\) −664.756 + 1.07859i −1.79664 + 0.00291511i
\(371\) 192.243 50.6035i 0.518176 0.136397i
\(372\) −30.1359 12.3683i −0.0810105 0.0332481i
\(373\) 156.000 + 376.618i 0.418232 + 1.00970i 0.982860 + 0.184355i \(0.0590197\pi\)
−0.564628 + 0.825346i \(0.690980\pi\)
\(374\) 235.231 + 96.9891i 0.628960 + 0.259329i
\(375\) 274.084 + 274.084i 0.730891 + 0.730891i
\(376\) −55.7529 55.2128i −0.148279 0.146842i
\(377\) −316.173 316.173i −0.838656 0.838656i
\(378\) −188.328 + 324.103i −0.498222 + 0.857414i
\(379\) 15.6501 6.48247i 0.0412931 0.0171042i −0.361941 0.932201i \(-0.617886\pi\)
0.403234 + 0.915097i \(0.367886\pi\)
\(380\) 1.14528 + 352.928i 0.00301389 + 0.928757i
\(381\) 500.020 + 207.115i 1.31239 + 0.543609i
\(382\) 339.048 340.150i 0.887561 0.890446i
\(383\) 494.019i 1.28987i −0.764239 0.644933i \(-0.776885\pi\)
0.764239 0.644933i \(-0.223115\pi\)
\(384\) 152.200 + 355.953i 0.396353 + 0.926961i
\(385\) −142.012 186.774i −0.368861 0.485126i
\(386\) 334.980 336.069i 0.867824 0.870644i
\(387\) −0.169892 + 0.410156i −0.000438998 + 0.00105984i
\(388\) −432.609 + 1.40385i −1.11497 + 0.00361818i
\(389\) −676.486 + 280.209i −1.73904 + 0.720333i −0.740187 + 0.672401i \(0.765263\pi\)
−0.998851 + 0.0479314i \(0.984737\pi\)
\(390\) 270.540 112.576i 0.693693 0.288657i
\(391\) 31.7847 + 31.7847i 0.0812907 + 0.0812907i
\(392\) −194.655 340.255i −0.496570 0.867997i
\(393\) 131.884 + 131.884i 0.335582 + 0.335582i
\(394\) 117.658 285.359i 0.298624 0.724263i
\(395\) −401.133 + 166.155i −1.01553 + 0.420645i
\(396\) 3.75426 + 1.54081i 0.00948045 + 0.00389094i
\(397\) 55.2516 133.389i 0.139173 0.335993i −0.838891 0.544300i \(-0.816795\pi\)
0.978064 + 0.208307i \(0.0667953\pi\)
\(398\) −20.2926 + 0.0329255i −0.0509864 + 8.27274e-5i
\(399\) 232.524 + 305.815i 0.582766 + 0.766454i
\(400\) −15.2656 + 15.4651i −0.0381641 + 0.0386627i
\(401\) 249.583i 0.622400i 0.950344 + 0.311200i \(0.100731\pi\)
−0.950344 + 0.311200i \(0.899269\pi\)
\(402\) −0.749004 461.625i −0.00186319 1.14832i
\(403\) −24.7854 10.2664i −0.0615021 0.0254750i
\(404\) −646.590 + 270.288i −1.60047 + 0.669030i
\(405\) −369.718 + 153.142i −0.912885 + 0.378129i
\(406\) −607.351 + 160.925i −1.49594 + 0.396366i
\(407\) −333.214 333.214i −0.818708 0.818708i
\(408\) 172.884 + 411.698i 0.423734 + 1.00906i
\(409\) 416.788 + 416.788i 1.01904 + 1.01904i 0.999815 + 0.0192276i \(0.00612071\pi\)
0.0192276 + 0.999815i \(0.493879\pi\)
\(410\) 58.7395 24.4424i 0.143267 0.0596157i
\(411\) 126.512 + 305.427i 0.307815 + 0.743132i
\(412\) −133.924 + 134.796i −0.325059 + 0.327175i
\(413\) 541.793 142.614i 1.31185 0.345313i
\(414\) 0.507762 + 0.506117i 0.00122648 + 0.00122251i
\(415\) 687.036 1.65551
\(416\) 124.393 + 293.552i 0.299021 + 0.705653i
\(417\) −338.875 −0.812649
\(418\) −176.621 + 177.195i −0.422539 + 0.423912i
\(419\) −122.245 50.6356i −0.291755 0.120849i 0.232006 0.972714i \(-0.425471\pi\)
−0.523760 + 0.851866i \(0.675471\pi\)
\(420\) 54.2215 408.172i 0.129099 0.971839i
\(421\) 187.554 77.6873i 0.445496 0.184530i −0.148647 0.988890i \(-0.547492\pi\)
0.594142 + 0.804360i \(0.297492\pi\)
\(422\) −492.502 + 204.938i −1.16707 + 0.485635i
\(423\) −1.02069 1.02069i −0.00241298 0.00241298i
\(424\) −85.9194 + 210.318i −0.202640 + 0.496032i
\(425\) −17.7233 + 17.7233i −0.0417018 + 0.0417018i
\(426\) 110.327 267.580i 0.258983 0.628122i
\(427\) 98.2477 168.449i 0.230088 0.394495i
\(428\) −271.678 + 113.567i −0.634761 + 0.265343i
\(429\) 191.911 + 79.4923i 0.447346 + 0.185297i
\(430\) 0.0475968 + 29.3348i 0.000110690 + 0.0682205i
\(431\) 372.076i 0.863285i 0.902045 + 0.431642i \(0.142066\pi\)
−0.902045 + 0.431642i \(0.857934\pi\)
\(432\) −166.505 394.714i −0.385429 0.913690i
\(433\) −3.47840 −0.00803326 −0.00401663 0.999992i \(-0.501279\pi\)
−0.00401663 + 0.999992i \(0.501279\pi\)
\(434\) −29.9713 + 22.8653i −0.0690584 + 0.0526850i
\(435\) −609.740 252.562i −1.40170 0.580603i
\(436\) −209.248 + 509.842i −0.479926 + 1.16936i
\(437\) −40.8342 + 16.9141i −0.0934420 + 0.0387049i
\(438\) −230.762 + 559.675i −0.526853 + 1.27780i
\(439\) −61.4292 + 61.4292i −0.139930 + 0.139930i −0.773602 0.633672i \(-0.781547\pi\)
0.633672 + 0.773602i \(0.281547\pi\)
\(440\) 268.147 1.30524i 0.609424 0.00296646i
\(441\) −3.55043 6.27679i −0.00805087 0.0142331i
\(442\) 141.278 + 339.516i 0.319633 + 0.768135i
\(443\) −296.808 + 122.942i −0.669995 + 0.277521i −0.691637 0.722245i \(-0.743110\pi\)
0.0216428 + 0.999766i \(0.493110\pi\)
\(444\) −2.68361 826.977i −0.00604416 1.86256i
\(445\) 190.300 459.424i 0.427640 1.03241i
\(446\) 128.446 + 128.030i 0.287995 + 0.287062i
\(447\) 234.797i 0.525274i
\(448\) 444.472 + 56.1105i 0.992126 + 0.125247i
\(449\) −648.742 −1.44486 −0.722430 0.691444i \(-0.756975\pi\)
−0.722430 + 0.691444i \(0.756975\pi\)
\(450\) −0.282213 + 0.283130i −0.000627140 + 0.000629179i
\(451\) 41.6676 + 17.2593i 0.0923894 + 0.0382689i
\(452\) 67.8707 0.220246i 0.150156 0.000487270i
\(453\) 147.403 + 355.862i 0.325392 + 0.785567i
\(454\) 546.834 227.546i 1.20448 0.501203i
\(455\) 45.7449 336.005i 0.100538 0.738473i
\(456\) −439.052 + 2.13715i −0.962832 + 0.00468673i
\(457\) 83.0513 + 83.0513i 0.181731 + 0.181731i 0.792110 0.610378i \(-0.208983\pi\)
−0.610378 + 0.792110i \(0.708983\pi\)
\(458\) −491.347 202.589i −1.07281 0.442335i
\(459\) −189.094 456.513i −0.411969 0.994581i
\(460\) 43.8246 + 17.9864i 0.0952709 + 0.0391008i
\(461\) −114.561 + 276.576i −0.248506 + 0.599947i −0.998078 0.0619765i \(-0.980260\pi\)
0.749571 + 0.661923i \(0.230260\pi\)
\(462\) 232.066 177.044i 0.502307 0.383213i
\(463\) 312.147i 0.674184i −0.941472 0.337092i \(-0.890557\pi\)
0.941472 0.337092i \(-0.109443\pi\)
\(464\) 270.481 665.177i 0.582933 1.43357i
\(465\) −39.5976 −0.0851561
\(466\) −845.114 + 1.37123i −1.81355 + 0.00294255i
\(467\) 301.498 727.881i 0.645606 1.55863i −0.173403 0.984851i \(-0.555476\pi\)
0.819009 0.573781i \(-0.194524\pi\)
\(468\) 2.26205 + 5.41134i 0.00483345 + 0.0115627i
\(469\) −461.459 269.145i −0.983922 0.573870i
\(470\) −88.1792 36.3575i −0.187615 0.0773564i
\(471\) 411.986 + 411.986i 0.874705 + 0.874705i
\(472\) −242.144 + 592.731i −0.513017 + 1.25579i
\(473\) −14.7043 + 14.7043i −0.0310873 + 0.0310873i
\(474\) −207.512 498.688i −0.437789 1.05208i
\(475\) −9.43135 22.7693i −0.0198555 0.0479353i
\(476\) 512.238 + 68.0455i 1.07613 + 0.142953i
\(477\) −1.59942 + 3.86133i −0.00335307 + 0.00809503i
\(478\) 392.908 + 391.635i 0.821984 + 0.819321i
\(479\) 519.705i 1.08498i −0.840063 0.542489i \(-0.817482\pi\)
0.840063 0.542489i \(-0.182518\pi\)
\(480\) 335.439 + 330.040i 0.698832 + 0.687584i
\(481\) 681.063i 1.41593i
\(482\) −422.034 + 423.406i −0.875590 + 0.878436i
\(483\) 49.8672 13.1264i 0.103245 0.0271767i
\(484\) −208.501 207.152i −0.430787 0.428000i
\(485\) −485.841 + 201.242i −1.00173 + 0.414932i
\(486\) −6.10574 14.6732i −0.0125633 0.0301917i
\(487\) 576.480 576.480i 1.18374 1.18374i 0.204968 0.978769i \(-0.434291\pi\)
0.978769 0.204968i \(-0.0657089\pi\)
\(488\) 86.2881 + 205.483i 0.176820 + 0.421072i
\(489\) 121.147 121.147i 0.247745 0.247745i
\(490\) −375.938 292.792i −0.767220 0.597535i
\(491\) −166.968 403.095i −0.340056 0.820968i −0.997709 0.0676473i \(-0.978451\pi\)
0.657653 0.753321i \(-0.271549\pi\)
\(492\) 30.5258 + 73.0246i 0.0620442 + 0.148424i
\(493\) 316.954 765.195i 0.642909 1.55212i
\(494\) −361.586 + 0.586687i −0.731956 + 0.00118763i
\(495\) 4.93297 0.00996559
\(496\) −0.279612 43.0820i −0.000563734 0.0868588i
\(497\) −202.726 266.626i −0.407900 0.536470i
\(498\) 1.38678 + 854.695i 0.00278469 + 1.71626i
\(499\) 342.105 + 141.704i 0.685581 + 0.283977i 0.698158 0.715944i \(-0.254003\pi\)
−0.0125767 + 0.999921i \(0.504003\pi\)
\(500\) −194.642 + 474.255i −0.389285 + 0.948510i
\(501\) −275.795 665.828i −0.550489 1.32900i
\(502\) 681.395 + 280.949i 1.35736 + 0.559659i
\(503\) 46.8393 46.8393i 0.0931198 0.0931198i −0.659012 0.752132i \(-0.729026\pi\)
0.752132 + 0.659012i \(0.229026\pi\)
\(504\) 8.17154 + 1.07201i 0.0162134 + 0.00212701i
\(505\) −602.374 + 602.374i −1.19282 + 1.19282i
\(506\) 12.9013 + 31.0042i 0.0254967 + 0.0612731i
\(507\) −80.7127 194.858i −0.159197 0.384335i
\(508\) 2.32280 + 715.791i 0.00457244 + 1.40904i
\(509\) −505.608 209.430i −0.993335 0.411453i −0.173986 0.984748i \(-0.555665\pi\)
−0.819349 + 0.573295i \(0.805665\pi\)
\(510\) 384.428 + 383.182i 0.753780 + 0.751337i
\(511\) 424.026 + 557.679i 0.829797 + 1.09135i
\(512\) −356.713 + 367.287i −0.696706 + 0.717357i
\(513\) 485.862 0.947099
\(514\) 80.5351 + 80.2741i 0.156683 + 0.156175i
\(515\) −88.3911 + 213.395i −0.171633 + 0.414359i
\(516\) −36.4934 + 0.118424i −0.0707236 + 0.000229504i
\(517\) −25.8747 62.4670i −0.0500477 0.120826i
\(518\) −827.464 480.819i −1.59742 0.928222i
\(519\) 282.012 282.012i 0.543375 0.543375i
\(520\) 275.369 + 272.701i 0.529555 + 0.524425i
\(521\) −275.780 + 275.780i −0.529328 + 0.529328i −0.920372 0.391044i \(-0.872114\pi\)
0.391044 + 0.920372i \(0.372114\pi\)
\(522\) 5.03536 12.2124i 0.00964629 0.0233955i
\(523\) 580.923 240.626i 1.11075 0.460089i 0.249556 0.968360i \(-0.419715\pi\)
0.861197 + 0.508272i \(0.169715\pi\)
\(524\) −93.6580 + 228.202i −0.178737 + 0.435500i
\(525\) 7.31931 + 27.8062i 0.0139415 + 0.0529641i
\(526\) −0.842037 518.963i −0.00160083 0.986622i
\(527\) 49.6931i 0.0942944i
\(528\) 2.16502 + 333.581i 0.00410041 + 0.631781i
\(529\) 523.067i 0.988785i
\(530\) 0.448090 + 276.166i 0.000845453 + 0.521069i
\(531\) −4.50758 + 10.8823i −0.00848886 + 0.0204939i
\(532\) −254.561 + 439.727i −0.478498 + 0.826554i
\(533\) 24.9443 + 60.2209i 0.0467998 + 0.112985i
\(534\) 571.923 + 235.812i 1.07102 + 0.441595i
\(535\) −253.099 + 253.099i −0.473083 + 0.473083i
\(536\) 562.912 236.382i 1.05021 0.441012i
\(537\) 51.4861 + 51.4861i 0.0958772 + 0.0958772i
\(538\) 213.611 + 513.345i 0.397047 + 0.954174i
\(539\) −41.1333 335.273i −0.0763141 0.622028i
\(540\) −369.416 367.026i −0.684104 0.679679i
\(541\) −217.598 + 525.327i −0.402214 + 0.971030i 0.584914 + 0.811096i \(0.301128\pi\)
−0.987128 + 0.159935i \(0.948872\pi\)
\(542\) 680.038 682.248i 1.25468 1.25876i
\(543\) −165.760 −0.305267
\(544\) −414.185 + 420.961i −0.761370 + 0.773825i
\(545\) 669.915i 1.22920i
\(546\) 418.094 + 56.2300i 0.765740 + 0.102985i
\(547\) 320.292 773.253i 0.585543 1.41362i −0.302182 0.953250i \(-0.597715\pi\)
0.887725 0.460375i \(-0.152285\pi\)
\(548\) −308.163 + 310.169i −0.562341 + 0.566002i
\(549\) 1.56897 + 3.78782i 0.00285786 + 0.00689949i
\(550\) −17.2881 + 7.19383i −0.0314328 + 0.0130797i
\(551\) 575.860 + 575.860i 1.04512 + 1.04512i
\(552\) −22.2872 + 54.5556i −0.0403753 + 0.0988326i
\(553\) −619.359 84.3218i −1.12000 0.152481i
\(554\) 510.710 + 210.573i 0.921860 + 0.380096i
\(555\) −384.694 928.735i −0.693143 1.67340i
\(556\) −172.855 413.509i −0.310890 0.743720i
\(557\) 190.205 + 78.7854i 0.341481 + 0.141446i 0.546832 0.837242i \(-0.315834\pi\)
−0.205351 + 0.978688i \(0.565834\pi\)
\(558\) −0.00128597 0.792565i −2.30460e−6 0.00142037i
\(559\) −30.0544 −0.0537646
\(560\) 525.726 142.040i 0.938797 0.253642i
\(561\) 384.771i 0.685865i
\(562\) 0.488300 + 300.949i 0.000868862 + 0.535496i
\(563\) −125.324 + 302.558i −0.222600 + 0.537403i −0.995241 0.0974391i \(-0.968935\pi\)
0.772642 + 0.634842i \(0.218935\pi\)
\(564\) 45.0520 109.771i 0.0798794 0.194630i
\(565\) 76.2220 31.5722i 0.134906 0.0558800i
\(566\) −624.359 257.432i −1.10311 0.454827i
\(567\) −570.854 77.7181i −1.00680 0.137069i
\(568\) 382.788 1.86328i 0.673923 0.00328042i
\(569\) 49.0645 49.0645i 0.0862293 0.0862293i −0.662676 0.748906i \(-0.730580\pi\)
0.748906 + 0.662676i \(0.230580\pi\)
\(570\) −492.747 + 205.040i −0.864469 + 0.359719i
\(571\) 435.785 180.508i 0.763196 0.316126i 0.0330833 0.999453i \(-0.489467\pi\)
0.730113 + 0.683326i \(0.239467\pi\)
\(572\) 0.891508 + 274.726i 0.00155858 + 0.480290i
\(573\) 670.983 + 277.930i 1.17100 + 0.485044i
\(574\) 90.7762 + 12.2086i 0.158147 + 0.0212694i
\(575\) −3.30802 −0.00575307
\(576\) −6.59503 + 6.72470i −0.0114497 + 0.0116748i
\(577\) 906.026i 1.57024i −0.619346 0.785118i \(-0.712602\pi\)
0.619346 0.785118i \(-0.287398\pi\)
\(578\) −72.8317 + 73.0685i −0.126006 + 0.126416i
\(579\) 662.931 + 274.595i 1.14496 + 0.474257i
\(580\) −2.83250 872.858i −0.00488361 1.50493i
\(581\) 854.388 + 498.320i 1.47055 + 0.857694i
\(582\) −251.332 603.996i −0.431842 1.03779i
\(583\) −138.431 + 138.431i −0.237445 + 0.237445i
\(584\) −800.647 + 3.89726i −1.37097 + 0.00667340i
\(585\) 5.04129 + 5.04129i 0.00861760 + 0.00861760i
\(586\) 911.466 + 375.810i 1.55540 + 0.641314i
\(587\) 1062.40 440.061i 1.80988 0.749678i 0.827856 0.560940i \(-0.189560\pi\)
0.982027 0.188738i \(-0.0604397\pi\)
\(588\) 363.485 468.270i 0.618171 0.796377i
\(589\) 45.1427 + 18.6987i 0.0766429 + 0.0317465i
\(590\) 1.26284 + 778.311i 0.00214040 + 1.31917i
\(591\) 466.766 0.789790
\(592\) 1007.74 425.104i 1.70227 0.718080i
\(593\) −78.5514 −0.132464 −0.0662322 0.997804i \(-0.521098\pi\)
−0.0662322 + 0.997804i \(0.521098\pi\)
\(594\) −0.598958 369.149i −0.00100835 0.621463i
\(595\) 607.440 159.894i 1.02091 0.268729i
\(596\) 286.509 119.767i 0.480720 0.200951i
\(597\) −11.7433 28.3509i −0.0196706 0.0474889i
\(598\) −18.5004 + 44.8697i −0.0309371 + 0.0750329i
\(599\) 603.410 + 603.410i 1.00736 + 1.00736i 0.999973 + 0.00738991i \(0.00235230\pi\)
0.00738991 + 0.999973i \(0.497648\pi\)
\(600\) −30.4204 12.4274i −0.0507007 0.0207124i
\(601\) −114.383 114.383i −0.190322 0.190322i 0.605514 0.795835i \(-0.292968\pi\)
−0.795835 + 0.605514i \(0.792968\pi\)
\(602\) −21.2179 + 36.5149i −0.0352457 + 0.0606560i
\(603\) 10.3766 4.29811i 0.0172082 0.00712788i
\(604\) −359.049 + 361.387i −0.594452 + 0.598322i
\(605\) −330.076 136.722i −0.545581 0.225987i
\(606\) −750.589 748.157i −1.23860 1.23458i
\(607\) 932.181i 1.53572i 0.640619 + 0.767859i \(0.278678\pi\)
−0.640619 + 0.767859i \(0.721322\pi\)
\(608\) −226.562 534.658i −0.372634 0.879372i
\(609\) −575.076 756.339i −0.944295 1.24194i
\(610\) 191.872 + 191.251i 0.314544 + 0.313525i
\(611\) 37.3959 90.2816i 0.0612044 0.147760i
\(612\) −7.65709 + 7.70695i −0.0125116 + 0.0125931i
\(613\) 531.042 219.965i 0.866300 0.358833i 0.0951317 0.995465i \(-0.469673\pi\)
0.771168 + 0.636632i \(0.219673\pi\)
\(614\) −413.816 994.473i −0.673967 1.61966i
\(615\) 68.0308 + 68.0308i 0.110619 + 0.110619i
\(616\) 334.410 + 192.869i 0.542874 + 0.313098i
\(617\) 488.091 + 488.091i 0.791072 + 0.791072i 0.981668 0.190597i \(-0.0610422\pi\)
−0.190597 + 0.981668i \(0.561042\pi\)
\(618\) −265.649 109.531i −0.429853 0.177234i
\(619\) −69.0349 + 28.5952i −0.111527 + 0.0461958i −0.437749 0.899097i \(-0.644224\pi\)
0.326222 + 0.945293i \(0.394224\pi\)
\(620\) −20.1982 48.3186i −0.0325777 0.0779332i
\(621\) 24.9566 60.2507i 0.0401878 0.0970220i
\(622\) −0.334478 206.145i −0.000537745 0.331422i
\(623\) 569.883 433.306i 0.914741 0.695515i
\(624\) −338.693 + 343.118i −0.542778 + 0.549869i
\(625\) 589.202i 0.942723i
\(626\) 1159.93 1.88203i 1.85292 0.00300643i
\(627\) −349.537 144.783i −0.557475 0.230914i
\(628\) −292.574 + 712.871i −0.465882 + 1.13514i
\(629\) 1165.52 482.774i 1.85297 0.767526i
\(630\) 9.68404 2.56590i 0.0153715 0.00407286i
\(631\) −115.013 115.013i −0.182271 0.182271i 0.610074 0.792345i \(-0.291140\pi\)
−0.792345 + 0.610074i \(0.791140\pi\)
\(632\) 502.671 507.588i 0.795365 0.803146i
\(633\) −570.405 570.405i −0.901114 0.901114i
\(634\) 70.6225 + 169.718i 0.111392 + 0.267694i
\(635\) 332.973 + 803.867i 0.524367 + 1.26593i
\(636\) −343.559 + 1.11488i −0.540187 + 0.00175295i
\(637\) 300.599 384.672i 0.471898 0.603881i
\(638\) 436.818 438.238i 0.684668 0.686893i
\(639\) 7.04198 0.0110203
\(640\) −231.626 + 577.666i −0.361916 + 0.902603i
\(641\) 7.26223 0.0113295 0.00566477 0.999984i \(-0.498197\pi\)
0.00566477 + 0.999984i \(0.498197\pi\)
\(642\) −315.375 314.353i −0.491238 0.489646i
\(643\) 666.011 + 275.871i 1.03579 + 0.429037i 0.834798 0.550557i \(-0.185585\pi\)
0.200989 + 0.979594i \(0.435585\pi\)
\(644\) 41.4539 + 54.1544i 0.0643693 + 0.0840907i
\(645\) −40.9838 + 16.9761i −0.0635408 + 0.0263195i
\(646\) −257.316 618.375i −0.398321 0.957237i
\(647\) −280.132 280.132i −0.432971 0.432971i 0.456667 0.889638i \(-0.349043\pi\)
−0.889638 + 0.456667i \(0.849043\pi\)
\(648\) 463.304 467.836i 0.714975 0.721969i
\(649\) −390.135 + 390.135i −0.601132 + 0.601132i
\(650\) −25.0195 10.3159i −0.0384915 0.0158706i
\(651\) −49.2430 28.7209i −0.0756421 0.0441181i
\(652\) 209.624 + 86.0332i 0.321509 + 0.131953i
\(653\) −1117.64 462.940i −1.71154 0.708944i −0.999980 0.00631987i \(-0.997988\pi\)
−0.711561 0.702624i \(-0.752012\pi\)
\(654\) −833.397 + 1.35222i −1.27431 + 0.00206761i
\(655\) 299.850i 0.457786i
\(656\) −73.5368 + 74.4976i −0.112099 + 0.113563i
\(657\) −14.7291 −0.0224188
\(658\) −83.2877 109.172i −0.126577 0.165915i
\(659\) 80.8647 + 33.4953i 0.122708 + 0.0508274i 0.443193 0.896426i \(-0.353846\pi\)
−0.320485 + 0.947254i \(0.603846\pi\)
\(660\) 156.393 + 374.127i 0.236959 + 0.566860i
\(661\) −584.186 + 241.978i −0.883791 + 0.366078i −0.777966 0.628307i \(-0.783748\pi\)
−0.105825 + 0.994385i \(0.533748\pi\)
\(662\) 606.176 + 249.935i 0.915674 + 0.377545i
\(663\) −393.220 + 393.220i −0.593092 + 0.593092i
\(664\) −1042.23 + 437.660i −1.56962 + 0.659127i
\(665\) −83.3173 + 611.981i −0.125289 + 0.920272i
\(666\) 18.5766 7.73001i 0.0278928 0.0116066i
\(667\) 100.991 41.8317i 0.151410 0.0627162i
\(668\) 671.791 676.166i 1.00568 1.01222i
\(669\) −104.951 + 253.373i −0.156877 + 0.378734i
\(670\) 523.922 525.625i 0.781973 0.784515i
\(671\) 192.043i 0.286205i
\(672\) 177.763 + 653.734i 0.264529 + 0.972819i
\(673\) −514.767 −0.764884 −0.382442 0.923980i \(-0.624917\pi\)
−0.382442 + 0.923980i \(0.624917\pi\)
\(674\) −214.736 214.041i −0.318600 0.317568i
\(675\) 33.5960 + 13.9159i 0.0497719 + 0.0206162i
\(676\) 196.603 197.883i 0.290833 0.292727i
\(677\) −28.3586 68.4637i −0.0418886 0.101128i 0.901551 0.432674i \(-0.142430\pi\)
−0.943439 + 0.331546i \(0.892430\pi\)
\(678\) 39.4307 + 94.7590i 0.0581574 + 0.139763i
\(679\) −750.149 102.128i −1.10479 0.150409i
\(680\) −271.483 + 664.550i −0.399240 + 0.977279i
\(681\) 633.331 + 633.331i 0.930002 + 0.930002i
\(682\) 14.1513 34.3216i 0.0207497 0.0503249i
\(683\) 505.795 + 1221.10i 0.740548 + 1.78784i 0.603638 + 0.797259i \(0.293717\pi\)
0.136911 + 0.990583i \(0.456283\pi\)
\(684\) −4.11998 9.85592i −0.00602336 0.0144092i
\(685\) −203.390 + 491.027i −0.296920 + 0.716827i
\(686\) −255.143 636.787i −0.371929 0.928261i
\(687\) 803.703i 1.16987i
\(688\) −18.7593 44.4703i −0.0272664 0.0646371i
\(689\) −282.941 −0.410654
\(690\) 0.116233 + 71.6365i 0.000168454 + 0.103821i
\(691\) −70.8973 + 171.161i −0.102601 + 0.247701i −0.966841 0.255379i \(-0.917800\pi\)
0.864240 + 0.503080i \(0.167800\pi\)
\(692\) 487.972 + 200.272i 0.705163 + 0.289411i
\(693\) 6.13457 + 3.57798i 0.00885220 + 0.00516303i
\(694\) 199.806 484.597i 0.287905 0.698266i
\(695\) −385.231 385.231i −0.554289 0.554289i
\(696\) 1085.86 5.28557i 1.56014 0.00759422i
\(697\) −85.3756 + 85.3756i −0.122490 + 0.122490i
\(698\) −530.889 + 220.911i −0.760586 + 0.316492i
\(699\) −489.068 1180.71i −0.699668 1.68915i
\(700\) −30.1967 + 23.1148i −0.0431382 + 0.0330212i
\(701\) 186.955 451.349i 0.266697 0.643864i −0.732627 0.680631i \(-0.761706\pi\)
0.999324 + 0.0367666i \(0.0117058\pi\)
\(702\) 376.643 377.867i 0.536528 0.538272i
\(703\) 1240.45i 1.76451i
\(704\) −405.944 + 172.797i −0.576625 + 0.245450i
\(705\) 144.236i 0.204590i
\(706\) −309.436 308.433i −0.438294 0.436874i
\(707\) −1186.02 + 312.191i −1.67753 + 0.441571i
\(708\) −968.243 + 3.14203i −1.36757 + 0.00443789i
\(709\) −172.457 + 71.4339i −0.243239 + 0.100753i −0.500973 0.865463i \(-0.667024\pi\)
0.257734 + 0.966216i \(0.417024\pi\)
\(710\) 429.603 178.765i 0.605075 0.251781i
\(711\) 9.29263 9.29263i 0.0130698 0.0130698i
\(712\) 3.98255 + 818.168i 0.00559347 + 1.14911i
\(713\) 4.63757 4.63757i 0.00650431 0.00650431i
\(714\) 200.140 + 755.353i 0.280308 + 1.05792i
\(715\) 127.797 + 308.530i 0.178738 + 0.431511i
\(716\) −36.5631 + 89.0877i −0.0510658 + 0.124424i
\(717\) −321.038 + 775.053i −0.447751 + 1.08097i
\(718\) −0.791667 487.919i −0.00110260 0.679553i
\(719\) −1069.38 −1.48732 −0.743659 0.668559i \(-0.766911\pi\)
−0.743659 + 0.668559i \(0.766911\pi\)
\(720\) −4.31274 + 10.6061i −0.00598992 + 0.0147306i
\(721\) −264.701 + 201.263i −0.367131 + 0.279145i
\(722\) −63.4259 + 0.102911i −0.0878476 + 0.000142536i
\(723\) −835.213 345.957i −1.15520 0.478501i
\(724\) −84.5518 202.267i −0.116784 0.279375i
\(725\) 23.3255 + 56.3128i 0.0321731 + 0.0776728i
\(726\) 169.421 410.902i 0.233362 0.565981i
\(727\) 315.123 315.123i 0.433456 0.433456i −0.456346 0.889802i \(-0.650842\pi\)
0.889802 + 0.456346i \(0.150842\pi\)
\(728\) 144.650 + 538.857i 0.198695 + 0.740189i
\(729\) −506.778 + 506.778i −0.695169 + 0.695169i
\(730\) −898.565 + 373.907i −1.23091 + 0.512202i
\(731\) −21.3042 51.4328i −0.0291439 0.0703595i
\(732\) −237.535 + 239.081i −0.324501 + 0.326614i
\(733\) −786.082 325.606i −1.07242 0.444210i −0.224574 0.974457i \(-0.572099\pi\)
−0.847843 + 0.530247i \(0.822099\pi\)
\(734\) −621.380 + 623.399i −0.846566 + 0.849318i
\(735\) 192.633 694.351i 0.262086 0.944695i
\(736\) −77.9393 + 0.632311i −0.105896 + 0.000859118i
\(737\) 526.094 0.713832
\(738\) −1.35946 + 1.36388i −0.00184209 + 0.00184808i
\(739\) 481.117 1161.52i 0.651037 1.57174i −0.160238 0.987078i \(-0.551226\pi\)
0.811275 0.584665i \(-0.198774\pi\)
\(740\) 937.053 943.154i 1.26629 1.27453i
\(741\) −209.250 505.174i −0.282389 0.681747i
\(742\) −199.751 + 343.762i −0.269207 + 0.463291i
\(743\) 343.644 343.644i 0.462508 0.462508i −0.436968 0.899477i \(-0.643948\pi\)
0.899477 + 0.436968i \(0.143948\pi\)
\(744\) 60.0692 25.2247i 0.0807381 0.0339042i
\(745\) 266.917 266.917i 0.358277 0.358277i
\(746\) −753.742 310.778i −1.01038 0.416593i
\(747\) −19.2121 + 7.95791i −0.0257190 + 0.0106532i
\(748\) −469.513 + 196.266i −0.627691 + 0.262388i
\(749\) −498.328 + 131.173i −0.665325 + 0.175131i
\(750\) −775.226 + 1.25783i −1.03363 + 0.00167711i
\(751\) 782.796i 1.04234i 0.853453 + 0.521169i \(0.174504\pi\)
−0.853453 + 0.521169i \(0.825496\pi\)
\(752\) 156.928 1.01850i 0.208680 0.00135439i
\(753\) 1114.57i 1.48017i
\(754\) 894.272 1.45099i 1.18604 0.00192439i
\(755\) −236.975 + 572.109i −0.313874 + 0.757760i
\(756\) −193.190 724.374i −0.255542 0.958166i